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Abstract

There is a vast gulf between the two primary strategies for simulating protein-ligand
interactions. Docking methods significantly limit or eliminate protein flexibility to
gain great speed at the price of uncontrolled inaccuracy, whereas fully flexible
atomistic molecular dynamics simulations are expensive and often suffer from limited
sampling. We have developed a flexible docking approach geared especially for highly
flexible or poorly resolved targets based on mixed-resolution Monte Carlo (MRMC),
which is intended to offer a balance among speed, protein flexibility, and sampling
power. The binding region of the protein is treated with a standard atomistic force
field, while the remainder of the protein is modeled at the residue level with a Gō
model that permits protein flexibility while saving computational cost. Implicit
solvation is used. Here we assess three facets of the MRMC approach with
implications for other docking studies: (i) the role of receptor flexibility in
cross-docking pose prediction; (ii) the use of non-equilibrium candidate Monte Carlo
(NCMC) and (iii) the use of pose-clustering in scoring. We examine 61 co-crystallized
ligands of estrogen receptor α, an important cancer target known for its flexibility. We
also compare the performance of the MRMC approach with Autodock smina, a
docking program. [1] Adding protein flexibility, not surprisingly, leads to significantly
lower total energies and stronger interactions between protein and ligand, but notably
we document the important role of backbone flexibility in the improvement. The
improved backbone flexibility also leads to improved performance relative to smina.
Somewhat unexpectedly, our implementation of NCMC leads to only modestly
improved sampling of ligand poses. Overall, the addition of protein flexibility improves
the performance of docking, as measured by energy-ranked poses, but we do not find
significant improvements based on cluster information or the use of NCMC.

Introduction 1

Computational structure-based drug design can play an important role in drug 2

development, as exemplified in the development of inhibitors of HIV protease, which 3
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have a major impact on treatment for AIDS patients. [2, 3] Because of their potential 4

to reduce the cost and time associated with drug development, a multitude of methods 5

have been developed to screen potential drug candidates virtually and prioritize 6

possible structures for synthesis. [4–7] Some of the most popular docking methods 7

represent the potential energy due to the receptor using grids and optimize the ligand 8

conformation with respect to this potential. These include DOCK, [8, 9] Autodock 9

Vina, [10] and the related smina [1], Schrodinger Glide, [11–13] CDOCKER, [14] and 10

others. [15] Once a grid is constructed, however, the protein conformation represented 11

by that grid is fixed, which is a serious approximation, since a number of structural 12

studies have shown that “hidden” protein conformations and protein flexibility play 13

important roles in protein-ligand binding; methods that consider protein flexibility 14

and multiple structures improve docking performance compared to those that make 15

use of only one structure. [16–23] 16

A number of approaches have been developed to incorporate flexibility into 17

docking. [24] One approach is to try to incorporate protein flexibility into grid-based 18

approaches by collecting multiple confomations of the receptor and docking to all of 19

them, a practice commonly known as ensemble docking. [16,17,20,23,25,26] Another 20

grid-based strategy involves leaving certain amino acid side chains out of the grid and 21

optimizing their conformation alongside that of the ligand during the docking 22

procedure. CDOCKER has been modified in this way for example, [27] and Autodock 23

Vina and smina are also capable of this. [1, 10] However, the amount of flexibility that 24

can be incorporated by this strategy is limited. In particular, allowing only a few side 25

chains to be flexible means these few side chains must be carefully chosen and that 26

important protein motions involving the backbone are not represented. Likewise, 27

ensemble docking requires a careful choice of conformations to be used and only allows 28

for a limited degree of backbone flexibility. Since these conformations come from 29

simulations or structures of the protein without the corresponding ligand, ensemble 30

docking cannot take into account the mutual induced fit that may occur when a ligand 31

binds to a protein. 32

The RosettaLigand approach to ligand docking [28–30] makes use of the Rosetta 33

knowledge-based force field and, in principle, allows for full receptor flexibility. Like 34

other knowledge-based force fields, it relies on the assumption that the system under 35

discussion is similar to known protein-ligand complexes. Furthermore, the 36

RosettaLigand docking approach used a complex protocol involving several rounds of 37

minimization, which loses information about the relative entropy of the energy minima 38

that are found. Although in theory the protocol should be able to allow full receptor 39

flexibility, in practice it was found that restraints on the α carbons were needed to 40

improve the discrimination between native and nonnative poses. RosettaLigand is also 41

relatively expensive computationally, requiring approximately 80 CPU hours per 42

ligand. [28] 43

Another way in which full flexibility of the protein can be allowed, at even greater 44

computational cost, is by using molecular dynamics or Monte Carlo simulations. 45

Alchemical free energy methods have received much attention recently. [31–33] These 46

methods require conducting multiple simulations at different values of a coupling 47

parameter λ that serves to scale protein-ligand interactions. In principle, they are 48

exact according to the laws of statistical mechanics and therefore should give perfectly 49

accurate results given an accurate force field potential and a simulation of infinite 50

length. In practice, however, both force field errors and inadequate sampling can 51

result in significant errors in the calculated free energies. [34,35] Alternatively, 52

methods such as MM-PBSA [36,37] can be used; these are somewhat less expensive 53

because they only require simulation of the endpoints, but also make additional 54

approximations. There is therefore a need for an in silico docking technique that 55
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incorporates full flexibility of the protein at modest computational cost. 56

Multiscale simulation techniques show promise for reducing computational time 57

while maintaining full flexibility of the protein and physical accuracy. An early 58

approach that bears some similarities our own involves dividing the system into three 59

regions: an atomistic region, a coarse-grained region using a Gō-like potential, and an 60

intermediate region. [38] Our group has also done some preliminary work on mixed 61

resolution models, combining a residuel level Gō model with the OPLS-AA force field 62

and conducting some preliminary tests on self-docking to the estrogen receptor. [39] 63

The popular MARTINI force field for water has also been combined with an atomistic 64

force field for proteins; [40] however, balancing the strength of electrostatic forces in 65

the two force fields proved difficult. Others have tried to combine an atomistic region 66

with an elastic network model. [41]. Feig and co-workers have also combined their 67

PRIMO force field with the CHARMM36 atomistic force field, [42] and obtained 68

similar results to fully atomistic or fully coarse-grained simulations, but they note 69

issues with weakened hydrophobic packing interactions, and the amount of speedup 70

they obtained is generally modest. 71

Here we extend our previous mixed-resolution Monte Carlo software [39] and use it 72

to systematically study key aspects of docking in a challenging system. In the 73

software, the majority of the protein is modeled using a residue-level coarse-grained 74

model currently based on the Gō model [43–46] while the ligand and binding site are 75

modeled using an atomistic force field. Interactions between the two regions are 76

treated in a fully atomistic manner. Full flexibility of the ligand and receptor is 77

maintained, allowing the modeling of mutual induced fit, including “breathing” 78

motions away from the binding site. [47,48] Importantly, the coordinates of all atoms 79

are tracked throughout the simulation, which increases computational cost but enables 80

maintaining proper backbone geometry via standard non-bonded terms even in the 81

coarse region. Monte Carlo methods sample the Boltzmann distribution and hence 82

implicitly include entropy effects. [49] The computational cost of the method can be 83

adjusted by changing the size of the atomistic region; for the region used here, the 84

