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ABSTRACT 34 

Atypical performance of people with schizophrenia (PSZ) in visual working 35 

memory (VWM) has long been attributed to decreased capacity compared with 36 

healthy control subjects (HCS). This notion, however, largely ignores the effects of 37 

other VWM components, such as precision, on behavioral performance. Here, we 38 

measured the performance of 60 PSZ and 61 HCS in a classical delay-estimation 39 

task and disentangled the contribution of various VWM components by thoroughly 40 

comparing several influential computational models of VWM. Surprisingly, none of 41 

the models suggest group differences in memory capacity and in memory resources 42 

across set size levels–two diagnostic features of VWM. Notably, we find that the 43 

model assuming variable precision (VP) across items and trials is the best model to 44 

explain the performance of both groups, indicating the two groups employ the 45 

qualitatively same internal process in VWM. According to the VP model, PSZ only 46 

exhibit abnormally larger variability of allocating memory resources rather than 47 

resources per se. These results directly challenge the widely accepted decreased-48 

capacity theory and establish the first time to our knowledge that the elevated 49 

resource allocation variability is the major determinant of the atypical VWM 50 

behavior in schizophrenia. Finally, we show that individual differences in the 51 

resource allocation variability predict variation of symptom severity in PSZ, 52 

highlighting its functional relevance to schizophrenic pathology. Taken together, 53 

our findings provide a novel account for the VWM deficits in schizophrenia and 54 

shed a new light on the utility of generative computational models to characterize 55 

mechanisms of mental deficits in clinical neuroscience. 56 

 57 
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SIGNIFICANCE STATEMENT 63 

Working memory deficits in schizophrenia have long been thought to arise from 64 

abnormally decreased capacity. We revisit this topic by leveraging the most recent 65 

advances in research on visual working memory. Combining a classical visual 66 

working memory paradigm and generative computational modeling, we challenge 67 

the conventional decreased-capacity theory and demonstrate that the atypically 68 

larger variability of distributing memory resources across items and trials accounts 69 

for behavioral deficits observed in schizophrenia. The current study offers a new 70 

perspective for future studies aiming for characterizing the diagnostic pathology of 71 

schizophrenia. 72 

 73 

  74 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 23, 2018. ; https://doi.org/10.1101/424523doi: bioRxiv preprint 

https://doi.org/10.1101/424523
http://creativecommons.org/licenses/by-nc-nd/4.0/


INTRODUCTION 75 

Schizophrenia is a severe mental disorder accompanied by a range of 76 

dysfunctions in perceptual and cognitive behavior, among which working memory 77 

deficit is considered as a core feature (1–4). Working memory refers to the ability to 78 

temporally store and manipulate information in order to guide appropriate behavior, 79 

and it has been shown to link with a broad range of other brain functions, including 80 

perception, attention, problem-solving and executive control (5–8). Dysfunctions in 81 

working memory therefore might cascade into multiple mental processes, causing a 82 

wide spectrum of negative consequences (2, 3, 9).  83 

A well-established finding in lab-based experiments is that people with 84 

schizophrenia (PSZ) exhibit worse performance than healthy control subjects (HCS) 85 

in visual working memory (VWM) tasks (2). This phenomenon has long been 86 

attributed to decreased VWM capacity in PSZ (2, 10, 11), a theory supported by 87 

previous studies using various VWM tasks, including the ‘span’ tasks (e.g., digit 88 

span, spatial span, verbal span) (12, 13),  the N-back task (14–16), the delayed-89 

response task (17–19), the change detection task (20–24) and the delay-estimation 90 

task (25–27). Despite the considerable differences across tasks, almost all previous 91 

studies converged to the same conclusion that decreased-capacity is the major cause 92 

for the VWM deficits in PSZ. 93 

In another line of research, people have increasingly recognized memory 94 

precision as a pivotal determinant of VWM performance (28). Precision indicates 95 

the amount of memory resources assigned to individual items–a larger amount of 96 

resources produce higher memory precision. At the neural level, low perceptual 97 

precision might arise from either the intrinsic noise in neural responses (29–31) or 98 

the fluctuations of internal cognitive factors (e.g., arousal, attention) (31, 32). 99 

Atypically increased variability in both behavioral and neural responses has been 100 

discovered in patients with mental diseases such as autism spectrum disorder (33, 101 

34), dyslexia (35), ADHD (36). These theoretical and empirical studies raise the 102 

possibility that PSZ and HCS might differ in memory precision rather than capacity. 103 

That is, these two groups might be able to remember an equal number of items (i.e., 104 

comparable capacity) but PSZ generally process and maintain the items in a less 105 
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precise manner. Yet, few studies have attempted to directly estimate memory 106 

capacity and precision at the same time in schizophrenic patients (25, 26). Using the 107 

same delayed-estimation task and the same computational model, Gold et al (25) 108 

found decreased capacity and intact precision in PSZ but Xie&Zhang (26) obtained 109 

the opposite conclusion. Those studies, however, employed a phenomenological 110 

model that categorizes response errors into a mixture of two distributions, and did 111 

not consider the trial-by-trial sensory uncertainty and encoding-decoding 112 

mechanisms underlying VWM, thereby offering limited insight into the mechanistic 113 

differences between PSZ and HCS.  114 

Disentangling the effects of different VWM components (e.g., capacity, 115 

precision) on performance requires generative computational models that explicitly 116 