mixed-resolution model reduces the computational cost by a factor of 2-4 compared to 85

a fully atomistic treatment of the protein using the same implementation. In addition, 86

coarse-grained models produce potential energy surfaces that are smoother than 87

corresponding atomistic surfaces, because of averaging over omitted degrees of 88

freedom. [50] 89

Monte Carlo simulation readily allows for the systematic testing of the role of 90

flexibilty in docking, as has been noted. [28, 29] Flexible degrees of freedom and 91

interaction type (coarse-grained vs. all-atom) are readily adjusted. Here, we 92

specifically examine the effects of common choices in conventional docking: rigid side 93

chains and rigid backbones, both of which prove detrimental. We are unaware of a 94

prior study examining these cases together. 95

In addition to the mixed-resolution model, we examine the recently developed 96

nonequilibrium candidate Monte Carlo (NCMC) method to enhance the sampling of 97

ligand binding modes. [51] In this method, the potential energy is perturbed 98

systematically in a short nonequilibrium simulation over the course of 102-103 MC 99

trial moves, and the entire sequence of moves is then either accepted or rejected based 100

on the nonequilibrium work done during the simulation. In principle, the perturbation 101

of potential energy can be designed to allow large configurational changes that would 102

have a very low acceptance probability in a standard MC simulation, while the short 103

nonequilibrium simulations allow time for the system to relax after each such 104

configurational change. Gill et al. have applied this method to the binding of toluene 105

to the L99A mutant of T4 lysozyme and found that the NCMC method produced a 106

much higher rate of transitions between distinct binding modes of toluene compared to 107
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standard MD simulations or simulations using MD combined with MC. [52] 108

We examine the effects of flexibility and the efficacy of NCMC in the context of 109

docking known ligands to the ligand binding domain of estrogen receptor α (ER α). 110

ER α is known to undergo a conformational change upon binding by estradiol and 111

other ER agonists in which helix 12 closes over the binding site as shown in 112

Fig 1. [53, 54] In contrast, in the bound structures with tamoxifen and other ER α 113

antagonists, helix 12 does not make this conformational change. [55] The development 114

of drugs to modulate ER activity is of considerable interest because aberrant ER 115

signaling has long been known to be a key player in promoting proliferation of several 116

types of cancer, and multiple ER modulating drugs are currently in clinical 117

use. [56–58] However ER has also been recently observed to evolve drug-resistance 118

mutations during metastatic progression in breast cancer, which limits the ability of 119

current therapeutic agents to affect the progression of secondary tumors. [59–61] We 120

have previously validated a similar MRMC approach for ER in a very limited way 121

using a simple self-docking test. [39] Here we attack the cross-docking problem, in 122

which the co-crystal structure for the tested compound is not used. 123

The first section of the paper describes the mixed resolution potential and the 124

Monte Carlo and NCMC protocols that were used with it for docking. For this study, 125

ligands with known bound crystal structures were used, so we can compare the docked 126

conformations to experimental crystal structures. We study the docking protocol with 127

and without NCMC and with different levels of protein flexibility, and also tested 128

different methods of ranking the poses, including trying to cluster the poses by 129

structural similarity. We find that having full protein flexibility (including backbone 130

flexibility) results in stronger interactions between protein and ligand, and top-ranked 131

poses that are closer to the corresponding crystal structures. Study of the acceptance 132

rates of large ligand moves and of variations in ligand RMSD during each simulation 133

provide some evidence that NCMC is improving sampling. However, the use of NCMC 134

does not improve the docking results beyond what is obtained with simulations with a 135

fully flexible protein without NCMC. Also, the use of clustering as a part of pose 136

ranking does not appear to improve the overall docking results. We also compare the 137

performance of the MRMC method to Autodock smina, [1] chosen to represent 138

docking software, and find that the increased backbone flexibility offered by MRMC 139

improves performance compared to smina. Finally, we discuss possible improvements 140

to the mixed resolution potential and to sampling, and the ability of our protocol to 141

sample multiple docked poses for each ligand. 142

Materials and methods 143

Mixed-Resolution Potential 144

In this work, we have replaced the discontinous Gō model functional form used in 145

previous work [45,46] with a continous Lennard-Jones functional form. We have also 146

replaced the OPLS-AA force field used in our previous work with the AMBER 99SB 147

force field [62] so that ligands can be automatically parameterized using the 148

compatible GAFF forcefield and antechamber tool. [63,64] To save computer time, we 149

have replaced the Generalized Born solvent model with a simpler solvent 150

exposure-dependent distance-dependent dielectric model. [65] We no longer use 151

precalculated libraries of amino acid conformations in our Monte Carlo moves—a 152

technique that worked well for peptides but proved to be less advantageous for Monte 153

Carlo simulations of dense protein systems because of poor acceptance rates. 154

Simulations were done with a mixed-resolution potential, in which the majority of 155

the protein is treated with a Gō model [43–46,66] and the atomistic region around the 156
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(a) (b) (c) 

Fig 1. Structure of ER α.
(a) Active and (b) inactive conformation of ER α. (c) Illustration of the mixed-resolution
model used in this paper. The ligand (green) and the binding site (heavy structure)
constitute the atomistic region and are treated using an all-atom force field. The re-
mainder of the protein is treated as the coarse-grained region is represented by particles
located at each α carbon (purple spheres) with native attractions between them (yellow
lines). Rigid structures of each amino acid (thin structure) and moved along with the
coarse-grained particles and used to calculate interactions between the coarse-grained
and atomistic regions. Helix 12 is indicated in orange in all three panels.

binding site is treated using the AMBER 99SB force field. [62] The overall potential 157

has the following form: 158

U = UCG + UAA + UCG/AA (1)

The coarse-grained portion of the potential UCG is in turn given by 159

UCG = Ubb + UGo (2)

UGo =
∑
i,j


ε

[
5
(

r0ij
rij

)12

− 6
(

r0ij
rij

)10
]

(native contacts)

5ε
(

rHC

rij

)12

(nonnative contacts)

(3)

where the sum is taken over all pairs of residues in which both residues belong to the 160

coarse-grained region. The coarse-grained potential also includes a backbone 161

component, which uses the bond, angle, and dihedral terms from the AMBER 99SB 162

force field for the backbone atoms in the coarse-grained region (1-4 van der Waals 163

terms are not included). The 12-10 form used here replaces a square well potential 164

used in previous work [45,46] and has shown good performance in other 165

settings. [66–68] The Gō model well depth ε and hard core radius rHC are listed in 166

table 1. r0ij is the native distance between atoms i and j, determined from the original 167

structure. 168

The all-atom potential UAA is the potential energy of the all-atom region, 169

according to the AMBER 99SB force field. [62] The UCG/AA term represents the 170

interaction between the two regions, which is also computed atomistically using the 171

AMBER 99SB force field. The all-atom region was defined to contain the ligand and 172

all residues with at least one non-hydrogen atom within 3 Å of the ligand in any of the 173

66 crystal structures of ligand-ER complexes that were used as references; in addition, 174
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residues 533-548, which comprise helix 12 and the neighboring loop, were also included 175

in the all-atom region. Ligands were parameterized with the antechamber tool [64] 176

using the GAFF force field. [63] 177

In order to incorporate solvation effects in a computationally efficient manner, the 178

electrostatic term of the AMBER 99SB was modified to use a solvent-exposure 179

dependent distance dependent dielectric originally developed by Garden and Zhorov, 180

which was previously found to work well in docking simulations with an AMBER force 181

field. [65] In this model, the electrostatic interaction between atoms i and j is given by 182

Kcoulqiqj/εijrij where 183

εij = rij [ε0 + (1− skl)(ε1 − ε0)] (4)

skl = c(vk + vl) (5)

where ε0 and ε1 are low and high dielectric constants, respectively, and skl is the 184

overlap of hydration shell volumes for the groups k and l that include atoms i and j. 185

(For all pairs of groups k and l, 0 ≤ skl < 1.) The hydration volumes vk and vl for 186

these groups are calculated using a formula originally used for the EEF1 implicit 187

solvent model. [69] The values for ε0, ε1, and c shown in table 1 are those found to 188

optimize docking results for a training set in ref. 65. 189

Table 1. Parameters of the simulation.