describe how these components give rise to a behavioral response. van den Berg et 117 

al. (37) proposed a variable precision (VP) model (Fig. 1), suggesting that memory 118 

resources assigned to individual items are not only continuous but also variable 119 

across items and trials. Variable resources cause variable processing precision and 120 

thus affect the trial-by-trial response error. Furthermore, the VP model explicitly 121 

distinguishes the precision of encoding items from the precision of exerting a 122 

behavior choice (e.g., motor or decision noise), an aspect that most previous models 123 

ignored. Tested on a large-scale benchmark database of VWM, the VP model has 124 

been shown to outperform other conventional models (38). 125 

 126 

Figure 1. Variable precision model of VWM. A. Resource decay 127 
function. The VP model assumes that the mean resource ( J ) for 128 
processing a single item declines as a power function of set size N, a 129 

trend characterized by two free parameters–initial resources ( J1 ) 130 
and decaying exponent (a). B. The resources across items or trials 131 
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follow a gamma distribution with the mean resource ( J ) determined 132 
by the resource decay function (panel A) and the resource allocation 133 
variability (τ). Larger amounts of resources (J) indicate higher 134 
precision and therefore generate narrower von Mises distributions 135 
(three small axes indicating the precision equals to 5, 10 and 15 136 
respectively) of stimulus measurement (m). The widths of the von 137 
Mises distributions indicate the degree of trial-by-trial sensory 138 
uncertainty. C. The eventual behavioral choice given the internal 139 
stimulus measurement (m) is also uncertain, following a von Mises 140 
distribution with the choice variability (κr) (39).  In the VP model, 141 

initial resources ( J1 ), decaying exponent (a), resource allocation 142 
variability (τ) and choice variability (κr) are four free parameters to 143 
estimate (see details in SI and van den Berg et al. (37)). All numbers 144 
here are only for illustration purposes and not quantitatively related 145 
to the model fitting results in this paper. 146 

 147 

Leveraging recent advances in basic science, we aimed to use the VP model to 148 

understand the computational underpinnings of VWM deficits in schizophrenia. We 149 

sought to systematically disentangle the impact of memory capacity and resources, 150 

as well as other factors (i.e., variability in allocating resources and variability in 151 

choice) in PSZ. In this study, the performance of PSZ and demographically 152 

matched HCS was measured in a standard VWM delayed-estimation task (Fig. 2). 153 

Using a standard task allows us to compare our results to previous ones (25, 40–43). 154 

We believe that a well-controlled task and thorough computational modeling will 155 

shed a new light on the mechanisms of perceptual deficits associated with 156 

schizophrenia. 157 

 158 
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Figure 2. The color delay-estimation task. This figure depicts an 159 
example trial (set size = 3) of the color delay-estimation task. 160 
Subjects are instructed to first memorize the colors of all squares on 161 
the screen and after a 900 ms-delay choose the color of the probed 162 
square (the one in the lower visual field in this example) on a color 163 
wheel. Set size (i.e., number of squares in the sample array) varies 164 
trial by trial. Response error is the difference between the reported 165 
color and the real color of the probe in the standard color space. 166 

 167 

  168 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 23, 2018. ; https://doi.org/10.1101/424523doi: bioRxiv preprint 

https://doi.org/10.1101/424523
http://creativecommons.org/licenses/by-nc-nd/4.0/


RESULTS 169 

We measured the performance of 60 PSZ and 61 HCS in a standard color delay-170 

estimation task (Fig. 2). In the task, subjects were instructed to first memorize a set 171 

of colored squares. After a short delay, they chose the color of the probed square on 172 

a color wheel that represents the standard color space. The difference between the 173 

reported color and the true color of the target is considered as the response error. 174 

 175 

Variable precision model accounts for VWM behavior in both HCS and PSZ 176 

The VP model proposes that memory resources are continuous and the amount of 177 

resource assigned to individual items varies across items and trials. Previous studies 178 

have suggested the VP model, compared with other conventional models, as the 179 

best account of VWM so far in normal adults (37, 38). However, PSZ might use a 180 

qualitatively different observer model other than the VP model to perform the task. 181 

We therefore first compared the VP model against the other five computational 182 

models that summarize major existing theories of VWM (see model details in 183 

Supplementary Appendix note 1). The first one is the item-limit (IL) model. The IL 184 

model assumes no uncertainty in the sensory encoding stage and that each subject 185 

has a fixed memory capacity and a fixed response variability across set size levels 186 

(44). The second one is the mixture (MIX) model, similar to the IL model but 187 

assuming response variability is set-size dependent. Note that the MIX model has 188 

been used to study schizophrenia (25, 26), thus it enables us to directly compare our 189 

results with previous studies. Also, the MIX model is originally called “slots-plus-190 

averaging model” in (45) but we denote it as the MIX model here to differentiate it 191 

from our third model described as follows. Compared with the MIX model, our 192 

slots-plus-averaging (SA) model (45) further elaborates the idea that memory 193 

resources manifest as discrete chunks and these chunks can be flexibly assigned to 194 

multiple items. The fourth one is the equal-precision (EP) model, which is similar to 195 

the VP model but assumes that the memory resources are equally distributed across 196 

items (46, 47). Note that the VP model does not include the capacity component 197 

thus one might argue that we cannot draw any direct conclusion about memory 198 

capacity by merely analyzing the VP model. To circumvent this, we also 199 
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constructed a variable-precision-with-capacity (VPcap) model that not only 200 

acknowledges the variable precision mechanisms and but also explicitly estimates 201 

the capacity of individual subjects. 202 

 203 

Figure 3. Model comparison results. The VP model is tested 204 
against other five computational models. The pie charts illustrate 205 
the proportion of subjects for whom each model is their best-fitting 206 
model. The VP model is the best-fitting model for over 85% of 207 
subjects in both groups and under both AIC and BIC, indicating 208 
both groups share a qualitatively similar internal process of VWM. 209 

 210 

We compared all six models using the Akaike information criterion (AIC) 211 

and the Bayesian information criterion (BIC) (48, 49). It turned out that, among all 212 

models, the VP model was the best-fitting model for over 85% of subjects in the 213 

HCS group under both metrics, replicating previous results in normal subjects (37, 214 

38). Most importantly, the VP model was also the best-fitting model for over 87% 215 

of subjects in the PSZ group, indicating that both groups used a qualitatively same 216 

observer model to perform the task. 217 

It is worth highlighting two comparisons here. First, the VP model 218 

outperformed the MIX model in both groups. This result directly questions the 219 

reliability of the previous study based on the MIX model (25). Second, we found 220 

that the VP model was better than the VPcap model, even though the later one 221 
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incorporates the additional capacity parameter. This result suggests that adding the 222 

capacity parameter seems unnecessary from the modeling perspective. This result is 223 

also in line with the literature showing that a fixed capacity might not exist in 224 

VWM (50, 51). Although systematically examining the existence of a fixed 225 

capacity is beyond the scope of this paper, this result invites a rethink of whether 226 

memory capacity should be considered as a key factor that limits VWM behavior in 227 

PSZ. 228 

 229 

Larger resource allocation variability in PSZ 230 

Analyses above have established that HCS and PSZ employ the qualitatively 231 

same observer model to complete the VWM task.  Their behavioral differences thus 232 

can only be attributed to the parameter differences on some components of VWM. 233 

We next compared the two groups’ fitted parameters of the VP model. Results 234 

showed that the two groups had comparable resource decay functions (Fig. 4A, 235 

initial resources, t(119) = 0.689, p = 0.492, d = 0.125; decaying exponent, t(119) = 236 

1.065, p = 0.289, d = 0.194), indicating a similar trend of diminished memory 237 

resources as set size increases. PSZ, however, had larger variability in allocating 238 

resources (Fig. 4B, resource allocation variability, t(119) = 4.03, p = 9.87 × 10-5, d 239 

= 0.733). This suggests that, although the two groups have on average the same 240 

amount of memory resources across different set size levels, PSZ allocate the 241 

resources across items or trials in a more heterogeneous manner, with some items in 242 

some trials receiving considerably larger amounts and vice versa in other cases. 243 

This is theoretically suboptimal with respect to completing the task since the probe 244 

was randomly chosen among all presented items with an equal probability. The 245 

optimal strategy therefore should be to assign an equal amount of resources to every 246 

item and in every trial to tackle the unpredictable target. Furthermore, our VP 247 

model explicitly distinguishes the variability of processing items and the variability 248 

in exerting a behavior choice (e.g., motor or decision noise). We found no 249 

significant group difference in the choice variability (Fig. 4C, t(119) = 1.7034, p = 250 

0.091, d = 0.31), diminishing the possibility that the atypical performance of PSZ 251 

arises from larger variability at the choice stage. 252 
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 253 

Figure 4.  Fitted parameters of the VP model. No significant group 254 
differences are noted between two groups in resource decay 255 
functions (panel A), and choice variability (panel C). PSZ have 256 
larger resource allocation variability than HCS (panel B). The 257 

individual resource decay functions are computed by   J1 = J * N −a , 258 

where N is the set size,   J1  and a are the estimated initial resources 259 
and the decaying exponent of one subject. The solid lines represent 260 
the averaged resource decay functions across subjects. The shaded 261 
areas in panel A, and all error bars in panel B and C represent ±SEM 262 
across subjects. Significance symbol conventions are ***: p < 0.001; 263 
n.s.: non-significant.  264 

 265 

Suboptimal models reveal no capacity difference between HCS and PSZ  266 

 Although the VP model was the most appropriate model for both groups, we 267 

further examined other suboptimal models. We believe this is valuable for several 268 

reasons. First, the VP model does not have the concept of capacity thus we cannot 269 

completely rule out the influence of capacity. One might argue that resource 270 

allocation variability and limited capacity might jointly manifest in PSZ thus a 271 

hybrid model that aggregates two factors might yield a better explanation. Second, 272 

the fitted parameters of all models might be derived from specific model settings or 273 

possible idiosyncratic model fitting processes. 274 

We argue that the VPcap model is such a hybrid model that accommodates 275 

both the variable precision mechanism and a fixed capacity. However, this model is 276 

worse than the VP model. We also evaluated the fitted parameters in the VPcap 277 

model since it inherits the variable precision mechanism. The results from the 278 

VPcap model largely replicated the results of the VP model. Again, we found a 279 
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significantly larger resource allocation variability in PSZ (t(119) = 3.891, p =1.65 x 280 

10-4, d = 0.707, see full statistical results in Supplementary Appendix note 2), This 281 

result suggests that the effect of resource allocation variability is quite robust even 282 

though we altered the model structure.  283 

 We further examined the estimated capacity of all subjects in the IL, the 284 

MIX, the SA and the VPcap model. Most importantly, none of the four models 285 

suggest decreased capacity in PSZ (see full stats in Supplementary Appendix note 286 