Symbol Description Value
ε Gō model well depth 3.0 kcal/mol
rHC Hard core radius 1.7 Å

Cutoff for defining native interactions in Gō model 8 Å
ε0 Low-dielectric constant 2
ε1 High dielectric constant 8
c Constant for determining hydration overlaps 0.625

Cutoff for atomistic nonbonded interactions 10 Å
T MC simulation temperature 300 K

Method of selecting atomistic region residues 533-548 plus all residues with at least one non-
hydrogen atom within 3 Å of the ligand in any of 66 refer-
ence structures

Number of residues in atomistic region 39

Standard Monte Carlo 190

Sampling was performed using MC simulation employing a standard variety of local 191

and global moves as described in table 2. To investigate the impact of protein 192

flexiblity, in addition to simulations in which the protein was fully flexible, simulations 193

were also conducted in which the protein was kept rigid or only the sidechains were 194

allowed to move. This was done by leaving out the corresponding MC moves and 195

increasing the fraction of others in the move mix, also as shown in table 2. In all 196

simulations, both the translational and rotational degrees of freedom of the ligand 197

with respect to the protein and its internal degrees of freedom were sampled. 198

Nonequilibrium candidate Monte Carlo 199

In order to enhance the sampling of ligand poses, docking runs were also undertaken 200

using a modified version of the nonequilibrium candidate Monte Carlo (NCMC) 201

algorithm. [51,52] In this method, the system is subjected to NCMC “moves” which 202
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Table 2. Monte Carlo moves used in the simulation.

Type Description Max. size Fraction
fully fixed sidechain
flexible protein only

Backbone
rotation

Rotation about a randomly selected rotatable
bond in protein backbone

2◦ 0.1 0 0

Sidechain
rotation

Rotation about a randomly selected rotatable
bond in amino acid side chain (atomistic region
only)

180◦ 0.2 0 0.25

Backrub
rotation [70]

Rotation of the part of the protein between two
randomly selected amino acids about the axis join-
ing their alpha-carbons

2◦ 0.1 0 0

Ligand
bond
rotation

Rotation about a randomly selected rotatable
bond in the ligand

180◦ 0.2 0.33 0.25

Ligand
translation

Translation of the ligand by a randomly selected
vector

1 Å 0.2 0.33 0.25

Ligand
rotation

Random rotation of the ligand about its center of
mass

180◦ 0.2 0.33 0.25

are in fact short nonequilibrium simulations (using standard MC) during which the 203

potential energy function is occasionally perturbed such that sampling for particular 204

degrees of freedom may be enhanced. 205

In the method used here, the potential energy is modified by scaling the van der 206

Waals and electrostatic components of the protein-ligand interaction energy by the 207

factors λVDW and λelec: 208

U = Uprotein + Uligand + λVDWUVDW + λelecUelec (6)

Each NCMC move consisted of 800 individual Monte Carlo moves, which were divided 209

into four 100-move phases in which the coupling parameters λVDW and λelec were 210

changed according to the schedule shown in Fig. 2. First, the charges on the ligand 211

were removed by systematically driving λelec towards 0. Second, λVDW was also driven 212

towards 0, such that the ligand was completely uncoupled from the protein and free to 213

rotate, translate, or change conformation without interference. Then, in the second 214

two phases, first λVDW and then λelec weree gradually transitioned back to 1, so that 215

the system relaxed and steric clashes might be resolved. In all four phases, λVDW and 216

λelec were changed by 0.05 every 5 trial moves. During all four phases, the individual 217

trial moves were preliminarily accepted or rejected with the standard Metropolis 218

criterion, 219

ppreliminary = min[1, exp−β(Unew − Uold)] (7)

where U is the scaled potential given above. This leads to canonical sampling suitable 220

for the given set of λ values. 221

At the end of each NCMC move, the nonequilibrium work w performed on the 222

system (which accounts for the changes in λ values) was calculated using 223

w =
∑[(

λ
(i+1)
VDW − λ

(i)
VDW

)
UVDW(r(i)) +

(
λ
(i+1)
elec − λ

(i)
elec

)
Uelec(r

(i))
]

(8)

In this equation, the index i enumerates values of λVDW or λelec that are used during 224

the move (horizontal segments of the graph in Fig. 2) and there is a term in the sum 225

for each change in the λ parameters. The full sequence of MC moves that had taken 226
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number of MC trial moves
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Fig 2. Scaling of λVDW and λelec over each NCMC trial-move cycle.
The cycle comprises four phases, each containing 100 individual MC trial moves. First,
the charges on the ligand are removed by gradually reducing λelec to 0. Second, the
ligand is fully uncoupled from the protein by reducing λVDW to 0. Third, the van der
Waals interactions of the ligand with the protein are restored by increasing λVDW back
to 1. Finally, the charges on the ligand are restored by increasing λelec back to 1.

place during the MC trial was then finally accepted or rejected with probability given 227

by 228

pfinal = min[1, exp(−βw)] (9)

If the NCMC move was rejected, the conformation of the system prior to the sequence 229

of MC steps making up the given NCMC move was restored. Because of this, and the 230

low acceptance rate of NCMC moves (about 2%), in pure NCMC simulations the 231

relaxation of the system toward low energy conformations was extremely slow. 232

Consequently, in order to promote more rapid relaxation, the NCMC moves were 233

alternated with 400 moves of regular MC. 234

Docking protocol 235

A total of 61 ligands were used in this work, 37 agonists and 24 antagonists. Each 236

ligand had a corresponding reference crystal structure, drawn from the PDB, showing 237

the experimentally determined bound structure. Lists of the ligands and their 238

corresponding reference structures are found in tables S1 and S2. Figure 3 shows 239

example ligand structures, where the larger size and flexibility of antagonists is 240

notable. 241

Depending on whether the compound in question was an agonist or antagonist, it 242

was cross-docked against either the active or inactive conformation of ER. (Although 243

in principle the MRMC method is capable of simulating the transition between the 244

active and inactive conformations of ER, such a simulation would likely be longer than 245
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Fig 3. Examples of ligands studied in this work.
(a) estradiol; (b) genistein; (c) the drug 1GJ; (d) 4-hydroxytamoxifen; (e) raloxifene;
(f) the drug 369. (a)-(c) are agonists, whereas (d)-(f) are antagonists.