3). Particularly, no significant group difference in capacity was noted in the MIX 287 

model, which contradicts the results of the previous study that used the same task 288 

and the same MIX model (25).   289 

 In sum, we found robustly larger resource allocation variability in PSZ in 290 

both the VP and the VPcap models, strongly supporting its key role in limiting 291 

performance in PSZ. Also, we found no evidence for decreased capacity in PSZ in 292 

all models that include the capacity parameter. These results directly challenge the 293 

widely accepted decreased-capacity account, and highlight the role of resource 294 

allocation variability in VWM deficits of PSZ. 295 

 296 

Resource allocation variability predicts the severity of schizophrenic symptoms 297 

 We next turned to investigate whether the results from the VP model are 298 

predictive of clinically measured symptoms. A set of correlational analyses was 299 

carried out to link the estimated resource allocation variability from the VP model 300 

to the schizophrenia symptomatology (BPRS, SANS, and SAPS).  301 

We noticed that the estimated resource allocation variability of individual 302 

subjects correlates with their BPRS scores (Fig. 5A, r = 0.259, p = 0.045) and the 303 

SANS scores (Fig. 5B, r = 0.302, p = 0.019) in PSZ. No significant correlation was 304 

noted on the SAPS scores (Fig. 5C, r = -0.121, p = 0.358). These results suggest 305 

that resource allocation variability not only is the key factor from a computational 306 

perspective but also can quantitatively predict the severity of clinically measured 307 

symptoms. 308 
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 309 

Figure 5. Individual differences in resource allocation variability predict the 310 
scores in symptom assessments. Estimated resource allocation variability 311 
values in the PSZ group significantly correlates with their scores on BPRS 312 
(panel A) and SANS (negative symptoms, panel B) but not on SAPS 313 
(positive symptoms, panel C).  314 
 315 

 316 

  317 
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DISCUSSION 318 

The mechanisms of VWM deficits in schizophrenia have been a matter of debate in 319 

the past few years. One widely accepted view proposes decreased capacity as the 320 

major cause of the deficits in PSZ. This conclusion, however, is merely based on 321 

estimated behavioral performance or suboptimal VWM models. In the present study, 322 

we re-examined this conclusion by comparing the performance of PSZ and HCS 323 

using the computational models that summarize several major theories of VWM. 324 

We first established that the VP model was the best model to characterize 325 

performance in both groups, indicating the presence of a qualitative similar internal 326 

process in both groups. We then further evaluated different components in the VP 327 

model as well as other suboptimal models, with special focuses on memory capacity 328 

and the declining trend of mean precision as a function of set size. Surprisingly, we 329 

found that PSZ and HCS differ in none of these two diagnostic features of VWM. 330 

Most importantly, we showed that PSZ had larger variability in allocating memory 331 

resources. Furthermore, individual differences in resource allocation variability 332 

predict variation of patients’ symptom severity, highlighting the clinical 333 

functionality of this factor. Taken together, our results challenge the long-standing 334 

decreased-capacity explanation for the VWM deficits in schizophrenia and propose 335 

for the first time that resource allocation variability might be the key determinant 336 

that limits their performance. 337 

A large body of literature has documented that PSZ perform poorly in 338 

various forms of working memory tasks (2, 3, 52, 53). Most studies reached the 339 

same conclusion: memory capacity is decreased in schizophrenia. However, a 340 

careful examination of the literature reveals that the definition of capacity varies 341 

across studies. Many studies directly equated worse performance with decreased 342 

capacity without quantitatively demonstrating how capacity modulates performance. 343 

For example, memory capacity is usually defined as the number of digits that can be 344 

recalled in the longest strand in digit span tasks (12). Also, in N-back tasks capacity 345 

is defined as the number of backs corresponding to a certain accuracy level (14–16). 346 

Moreover, the calculation of capacity resembles the d-prime metric in change 347 

detection tasks (22–24, 44, 54). The majority of these metrics are more like 348 
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behavioral thresholds related to capacity rather than the quantitative estimates of 349 

capacity. Although these metrics indeed suggest worse performance in PSZ, we 350 

cannot easily equate the worse performance with decreased capacity given the 351 

presence of other components such as memory resource or choice variability. This 352 

is partly because we lack appropriate generative models for the majority of the tasks 353 

thus it is unclear how these components jointly determine performance. The VP 354 

model can describe the generative process of the delay-estimation task and the 355 

change-detection task (37), and allow us to disassociate the effect of capacity from 356 

other VWM components.   357 

Only a few studies have quantitatively estimated capacity and precision in 358 

schizophrenia but they demonstrated inconsistent findings. Gold et al (25) 359 

employed the same delay-estimation task and estimated individual’s capacity and 360 

precision using the MIX model (see introduction above and details in 361 

Supplementary Appendix note 1). The model assumes that response errors arise 362 

from a mixture distribution combining a von Mises distribution whose variance 363 

reflects memory precision, and a uniform distribution accounting for the random 364 

guessing if the set size exceeds capacity. Results obtained from the MIX model 365 

echoed the decreased-capacity theory. The MIX model, however, does not take into 366 

account two important factors. First, the model assumes an equal precision across 367 

items held in memory. Second, the model does not separate the variability for 368 

processing stimuli (i.e., sensory uncertainty) and the variability in exertion of a 369 

choice (i.e., choice uncertainty), an issue most previous VWM models also ignored. 370 