the docking runs used here, so docking of agonists against the inactive conformation or 246

of antagonists against the active conformation was not attempted.) The active 247

conformation was taken from the crystal structure of ER in complex with estradiol 248

(PDB code 1QKU) [54] whereas the inactive conformation was taken from the crystal 249

structure in complex with 4-hydroxytamoxifen (PDB code 3ERT). [55] Hydrogen 250

atoms were added using the tleap tool in AMBER, and ionization states for the twelve 251

histidine residues were chosen based on a combination of pKa calculations made using 252

H++ [71,72] and visual inspection of the crystal structures. Histidine residues 356, 253

373, 398, 476, 488, 501, 513, and 516 were chosen to be neutral, while histidine 254

residues 377, 474, and 547 were chosen to be ionized. In the active conformation, His 255

524 makes a hydrogen bond to the hydroxyl group on C17 of estradiol, and it was 256

calcuated to have a pKa of 5.67 using H++, implying a neutral state. In contrast, in 257

the inactive conformation, His 524 makes a salt bridge with Glu 419 and was found to 258

have a pKa of 7.97, implying an ionized state. Given the ambiguous nature of His 259

524’s ionization state and its potential importance for the accuracy of docking results, 260

it was decided to conduct half of the docking runs with an ionized His 524 and half 261

with a neutral His 524. 262

Structure data files for each ligand were downloaded in SDF format from the 263

Protein Data Bank and used to generate initial coordinates for each ligand. As a part 264

of this process, ionization states for each ligand at pH 7 were determined using 265

OpenBabel [73] and hydrogen atoms were added accordingly. 266

Fig. 4 gives an overview of the docking and analysis procedure. Each docking run 267

consisted of a search for initial low-energy poses followed by refinement using Monte 268

Carlo simulation. For the initial search, 1000 random poses were generated by placing 269

the ligand in a random position and orientation within 4 A of the center of mass of 270

estradiol (for agonists) or 4-hydroxytamoxifen (for antagonists) in the crystal 271

structures and rotating every rotatable bond in the ligand through a random angle. 272

The energy of each of these random poses was computed and a Monte Carlo 273
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simulation lasting either 40000 trial moves (for regular MC) or 80000 trial moves (for 274

mixed NCMC/MC) was started from the lowest energy pose. A total of 60 docking 275

runs were performed with each His 524 ionization state as described above, for a total 276

of 120 docking runs per drug overall. Each docking run took 2-4 hours on a single 277

CPU, for a total of approximately 240 to 480 CPU-hours per drug. 278

Remove ligand from initial structure 
(1QKU or 3ERT) and insert new 

ligand 

Construct 1000 random poses of the ligand 
within 4 A of the reference ligand center of 

mass.  Compute energy of each pose with 
fixed protein.   

Select pose with lowest energy 
and run 40000 trial moves regular 

MC or 80000 trial moves mixed 
NCMC/MC starting from this pose 

Perform 120 docking runs 

Cluster final MC 
configurations using RMSD 

differences between poses  

Score and select best poses 
using protein-ligand 

interaction energy and/or 

clusters 

Fig 4. Flowchart showing overview of docking, clustering and scoring
procedures used in this paper.

Structural Analysis and Clustering 279

An important measure of the performance of a docking method is the heavy-atom 280

RMSD of the ligand in the docked pose to a known crystal pose. These measurements 281

could be made for all the ligands tested in this work, since corresponding crystal 282

structures were available. Ligand RMSDs were measured with the protein backbone 283

aligned to the reference structure, and taking into account all possible mappings of 284

chemically equivalent groups on the ligand. The measurements were made using 285

VMD. [74] 286

Clustering of structures was accomplished by first aligning the structures for each 287

ligand according to the protein backbone and then constructing a pairwise distance 288

matrix among them using ligand heavy atom RMSD as the metric. Complete linkage 289

hierarchical clustering [75] was then applied to this distance matrix to construct a 290

“phylogenetic tree” using ligand heavy atom RMSD taking into account chemically 291

equivalent groups. The clusters were then defined from this tree, using a cutoff defined 292

as the 10th percentile of all distances between structures for each drug. This ensured 293

that the size of the clusters in configuration space would be appropriately scaled to the 294

overall distribution of the poses for each drug. 295
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Comparison with other docking programs 296

In order to compare the performance of MRMC to other docking programs, we also 297

performed docking with smina [1]. We carried out docking runs with smina using the 298

default energy function and weights, either with a rigid protein or allowing flexible 299

side chains for all of the amino acids that were in the atomistic region in the MRMC 300

docking runs. One run of smina was performed with each level of flexibility for each 301

drug and His524 titration state. Energy cutoffs were set to high values in order to 302

recover as many docked poses as possible from each run, although the number of poses 303

was limited to 60 so as not to exceed the number obtained from the MRMC docking 304

runs. The docking runs were carried out in parallel using 16 CPUs at a time. For each 305

pose, the heavy-atom RMSD was calculated relative to the crystal pose in the same 306

manner as for the MRMC runs, and summary information was compiled in the same 307

manner as for MRMC. 308

Results 309

Impact of Protein Flexibility 310

We first examined the impact of flexibility on pose generation. Fig. 5 shows 311

scatterplots of ligand RMSD versus interaction energy for two representative agonists 312

(estradiol and genistein) and two representative antagonists (4-hydroxytamoxifen and 313

raloxifene). Since the starting structures used were those of ER α bound to estradiol 314

or 4-hydroxytamoxifen, the simulations with these ligands represent redocking, 315

whereas those with all other ligands represent cross-docking. In fig. 5, simulations in 316

which the protein is fully flexible are compared with simulations in which the protein 317

is rigid, or in which only the sidechains are allowed to move. Full protein flexibility 318

results in interaction energies that are lower than those obtained with flexible side 319

chains, which are in turn lower than those obtained with a completely fixed protein. 320

In some cases – e.g. Panel (d) – the lack of flexibility prevents discovery of low-RMSD 321

poses. This demonstrates that the use of protein flexibility, and particularly backbone 322

flexibility, results in final configurations with stronger interactions between protein 323

and ligand; this point is quantified further below. 324

The distribution of RMSDs suggests that the final configurations can be divided 325

into clusters in some cases. This is particularly true for the agonists estradiol and 326

genistein, which are relatively flat, rigid drugs and can fit into the binding site in 327

multiple orientations. In these cases, the clusters correspond to these distinct 328

orientations of the drugs. The ER antagonists 4-hydroxytamoxifen and raloxifene are 329

more flexible; consequently, the clusters due to binding in multiple orientations are less 330

clear. 331

Fig. 5 also shows a comparison between regular Monte Carlo simulations and those 332

conducted with the mixed NCMC/MC protocol. The mixed NCMC/MC simulations 333

had slightly higher interaction energies than the regular MC simulations. 334

The effect of protein flexibility is also demonstrated by a comparison of the “best” 335

poses (selected on the basis of protein-ligand interaction energy) generated by our 336

protocol, shown in Fig. 6. Figs. 6a and 6b show the distribution of “best” pose 337

RMSDs across all of the drugs, expressed as a cumulative density function. Figs. 6c 338

and 6d show a different approach to evaluating our protocol. For each drug, the best 339

N poses are selected on the basis of protein-ligand interaction energy, the minimum 340

RMSD pose is selected as a function of these, and the RMSD is averaged over all 341

drugs. This average RMSD is then plotted as a function of N . It is clear that a much 342

greater proportion of these best poses are close to the corresponding crystal structures 343

when the protein is allowed to be fully flexible than when the protein is rigid or only 344
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Fig 5. Example ensemble redocking and cross-docking runs for simulations
incorporating different levels of flexibility.
Plot of final ligand RMSD relative to crystal structure vs. interaction energy for (a)
estradiol (redocking); (b) 4-hydroxytamoxifen (redocking); (c) genistein (cross-docking);
(d) raloxifene (cross-docking); (e) the drug 1GJ; (f) the drug 369. (For structures of the
drugs, see fig. 3.) (a), (c), and (e) are agonists, whereas (b), (d), and (f) are antagonists.
In each plot, results for a fully flexible protein are in green (for MC only) or purple (for
the mixed NCMC/MC simulations), whereas results for docking simulations in which
the entire protein or just its backbone are fixed (MC only simulations) are in red or
blue respectively. In order to make the results for the fully flexible protein visible, the
vertical axis for each plot is cut off at 100 kcal/mol; as a result, some of the docking
runs for the fixed protein are not shown due to their high energies.

sidechains move, and that the average best RMSD achieved is lower as well when more 345

flexibility is allowed. This is especially true for the antagonists, which are generally 346

more flexible than the agonists and whose docking is consequently more challenging. 347

This difference is probably because the inactive structure of ER α is more open and 348

consequently the protein as a whole, particularly helix 12, is more flexible. 349

Consequently, the additional flexibility provided by the MRMC method may be more 350
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important for the inactive state. 351

Fig 6. Performance of docking protocols.
(a) and (b) show the cumulative probability distribution of RMSD values for the docked
poses with the lowest final interaction energies for each drug, for (a) agonists or (b)
antagonists. Larger values at low RMSD indicate better performance. In (c) and (d),
for each drug the docking runs with the N lowest interaction energies are chosen and
the best RMSD from among these is averaged across (c) agonists or (d) antagonists, so
that lower RMSD indicates better performance. This average RMSD is plotted against
N ; dashed horizontal lines indicate the average best RMSD overall, without regard for
interaction energy.

In principle, allowing protein flexibility should enable us also to predict the changes 352

in protein structure that occur upon docking to different ligands. We constructed 353

Ramachandran and Janin plots [76] for the amino acid residues in the atomistic region 354

for the final conformations from our docking runs. Fig. 7 shows these plots for two 355

representative compounds, genistein and raloxifene. Although the overall 356

conformation of ER around the active site is very similar for all bound agonists (and 357

likewise for antagonists) there are slight differences in the backbone conformation for 358

different ligands. The Janin plots (Figs. 7b and 7d) show relatively thorough sampling 359

of free energy basins in the χ1-χ2 plane. The Ramachandran plots (Figs. (Figs. 7a 360

and 7c), on the other hand, show that the backbone sampling is very limited (at least 361

in the binding region) and that final conformations are remaining close to the initial 362

structures rather than adapting to the different ligands. Nevertheless, the overall 363

backbone flexibility which includes the CG region evidently has a significant effect on 364

the generated poses, as shown in fig. 6. 365
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(a) (b) 

(c) (d) 

Fig 7. Examination of backbone and sidechain flexibility for two
compounds.
Ramachandran and Janin (χ1 vs. χ2) plots are shown for for final conformations from
docking runs for (a)-(b) genistein and (c)-(d) raloxifene. Plots include only amino acids
in the atomistic region. The reference structure is the corresponding crystal structure
for each cross-docked compound.

Assessment of NCMC 366

Fig. 6 also compares the performance of our docking protocol with and without 367

NCMC. The use of NCMC shows at best a modest improvement in the overall docking 368

performance, indicating that the NCMC is not enhancing sampling as much as was 369

expected. In order to investigate this further, we measured both the distribution of 370

overall ligand move sizes generated as well as the average acceptance probability as a 371

function of move size. In the case of the NCMC simulations the size of the overall 372

NCMC move depended on the individual MC moves that were performed within that 373

move. To assess these factors, for each NCMC move, the overall rotation and 374

translation of the ligand in the frame of reference of the protein was determined by 375

first performing an RMSD alignment of the protein backbone of the final configuration 376

relative to the initial configuration, then measuring the overall translation and 377

rotation of the ligands needed to minimize the RMSD of the ligand heavy atoms in the 378

two configurations. The cumulative density function of the overall magnitude of the 379

displacement or the overall angle of rotation, and the average final acceptance 380

probability (given by eq. 9) as a function of the overall displacement or rotation angle, 381

were both computed and plotted as shown in Fig. S1. The corresponding distribution 382

of move sizes and average acceptance probability were also plotted for comparison. 383

The plots show that, compared to regular MC, the distribution of moves generated 384

by NCMC favors smaller moves in both translation and rotation. In addition, while 385

acceptance rates for small moves are comparable for NCMC and MC, the acceptance 386

rates for larger moves are many orders of magnitude smaller for NCMC. This is 387
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particularly (and unexpectedly) true for ligand rotations, where acceptance rates for 388

all but the smallest rotations are much smaller for NCMC than for MC. The combined 389

effect of these two trends is that in NCMC, a greater number of small translations and 390

rotations are generated and accepted, compared to MC. The reason for these results 391

seems to be that large ligand translations and rotations typically place the ligand in 392

positions that clash sterically with the protein. Relaxing away such clashes evidently 393

requires large nonequilibrium work and consequently leads to rejections. We note that 394

these results are specific to our implementation, as described below in the Discussion. 395

Fig. S2 shows time series of the ligand RMSD for a number of individual docking 396

simulations in both regular MC and NCMC. In many of the simulations, large jumps 397

in RMSD can be seen; these represent large ligand moves that have been accepted. 398

While the docking runs with the mixed NCMC/MC protocol are twice as long as those 399

with regular MC, more than twice as many RMSD jumps can be seen in trajectories 400

using the mixed NCMC/MC protocol. To reconcile this result with the acceptance 401

rate data shown in Fig. S1, note that some of the NCMC transitions occur via a large 402

number of small moves. It should also be noted that NCMC moves also include 403

moving the protein, whereas individual MC moves that involve ligand translation and 404

rotation do not, so Fig. S2 is not a perfect comparison. 405

Comparison with Autodock smina 406

To assess the value of the MRMC approach compared with conventional docking 407

software, we studied the same set of ligands and receptor structures using Autodock 408

smina, both with the protein fixed and with all the side chains in the atomistic region 409

allowed to move. [1] As shown in fig. 8, when used with full flexibility, MRMC 410

generally outperformed Autodock smina, and particularly so for agonists, due 411

primarily to the additional flexibility MRMC offers. (The cumulative distribution 412

function of pose RMSD for antagonists shows somewhat better performance for smina 413

with a fixed protein compared to MRMC, but this is not confirmed by the study of 414

average RMSDs.) It is also of interest to compare the performance of MRMC to smina 415

when both are used with the same amount of protein flexibility. It appears that 416