Such distinction is important since it highlights different types of uncertainty in 371 

encoding and decoding stages of VWM. Mathematically, these two types of 372 

uncertainty can be distinguished by manipulating set size since the encoding 373 

variability depends on set size but the choice variability does not. The issues of the 374 

MIX model have been symmetrically addressed in a recent work (55). Most 375 

importantly, we showed in this study that the MIX model is not only conceptually 376 

inappropriate but also quantitatively less accurate than the VP model. In addition, 377 

we did not find any group difference in capacity even examining the fitted 378 

parameters. 379 
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 Compared with capacity and precision–two diagnostic features of VWM, 380 

resource allocation variability is a new concept. It describes the heterogeneity of 381 

allocating resources across multiple items and trials. It has been recently shown that 382 

such variability might not only manifest in VWM and but also act as a ubiquitous 383 

mechanism when processing multiple objects (56). We speculate that resource 384 

allocation variability reflects the extent of attentional control when the brain 385 

processes multiple objects. Two aspects of available evidence support this argument. 386 

First, it has been shown that attention and WM are two core components of 387 

executive control and tightly linked with each other (57, 58). Second, schizophrenia 388 

is known to have deficits in top-down attentional modulation (53, 57). Particularly, 389 

recent studies discovered the phenomenon of spatial hyperfocusing in schizophrenia 390 

patients (19, 59–61). If schizophrenia patients overly attend one item and ignore 391 

others in the memory encoding stage, unbalanced resource allocation will likely 392 

occur.  393 

What are the neural mechanisms of this resource allocation variability? 394 

Recent neurophysiological studies proposed that the neural representation of a 395 

stimulus may follow a doubly stochastic process (62, 63), which suggests that the 396 

variability in encoding precision is a consequence of trial-to-trial and item-to-item 397 

fluctuations in attentional gain (32, 37, 64). A recent study combined functional 398 

magnetic resonance imaging and the VP model, showing that the superior 399 

intraparietal sulcus (IPS) is the cortical locus that controls the resource allocation 400 

(65).  Interestingly, schizophrenic patients have been known to have IPS deficits 401 

(66). Note that besides top-down factors, we cannot rule out the contribution of 402 

bottom-up neural noise in perceptual and cognitive processing (62, 63), as found in 403 

several other mental diseases (33–36). 404 

The current results also reveal links between resource allocation variability 405 

and patients’ negative symptoms, but not positive symptoms (Fig. 5). These 406 

findings are consistent with several experimental and meta-analysis studies 407 

claiming dissociable mechanisms underlying the cluster of negative symptoms 408 

versus that of positive symptoms (67–70). More broadly, a growing collection of 409 

evidence suggests that visual perceptual deficits in schizophrenic patients are more 410 
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likely to link to negative rather than positive symptom severity (71–75). Negative 411 

symptoms in turn might produce improvised social functioning. Humans depend 412 

heavily on VWM to interact with multiple agents and complete social tasks. 413 

Deficits in distributing processing resources over multiple agents therefore might 414 

cause disadvantages in social cognition.  415 

 In conclusion, our study proposes a new explanation that the resource 416 

allocation variability accounts for the atypical VWM performance in schizophrenia. 417 

This view differs from the decreased-capacity theory and provides a new direction 418 

for future studies that attempt to promote diagnosis and rehabilitation for 419 

schizophrenic patients. 420 

 421 

 422 

 423 

 424 
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 426 

 427 

 428 

 429 

 430 
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MATERIALS AND METHODS 432 

Ethics Statement. All experimental protocols were approved by the institutional 433 

review board at the East China Normal University. All research was performed in 434 

accordance with relevant guidelines and regulations. Informed written consent was 435 

obtained from all participants. 436 

 437 

Subjects. 61 HCS and 60 PSZ participated in the study. PSZ were clinically stable 438 

inpatients (N = 33) and outpatients (N = 27) who met DSM-IV criteria (76) for 439 

schizophrenia. All patients were receiving antipsychotic medication (2 first-440 

generation, 43 second-generation, 15 both). Symptom severity was evaluated by the 441 

Brief Psychiatric Rating Scale (BPRS) (77), the Scale for the Assessment of 442 

Negative (SANS) and Positive Symptoms (SAPS) (78, 79). HCS were recruited by 443 

advertisement. All HCS had no current diagnosis of axis 1 or 2 disorders as well as 444 

no family history of psychosis nor substance abuse or dependence. All subjects are 445 

right-handed with normal sight and color perception. 446 

The two groups were matched in age (t(119) = 1.58, p = 0.118, d = 0.284), 447 

gender (t(119) = 1.20, p = 0.234, d = 0.218) and education level of parents (t(119) = 448 

0.257, p = 0.798, d = 0.047). Inevitably, the PSZ had fewer years of education than 449 

the HCS (t(119) = 5.51, p = 2.09 × 10-7, d = 1.00). The detailed demographic 450 

information is summarized in the Table 1. 451 

 452 

 453 

 454 

 455 

 456 

 457 
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 459 

 460 
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Table 1. Demographics and clinical information of people with schizophrenia 463 

(PSZ) and healthy control subjects (HCS) 464 

 PSZ (N = 60)  HCS (N = 61) 

 Mean SD  Mean SD 

age 35.67 6.58  33.82 9.90 

  range 23-48 n/a  21-57 n/a 

Female/male 31/29 n/a  29/32 n/a 

Inpatient/outpatient 33/27 n/a  n/a n/a 

Subject’s education (in years) 12.03 2.24  15.13 3.70 

Paternal education (in years) a 9.89 2.53  9.76 2.95 

Maternal education (in years) 9.62 2.91  9.29 3.63 

BPRS 27.25 6.27  n/a n/a 

SAPS 5.77 7.02  n/a n/a 

SANS 24.43 11.45  n/a n/a 
a Average of mother’s and father’s years of education 465 

BPRS: Brief Psychiatric Rating Scale (77); SAPS: Scale for the Assessment of 466 

Positive Symptoms (79); SANA: Scale for the Assessment of Negative Symptoms 467 

(78). 468 

 469 

Stimuli and Task. Subjects sat 50 cm away from an LCD monitor. All stimuli were 470 

generated by Matlab 8.1 and Psychtoolbox 3 (80, 81), and then presented on the 471 

LCD monitor. 472 

In the color delay-estimation VWM task, each trial began with a fixation cross 473 

presented at center-of-gaze for a duration randomly chosen from a sequence of 300, 474 

350, 400, 450 and 500 ms. Subjects shall keep their fixation on the cross throughout 475 

the whole experiment. A set of colored squares (set size = 1 or 3) was shown within 476 

an invisible area with 4o radius. The sample array lasted 500 ms. Each square was 477 

1.5o × 1.5o. Their colors were randomly selected from the 180 colors that are 478 

equally distributed along the wheel representing the CIE L*a*b color space. The 479 

color wheel was centered at (L = 70, a = 20, b = 38) with a radius of 60 in the color 480 

space (40). The sample array then disappeared and was followed by a 900 ms blank 481 
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period for memory retention. After the delay, an equal number of outlined squares 482 

were shown at the same location of each sample array item, with one of them 483 

bolded as the probe. At the meantime, a randomly rotated color wheel was shown. 484 

The color wheel was 2.1o thick and centered on the monitor with the inner and the 485 

outer radius as 7.8o and 9.8o respectively. Subjects were asked to choose the 486 

remembered color of the probe by clicking a color on the color wheel using a 487 

computer mouse. Subjects shall choose the color as precisely as possible and 488 

response time was not constrained. Every subject completed 2 blocks for the set 489 

size 1 and 3, respectively. The order of the two blocks was counterbalanced across 490 

subjects. Each block had 80 trials. 491 

 492 

493 
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Supplementary Note 1: Computational modeling of VWM 

VP model. The variable precision (VP) model has been shown as the state-of-the-art 

computational model of VWM. Details of the VP model have been documented in 

several previous studies (1, 2) and the model codes are publicly available 

(http://www.cns.nyu.edu/malab/resources.html).  

 The VP model assumes a resource decaying function describing the decreasing 

trend of mean memory resource ( J ) assigned to individual items as the set size (N) 

increases (3, 4):  

J = J1 *N
−a  ,                                                            (S1) 

where J1  is the initial resources when only 1 item (N = 1) should be memorized and a is 

the decaying exponent. The key component of the VP model is that the memory 

resources J  across items and trials follow a Gamma distribution with the mean J and the 

scale parameter τ :  

J ~Gamma(J,τ )  ,                                                        (S2) 

Intuitively, a larger τ  indicates a more uneven distribution of memory resources across 

items or trials, with some items in some trials receiving a larger amount of resource while 

others receive comparative fewer. Note that a larger amount of memory resource 

produces a higher precision. Thus, we do not explicitly distinguish resource and precision 

and denote them as J. Defining precision as Fisher information (5), precision J  can be 

linked to the variance of the von Mises distribution of sensory measurement: 

J = k I1(κ )
I0 (κ )

,                                                              (S3) 

where I0  and I1  are modified Bessel functions of the first kind of order 0 and 1 

respectively, with the concentration parameter κ . Eq. S3 specifies a one-on-one mapping 

between precision J  and variance κ . We can rewrite their relationship as: 

κ = Φ(J )  ,                                                                (S4) 

where Φ  is the mapping function. The distribution of sensory measurement (m) given the 

input stimulus (s) can be written as: 
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p(m | s) = 1
2π I0 (κ )

eκ cos(m−s ) ≡VM (m;s,κ ) ,                           (S5) 

We further assume that the reported color ( ŝ ) by participants also follows a von Mises 

distribution: 

p(ŝ |m) = 1
2π I0 (κ r )

eκ r cos( ŝ−m ) ≡VM (ŝ;m,κ r ) ,                        (S6) 

where kr  represents the variability at the choice stage.  

Taken together, this VP model has four free parameters: J1 , a, τ  and kr . 

 Given the four free parameters and stimulus color s  in a trial, we can derive the 

probability of the observed response in a trial by marginalizing over sensory 

measurement m  and variable precision J : 

        

  

p(ŝ | s; J ,τ ) = p(ŝ | s; J ) p(J | J ;τ )dJ∫
= VM (ŝ;s,Φ(J ))Gamma(J ; J ,τ )∫ dJ

= VM (ŝ;m,kr )VM (m;s,Φ(J ))Gamma(J ; J ,τ )∫∫ dJdm

=
I0( Φ(J )2 + k 2

r + 2Φ(J )kr cos(ŝ − s))
2π I0(kr )I0(Φ(J ))∫ Gamma(J ; J ,τ )dJ

 ,             (S7) 

Note that in Eq. S7, sensory measurement (m) can be analytically eliminated. Since 

precision J is a random variable across items and trials, we sampled it 10000 times from 

the Gamma distribution with mean J  and scale parameter τ . Note that (1) confirmed that 

500 samples are enough in the model fitting. We then used all the samples to calculate 

response probability in each trial. 