MRMC performs better than smina for agonists, whether the protein is fixed or side 417

chains within the MRMC all-atom region are allowed to move. The situation is more 418

ambiguous for antagonists. There are several possible reasons for these differences, 419

including differences in the treatment of solvation and salt bridge interactions that are 420

crucial to determining the relative orientation of agonists within the ER active site, as 421

well as differences in sampling. 422

The relative computational costs of the two approaches are also of great interest. 423

When run with a fixed protein, Autodock smina performed docking much faster than 424

MRMC. The use of flexible side chains caused smina to slow down considerably; it 425

took 575-650 CPU hours per drug, which is about 1.5-2 times more than MRMC, even 426

though MRMC also includes backbone flexibility in the binding site and CG-based 427

flexibility in the entire protein. 428

Assessment of Clustering in Pose Scoring 429

The fact that some of the docking simulations show substantial changes in the 430

orientation of the ligand relative to the protein suggests that the ensemble of final 431

conformations generated by the MRMC protocol contains information on multiple 432

binding poses which could make a useful contribution to the docking and scoring 433

process. To study this possibility, the ensemble of structures resulting from the docking 434

runs on each drug were divided into clusters based on the protocol described in Sec. . 435

Three options for choosing the best conformation from the ensemble were then tested: 436
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Fig 8. Performance comparison of MRMC with Autodock smina.
Plots are similar to those shown in fig. 6. (a) and (b) show the cumulative probability
distribution of RMSD values for the docked poses with the lowest final interaction
energies for each drug, for (a) agonists or (b) antagonists. Larger values at low RMSD
indicate better performance. In (c) and (d), for each drug the docking runs with the N
lowest interaction energies are chosen and the best RMSD from among these is averaged
across (c) agonists or (d) antagonists, so that lower RMSD indicates better performance.
This average RMSD is plotted against N ; dashed horizontal lines indicate the average
best RMSD overall, without regard for interaction energy.

1. Based on the observation that, for most drugs, the final interaction energy 437

between protein and ligand correlated with ligand RMSD (Fig. 5), the simplest 438

approach is simply to choose the conformation with the lowest interaction 439

energy, without regard to clusters. 440

2. Since the largest cluster represents a binding pose that has the highest entropy 441

relative to the other clusters, the conformation within this cluster with the 442

lowest interaction energy could be chosen. 443

3. Finally, the cluster with the lowest average energy could be chosen, and then the 444

individual conformation with the lowest interaction energy could be chosen from 445

this cluster. 446

Fig. 9 shows the cumulative distribution of the RMSD of the best conformation for all 447

three of these methods. The differences between them are small, but it appears that 448

method 3 above performs slightly better than the others in that the conformations 449

identified by this method are closer to the crystal structures. 450

Note that we did not employ a more quantitative entropy estimation process 451

because the sampling did not appear to be sufficient - i.e., there were very few jumps 452

between poses in a given MC run (Fig. S2) implying true Boltzmann sampling was not 453
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achieved. Also, using the total energy in place of the protein-ligand interaction energy 454

and combining it with similar clustering approaches gave similar results. 455
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Final ligand RMSD relative to crystal structure (A) 

(c) agonists – standard MC (d) antagonists – standard MC 

(a) agonists – NCMC (b) antagonists – NCMC 

Fig 9. Comparison of methods for ranking ligands.
Each graph shows the cumulative distribution of the RMSD of the best conformation
(chosen by the indicated method) for (a)-(b) simulations using NCMC or (c)-(d) sim-
ulations using standard MC, with a fully flexible protein. (a) and (c) compare ligand-
ranking methods for agonists; (b) and (d) do so for antagonists.

Multiple Poses for WAY-169916 456

The crystal structure of the ER partial agonist WAY-169916 (PDB code 3OS9, ligand 457

ID KN1) [19] bound to the inactive conformation of ER α shows two separate poses 458

for the ligand, with occupancies of approximately 70% and 30%. This provided an 459

opportunity to test whether our protocol can find multiple bound poses for a ligand. 460

The RMSD to each of these poses was calculated separately for our docking 461

simulations of this drug, and a scatterplot is shown in Fig. 10. The ensemble of 462

docked poses for this drug contains two distinct clusters that correspond to the poses 463

in the crystal structure (the closest poses found are approximately 2 Å away from each 464

crystal pose), along with other poses that are similar to neither. This demonstrates 465

that our protocol is able to find both of these poses. 466

His 524 Ionization States 467

His 524 plays an important role in the binding of ligands to ER α. For example, the 468

O3 atom of estradiol forms a hydrogen bond with a neutral His 524, whereas when 469

4-hydroxytamoxifen is bound, His 524 instead is ionized and forms a salt bridge with 470

Glu 419. Because of these changes in the ionization state of His 524, and its 471

importance in ligand binding, half of the docking runs were performed with His 524 in 472
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Fig 10. Docking uncovers two crystal poses of the ligand WAY-169916.
We show a scatter plot of ligand RMSD relative to the two reference poses found in its
reference crystal structure.

an ionized state and half were performed with His 524 in the neutral state. The results 473

for different ionization states of His 524 were generally similar, with approximately 474

equal numbers of successful docking runs (those with a final RMSD less than 2 Å) 475

coming from runs in which His524 was ionized or neutral. Likewise, simulations with 476

both ionized and neutral His 524 produced docked conformations of WAY-169916 that 477

were close to each of the experimental structures. 478

Computation time 479

Table 3 shows a comparison of computation speeds for fully atomistic, 480

mixed-resolution, and coarse-grained representations of ER α. As expected, the Gō 481

model is about 60 times faster than a fully atomistic representation. The mixed 482

resolution model is about four times faster than a fully atomistic representation in 483

vacuum, and about twice as fast when the SEDDD solvation model is used. Thus a 484

mixed-resolution model offers a modest savings in compute time, but there is 485

additional sampling benefit from the landscape-smoothing implicitly provided by 486

coarse-graining. As noted, an MRMC platform also offers significant flexibility in 487

implementing docking protocols. For reference, 10 ns of all-atom explicit solvent MD 488

requires about 5 hours with AMBER and one GPU for this system. 489
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Table 3. Comparison of computation speeds (MC trial moves per second) for different resolution
representations of ER α in complex with estradiol.

In vacuum With SEDDD
With NCMC MC only With NCMC MC only

All atom 31.69 32.52 17.70 18.39
Mixed resolution 85.23 88.23 37.33 37.67
Coarse grained only n/a* 1279.26 n/a* 1279.26

*Coarse grained only results are for uncomplexed ER α; it is not possible to use NCMC without a ligand.