 

Variable-precision-with-capacity model. The variable-precision-with-capacity (VPcap) 

model inherits all parameters and the structure of the VP model above, except that an 

additional capacity parameter (K) is introduced to estimate memory capacity of 

individuals. If the set size N is smaller than capacity K, the VPcap model is identical to 

the VP model. If the set size N exceeds the capacity K, the model assumes that the probe 

is stored in the VWM with the probability K/N, and out of memory with the probability 

1- K/N. In the latter case, a participant randomly guesses a color. The response 

probability therefore can be written as: 
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p(ŝ | s) =
K
N

p(ŝ | s; J ,τ )+ (1− K
N

) 1
2π

, K <= N

p(ŝ | s; J ,τ ), K > N

⎧

⎨
⎪

⎩
⎪

,                     (S8) 

Where   p(ŝ | s; J ,τ )  is defined in Eq. S7. In essence, the VPcap model is a mixture 

model of the VP model and a random guessing process when the set size exceeds the 

participant’s capacity. The VPcap model has five parameters, four as the same in the VP 

model and the additional capacity parameter (K). 

 

Item-limit model. The item-limit (IL) model assumes no uncertainty in the sensory 

encoding stage such that the internal sensory measurement m is equal to the input 

stimulus s. But there exists choice variability from measurement m to the reported color (

  ŝ ). Such choice variability does not vary across set size levels. The IL model also 

assumes a fixed capacity K. The response probability is:   

  

p(ŝ | s) ≡ p(ŝ | m) =
K
N

VM (ŝ | s,κ r )+ (1− K
N

) 1
2π

, K <= N

VM (ŝ | s,κ r ), K > N

⎧

⎨
⎪

⎩
⎪

 ,               (S9) 

 

The IL model has two free parameters: choice variability ( κ r )and capacity (K). 

 

Slots-plus-averaging model. The slots-plus-averaging (SA) model was originally 

proposed in ref. (6) and further elaborated in ref. (1). Unlike the IL model, the SA model 

acknowledges the presence of noise in sensory encoding stage, however the memory 

resource is discrete chunks and a single or multiple chunks can be assigned to one item. 

For one item, the SA model assumes the Eq. S4 still holds as the relationship between the 

resource assigned to that item and the width of the Von Mises distribution: 

  κ = Φ(SJs )  ,                                                                (S10) 

where S is the number of chunks and Js is the resource of one chunk. The SA model also 

assumes a capacity K. When N > K, an item should receive either 0 or 1 chunk. Then the 

allocation should be similar to the IL model. When N ≤ K, some items receive either one 
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or more chunks. Assuming that the resource chunks should be assigned as equally as 

possible across items, the S can be calculated as: 

  

S =

K
N

⎢

⎣
⎢

⎥

⎦
⎥ , with probability 1-

K mod N
N

K
N

⎢

⎣
⎢

⎥

⎦
⎥ +1, with probability 

K mod N
N

⎧

⎨

⎪
⎪

⎩

⎪
⎪

,                     (S11)                                                              

where  x⎢⎣ ⎥⎦  represents the floor function in Matlab. The response probability in the SA 

model can be written as: 

 

 

  

p(ŝ | s) =

K
N

VM (ŝ | s,Φ(Js ))+ (1− K
N

)
1

2π
, K < N

(1− K mod N
N

)VM (ŝ | s,Φ(
K
N

⎢

⎣
⎢

⎥

⎦
⎥ Js ))+

K mod N
N

)VM (ŝ | s,Φ(
K
N

+1
⎢

⎣
⎢

⎥

⎦
⎥ Js )), K >= N

⎧

⎨
⎪
⎪

⎩
⎪
⎪

 , (S12) 

The SA model has two free parameters: unit resource Js and capacity K.    

 

Mixture model. The mixture model (MIX) has been used in previous clinical research 

(7).  Similar to the IL model, the MIX model only assumes the uncertainty from stimulus 

s to the reported color ( ŝ ) and a fixed capacity K. The difference is that the uncertainty (

κ ) reflects both sensory noise and choice variability, and thus the uncertainty is set-size 

dependent (each set size has one κ ). The response probability can be written as: 

  

p(ŝ | s) =
K
N

VM (ŝ | s,κ1/3)+ (1− K
N

) 1
2π

, K <= N

VM (ŝ | s,κ1/3), K > N

⎧

⎨
⎪

⎩
⎪

 ,                  (S13) 

where  κ1 and  κ 3  denote the uncertainty for set size 1 and 3, respectively. The MIX model 

has three parameters: uncertainty levels  κ1 , κ 3  and capacity K. 

 

Equal-precision model. The equal precision (EP) model is very similar to the VP model, 

except that an equal amount of resources is assigned to every item and in any trial. 

Namely, the Eq. S2 does not apply to the EP model. In the EP model, the resource 

assigned to one item declines as a power function (as Eq. S1). Then the resource at each 
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set size level can be converted to the width of the Von Mises distribution using (Eq. S4). 

The response probability is given by:  

  
p(ŝ | s; J1,a,κ r ) =

I0( Φ(J1N
−a )2 + k 2

r + 2Φ(J1N
−a )kr cos(ŝ − s))

2π I0(κ r )I0(Φ(J1N
−a ))

 ,          (S14) 

where J1 is the resource when set size is 1 (initial resources). The EP model has three free 

parameters: initial resources (J1), decaying exponent (a), and choice variability ( κ r ). 

 

Model fitting. The BADS optimization toolbox in MATLAB (8) was used to search the 

best-fit parameters that maximize the likelihood of responses. BADS has been shown to 

outperform other default nonlinear optimization algorithms in MATLAB, especially in 

the problems where gradients on loss function are not available or hard to compute (8). 

We fit all models separately to each participant. To avoid local minima, we repeated the 

optimization process with 20 different initial seeds that are equally spaced within a lower 

and an upper bound. Parameters bounds were set to be very broad to avoid bias. The 

parameters with the maximum likelihood value were used as the best-fit parameters for 

one subject. 

 

Supplementary Note 2: Model comparisons  

We compared the performance of all models fitted in this study, including the VP model, 

the VPcap model, the EP model, the SA model, the MIX model and the IL model. Model 

comparisons were performed for both groups using both Akaike information criterion 

(AIC) and Bayesian information criterion (BIC) (9, 10) metrics (Fig. S1). All models 

were compared for each subject and we derived the best model for each subject. Results 

showed that the VP model outperformed all other models over 85% of subjects in both 

groups and with respect to both AIC and BIC (Fig. S2). Particularly, the VP model is the 

best-fitting model in 52 out of 61 (85%) HCS and in 55 out of 60 PSZ (92%) under the 

AIC. Using the BIC, the VP model is the best-fitting model in 52 out of 61 HCS (85%) 

and 52 out of 60 (87%) PSZ.  These results strongly support the idea that the VP model 

assuming no fixed capacity better explains the VWM behavior. This result also questions 
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the conventional theory whether capacity really acts as a key determinant of limiting 

VWM performance in PSZ. 

 

Supplementary Note 3: Results of other suboptimal models 

Fitted parameters of the VPcap model. The VPcap model is a variant of the VP model 

and explicitly incorporates the capacity parameter. Estimated parameters in the VPcap 

model largely replicated the results of the VP model (Fig. S2). Again, PSZ have larger 

resource allocation variability than HCS (Fig. S2B, t(119) = 3.891, p =1.65 x 10-4, d = 

0.707) and the two groups did not significantly differ in the resource decay function (Fig. 

S2A, initial resources, t(119) = 0.012, p = 0.990, d = 0.002; decaying exponent, t(119) = 

1.142, p = 0.256, d = 0.208). We observed a significant larger choice variability in HCS 

(Fig. S2C, choice variability, t(119) = 2.365, p = 0.02, d = 0.43). Most importantly, the 

estimated capacity values of two groups were statistically comparable (Fig. S2D, t(119) = 

0.459, p = 0.647, d = 0.083).  

 
Comparing capacity of the two groups in suboptimal models. We further investigated 

the estimated capacity of all subjects in the IL, the SA, the MIX and the VPcap model, 

the four models having the capacity parameter. We found no significant group difference 

in capacity measured by all four models (Fig. S3, IL model, t(119) = 1.554, p = 0.123, d 

= 0.283; SA model, t(119) = 1.03, p = 0.306, d = 0.187; MIX model, t(119) = 0.273, p = 

0.786, d = 0.050; VPcap model, t(119) = 0.459, p = 0.647, d = 0.083). These results 

directly reject the decreased-capacity account of PSZ. Notably, one previous study 

employed the same task and fit the same MIX model and found smaller capacity of PSZ 

compared with HCS (7). But we could not replicate this finding here. 
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Figure S1. Positive log-likelihood (panels A, D), AIC (panels B, E) and 
BIC (panels C, F) values for all models. Note that here we display the 
positive log-likelihood values to help visually compare models since 
maximum negative log-likelihood values are equivalent to minimum 
positive log-likelihood values. Thus, in all panels a lower y-axis value 
indicates a better model. The upper (panels A-C) and lower (panels D-F) 
rows depict the model comparison results for HCS and PSZ respectively. 
The best-fitting model is the VP model for both groups and using both 
AIC and BIC metrics (also see the Fig. 3 in the main text). 
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Figure S2. Fitted parameters (panel A: resource decay functions; panel B: 
resource allocation variability; panel C: choice variability; panel D: 
capacity) of the VPcap model. The results replicate the results in the Fig. 4. 
Furthermore, this model estimates capacity in individual subjects and the 
result show that the two groups have comparable capacity (panel D). All 
error bars are ± SEM across subjects. Other figure captions are the same as 
in the Fig. 4 in the main text. Significance symbol conventions are *:p < 
0.05; ***: p < 0.001; n.s.: non-significant. 

  

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 23, 2018. ; https://doi.org/10.1101/424523doi: bioRxiv preprint 

https://doi.org/10.1101/424523
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 
Figure S3.  Capacity of the two groups measured by four suboptimal 
models. None of the four models reveal the significant group differences 
in capacity. These results directly challenge the conventional decreased-
capacity account of PSZ. All error bars are ± SEM across subjects.   
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