Discussion 490

In this paper, three separate tactics for improving protein-ligand docking were tested. 491

These included a mixed-resolution potential in which most of the protein is treated 492

using a coarse grained model while the region around the ligand was treated 493

atomistically; a nonequilibrium Monte Carlo method, which is intended to improve 494

sampling by systematically varying the coupling between protein and ligand; and the 495

use of clustering to identify free energy basins corresponding to multiple binding 496

poses, and scoring the poses based on this information. The docking results were 497

evaluated by comparing the final structures to known crystal structures; the sampling 498

was also evaluated by studying the relationship between acceptance rate and move size 499

for NCMC moves. We found that allowing for full protein flexibility using the 500

mixed-resolution potential significantly improved the docking results, and the use of 501

NCMC produces a further modest improvement. However, clustering did not appear 502

to offer any significant advantages over simply ranking the poses by protein-ligand 503

interaction energy. Overall, we obtained a correct pose within 2 Å for about half the 504

ligands, so there is significant room for improvement. Below, we discuss ways that 505

several aspects of the approach could be improved. We note that systematic 506

investigation of these different aspects of the docking problem is facilitated by having 507

a highly flexible/adjustable Monte Carlo platform. 508

Improving the MRMC Potential 509

The mixed-resolution model used here is motivated by the concept that the most 510

important approximations in protein-ligand binding will be those between the ligand 511

and the closest amino acid residues within the protein. Therefore, it makes the most 512

sense to model the closest amino acids at the fully atomistic level, while saving 513

computation time by modeling the remainder of the protein using a more approximate 514

coarse-grained model. That said, it is also reasonable to examine every part of the 515

mixed-resolution potential to see if they can be made more physically accurate, while 516

continuing to save computer time over fully atomistic approaches. These include the 517

coarse-grained force field, the atomistic force field, the coupling between them, and the 518

choice of atomistic region. 519

In this work, a relatively simple Gō model was used to represent the coarse-grained 520

region of ER α. This is effective in saving computer time. On the other hand, its 521

reliance on native interactions gives it a strong bias toward the native state, allowing 522

only limited conformational flexibility outside the atomistic region. In the case of ER 523

α, the only significant conformational change is the motion of helix 12, so any 524

necessary conformational flexibility could be included by ensuring that helix 12 and 525

the loop connecting it to the rest of the protein were part of the atomistic region. 526

However, with other target proteins this may not be adequate. Additional flexibility 527

could be incorporated by making use of a double well Gō potential [45] or by replacing 528

the Gō potential by another potential that is less dependent on native interactions. 529
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The popular MARTINI force field [77,78] has been used in a mixed resolution 530

configuration [40] but frequently leads to distorted structures for soluble proteins 531

unless reinforced by an elastic network model. [79] Other potential force fields that 532

could in principle be used include OPEP [80] and UNRES. [81] We have also 533

developed a tunable coarse-grained force field based on constructing interaction energy 534

tables and applying variable amounts of smoothing to them [82]; one of the goals for 535

this force field was to use it in a mixed resolution setting, but substantial additional 536

effort would be required to implement that combination. 537

Compared to the coarse-grained potential, the atomistic potential used here would 538

seem to offer less room for improvement. The AMBER 99SB force field is a 539

well-tested, commonly used force field, although it could conceivably be replaced with 540

another, newer force field. A more significant area for improvment concerns the 541

treatment of solvation in the simulations. The SEDDD method is based on a distance 542

dependent dielectric with a dielectric constant that includes some solvent exposure. 543

The linear dependence of the dielectric constant on interatomic distance is not 544

physically correct, however, since the dielectric constant should approach that of water 545

as the distance between two atoms increases. There is also no explicit term 546

representing the hydrophobic effect. A generalized Born model [83] would be more 547

physically realistic but also more computationally expensive. Explicit solvent (using 548

water molecules restrained around the atomistic region) would be even better, but 549

would require even more computational cost, and steric clashes between the ligand 550

and water molecules would make it more difficult to sample ligand configurations via 551

Monte Carlo. Another relatively inexpensive solvation model is the Sheffield solvation 552

model, [84] which might provide improved results. 553

The choice of atomistic region also plays an important role in establishing the 554

tradeoff between physical accuracy and computation time. We selected the atomistic 555

region used here to be as small as possible while including all those residues in direct 556

contact with the ligand in any of the reference structures. We also included helix 12 557

and its loop to allow for the possibility of transitions between the active and inactive 558

conformations, although we did not observe any such transitions due to the short 559

duration of the simulations. A larger atomistic region would trade computation speed 560

for greater physical accuracy. 561

Improved Sampling 562

While crystal structures of protein-ligand complexes frequently show only one bound 563

pose for the ligand, there is experimental evidence that some ligands can bind to 564

proteins in multiple configurations. The two poses for WAY-169916 are a case in 565

point. Likewise, differences have also been found in ligand binding to aldose reductase 566

depending on the crystallization conditions [18]. In principle, with a sufficient number 567

and length of runs, a docking algorithm based on Monte Carlo or molecular dynamics 568

simulation should be able to find all relevant bound poses for the ligand with the 569

proportion that would be expected based on their relative free energy. Although our 570

MRMC runs indeed found multiple poses for ligands (including both experimental 571

poses for WAY-169916), jumps between poses in a single run were extremely rare. 572

With our implementation of NCMC, the improvement over standard MC is 573

marginal, in contrast to the success reported recently by the Mobley group for the T4 574

lysozyme/toluene system using MD. [52] This is likely because the ER α ligands 575

studied here are larger than toluene, and shaped in such a way that the barriers 576

separating different ligand orientations are higher than those separating distinct 577

orientations of toluene bound to T4 lysozyme. In addition, our ligands are also more 578

flexible, and we used a larger range of moves and attempted to sample a greater 579

number of degrees of freedom. In an investigation of NCMC applied to side chain 580
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rotations of amino acids in explicit solvent, Kurut and coworkers found that NCMC 581

did not enhance sampling for methionine as much as valine, because enhancing the 582

sampling of one dihedral degree of freedom did not improve the sampling of other 583

dihedrals. [85] We may be observing the same effect here, where couplings between the 584

ligand position and orientation and the side chain degrees of freedom of nearby amino 585

acids reduce the efficiency of NCMC. Alternatively, as suggested by Chodera [personal 586

communication] our NCMC protocol may require better targeted ligand MC moves 587

such as “smart darting,” [86] although our initial tests of this idea did not show a 588

substantial improvement. 589

There are also straightforward means to improve sampling. Two simple ways are to 590

run longer docking simulations or perform more docking runs for each drug. The 591

docking runs used here are fairly short (40000-80000 trial moves) which inherently 592

limits the amount of sampling possible in a single docking run. Of course, both 593

increasing the length and number of docking runs would increase the amount of CPU 594

time needed to dock a drug. In addition, using a longer or otherwise redesigned 595

schedule for λVDW might improve the NCMC acceptance rate, which was relatively 596

low (approximately 2%) in the work reported here, and thereby improve the sampling. 597

Another way to improve the NCMC acceptance rate might be to use a soft core 598

potential for the van der Waals interactions. This might reduce the potential energy 599

changes associated with steric clashes between the ligand and receptor as λVDW is 600

increased from 0 to 1, which contribute to large values of the nonequilibrium work and 601

consequently to poor acceptance rates. 602

Use of Clustering Information 603

If a sufficient degree of sampling can be obtained, it should in principle be possible to 604

identify basins in the free energy surface corresponding to different possible ligand or 605

protein conformations. Each basin will correspond to a cluster of similar 606

conformations obtained in the ensemble. In principle, once all of the basins are 607

identified, if true Boltzmann sampling has been achieved the ensemble of 608

conformations should also give information on the relative free energies of different 609

binding conformations, which can then be used to calculate binding free 610

energies. [87–89] Motivated by this reasoning, we sought to apply clustering algorithms 611

to the ensemble of configurations we obtained from our docking simulations and use 612

this information to aid in identifying the most representative structures. We found, 613

however, that clustering information did not improve the ranking of poses in practice. 614

The main reason why the clustering was not useful may simply have been that the 615

protocol used here did not allow for adequate sampling, as described above. Another 616

flaw may have been the choice of clustering algorithm or metric used. The complete 617

linkage clustering algorithm used here is relatively crude, being primarily intended for 618

the construction of phylogenetic trees using distances between protein or DNA 619

sequences. [75] Despite this, it was selected because many other algorithms, such as 620

the K-means algorithm, rely on averaging coordinates from distinct configurations, an 621

operation of unclear physical meaning. In addition, complete linkage clustering 622

guarantees that any two configurations classified in the same cluster will have an 623

RMSD less than the selected cutoff. The Cheatham group has tested a number of 624

clustering algorithms on MD trajectories; [90] while they recommend average-linkage 625

hierarchical clustering for circumstances in which the number of clusters is not known 626

in advance (as here) they also point out that the performance of a clustering algorithm 627

is influenced by the choice of atoms used for pairwise comparison and that hierarchical 628

clustering is sensitive to outliers. 629
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Conclusion 630

We used a highly adjustable mixed-resolution Monte Carlo (MRMC) platform to 631

examine several aspects of docking protocols in a systematic way. Most importantly, 632

we examined the effects of rigidifying both side chains and the protein backbone. The 633

detrimental results are not completely surprising, but the systematic comparison 634

underscores the importance of backbone flexibility, which is absent from almost all 635

grid-based docking studies. We further examined the sampling improvement afforded 636

by non-equilibrium candidate Monte Carlo, finding only modest improvement in our 637

implementation. Our test case was the flexible ligand binding domain of the estrogen 638

receptor alpha, which is an important cancer target and also a model for other nuclear 639

hormone receptors. 640

As computing power increases, a ‘middle way’ of docking between grid-based 641

approaches and all-atom free energy calculations may prove useful in drug-design 642

pipelines. This study is a step toward developing such a highly adaptable platform, 643

and already shows improved performance compared to docking software. We recognize 644

that further improvements to sampling and entropy-based pose evaluation will be 645

necessary to make a middle-way tool more valuable for the drug-design enterprise. 646
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proteins through studies of stretching. Biophys J. 2008;95(7):3174–3191.

68. Cieplak M, Sulkowska JI. Tests of the Structure-Based Models of Proteins.
Acta Phys Pol A. 2009;115(2):441–445.

69. Lazaridis T, Karplus M. Effective energy function for proteins in solution.
Proteins. 1999;35:133–152.

70. Betancourt MR. Optimization of Monte Carlo trial moves for protein
simulations. J Chem Phys. 2011;134(1):13.

71. Gordon JC, Myers JB, Folta T, Shoja V, Heath LS, Onufriev A. H++: a server
for estimating pKas and adding missing hydrogens to macromolecules. Nucleic
Acids Res. 2005;33:W368–W371.

72. Anandakrishnan R, Aguilar B, Onufriev AV. H++ 3.0: automating pK
prediction and the preparation of biomolecular structures for atomistic
molecular modeling and simulations. Nucleic Acids Res. 2012;40:W537–W541.

73. O’Boyle NM, Banck M, James CA, Morley C, Vandermeersch T, Hutchison GR.
Open Babel: An open chemical toolbox. J Chemoinformatics. 2011;3(1):33.

74. Humphrey W, Dalke A, Schulten K. VMD: visual molecular dynamics. J Mol
Graphics. 1996;14(1):33–38.

75. Press WH, Teukolsky SA, Vetterling WT, Flannery BP. In: Numerical Recipes:
The Art of Scientific Computing, Third Ed. New York: Cambridge University
Press; 2007. p. 868–883.

76. Janin J, Wodak S, Levitt M, Maigret B. Conformation of amino acid
side-chains in proteins. J Mol Biol. 1978;125(3):357–386.

77. Marrink SJ, Risselada HJ, Yefimov S, Tieleman DP, de Vries AH. The
MARTINI force field: Coarse grained model for biomolecular simulations. J
Phys Chem B. 2007;111(27):7812–7824.

78. Monticelli L, Kandasamy SK, Periole X, Larson RG, Tieleman DP, Marrink SJ.
The MARTINI Coarse-Grained Force Field: Extension to Proteins. J Chem
Theory Comput. 2008;4(5):819–834.

79. Periole X, Cavalli M, Marrink SJ, Ceruso MA. Combining an Elastic Network
With a Coarse-Grained Molecular Force Field: Structure, Dynamics, and
Intermolecular Recognition. J Chem Theory Comput. 2009;5(9):2531–2543.

80. Chebaro Y, Pasquali S, Derreumaux P. The Coarse-Grained OPEP Force Field
for Non-Amyloid and Amyloid Proteins. J Phys Chem B. 2012;116:8741–8752.

January 6, 2019 27/28

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 8, 2019. ; https://doi.org/10.1101/424952doi: bioRxiv preprint 

https://doi.org/10.1101/424952
http://creativecommons.org/licenses/by-nc-nd/4.0/


81. Liwo A, He Y, Scheraga HA. Coarse-grained force field: general folding theory.
Phys Chem Chem Phys. 2011;13(38):16890–16901.

82. Spiriti J, Zuckerman DM. Tunable Coarse Graining for Monte Carlo
Simulations of Proteins via Smoothed Energy tables: Direct and Exchange
Simulations. J Chem Theory Comput. 2014;10:5161–77.

83. Bashford D, Case DA. Generalized born models of macromolecular solvation
effects. Annu Rev Phys Chem. 2000;51:129–152.

84. Grant JA, Pickup BT, Sykes MJ, Kitchen CA, Nicholls A. A simple formula for
dielectric polarisation energies: The Sheffield Solvation Model. Chem Phys Lett.
2007;441(1):163–166.

85. Kurut A, Fonseca R, Boomsma W. Driving Structural Transitions in Molecular
Simulations Using the Nonequilibrium Candidate Monte Carlo. J Phys Chem B.
2018;122(3):1195–1204.

86. Andricioaei I, Straub JE, Voter AF. Smart darting Monte Carlo. J Chem Phys.
2001;114(16):6994–7000.

87. Minh DDL. Implicit ligand theory: Rigorous binding free energies and
thermodynamic expectations from molecular docking. J Chem Phys.
2012;137(10).

88. Xie B, Nguyen TH, Minh DDL. Absolute Binding Free Energies between T4
Lysozyme and 141 Small Molecules: Calculations Based on Multiple Rigid
Receptor Configurations. J Chem Theory Comput. 2017;13(6):2930–2944.

89. Chen W, Gilson MK, Webb SP, Potter MJ. Modeling Protein-Ligand Binding
by Mining Minima. J Chem Theory Comput. 2010;6(11):3540–3557.

90. Shao JY, Tanner SW, Thompson N, Cheatham TE. Clustering molecular
dynamics trajectories: 1. Characterizing the performance of different clustering
algorithms. J Chem Theory Comput. 2007;3(6):2312–2334.

January 6, 2019 28/28

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 8, 2019. ; https://doi.org/10.1101/424952doi: bioRxiv preprint 

https://doi.org/10.1101/424952
http://creativecommons.org/licenses/by-nc-nd/4.0/

