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ABSTRACT. Analyses of large somatic mutation datasets, using advanced computational algorithms,
have revealed at least 30 independent mutational signatures in tumor samples. These studies have
been instrumental in identification and quantification of responsible endogenous and exogenous
molecular processes in cancer. The quantitative approach used to deconvolute mutational signatures is
becoming an integral part of cancer research. Therefore, development of a stand-alone tool with a user-
friendly graphical interface for analysis of cancer mutational signatures is necessary. In this manuscript,
we introduce CANCERSIGN as an open access bioinformatics tool that uses raw mutation data (BED
files) as input, and identifies 3-mer and 5-mer mutational signatures. CANCERSIGN enables users to
identify signatures within whole genome, whole exome or pooled samples. It can also identify signatures
in specific regions of the genome (defined by user). Additionally, this tool enables users to perform
clustering on tumor samples based on the raw mutation counts as well as using the proportion of
mutational signatures in each sample. Using this tool, we analysed all the whole genome somatic
mutation datasets profiled by the International Cancer Genome Consortium (ICGC) and identified a
number of novel signatures. By examining signatures found in exonic and non-exonic regions of the
genome using WGS and comparing this to signatures found in WES data we observe that WGS can
identify additional non-exonic signatures that are enriched in the non-coding regions of the genome
while the deeper sequencing of WES may help identify weak signatures that are otherwise missed in
shallower WGS data.

INTRODUCTION

Aberrant somatic changes in DNA resulting from endogenous sources (e.g. APOBEC-induced
mutagenesis and DNA repair defects) and exogenous factors (e.g. tobacco smoking and UV radiation)
are the hallmark of cancer. These alternations in DNA may have different forms, ranging from gross
chromosomal rearrangements to single base substitutions [1]. The whole genome sequencing of tumor
cells has shown that the number of mutations varies from less than one hundred per genome to
hundreds of thousands depending on the cancer type and patient. Moreover, the type of mutation and
sequence context of many cancer mutations are not random. For instance, C-to-T mutation within the

CG (a.k.a. CpG) dinucleotide is a prevalent mutation in cancer and as its abundance is proportional to


tel:%2808%29%206151%200780
mailto:h.alinejad@ieee.org
https://doi.org/10.1101/424960
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/424960; this version posted January 9, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

the age of patient it is referred to as an “aging” signature [2]. Many cancers also have a large number
of C-to-T and C-to-G mutations within TCA and TCT trinucleotides [3]. These mutations are attributed
to the aberrant changes in the level and activity of APOBEC enzymes. The mutational landscape of
each cancer genome is thus a cumulative result of multiple mutational signatures, each caused by a

unique process such as methylation, APOBEC mediated changes, etc. [1].

Typically, signatures of mutational processes are determined by considering the trinucleotide context of
single base substitutions. If all mutations are presented based on changes in the same DNA strand,
there are 96 possible different types of mutations within trinucleotide motifs [4]. In 2013, Alexandrov et
al. proposed a mathematical framework for analysing mutational signatures [4] based on these 96 types
of mutations. Using a matrix factorization algorithm, the authors uncovered 30 independent mutational
signatures. Details of these signatures including their prevalence in each cancer type and potential

etiology are available at the COSMIC database (http://cancer.sanger.ac.uk/cosmic/signatures [5]).

The discovery of mutational signatures was a breakthrough in the field of cancer research. Therefore,
the mathematical framework developed by Alexandrov et al. [4] is now routinely used to identify novel
mutational signatures and to study the processes involved in different cancers and in different patients.
To help the progress of this field, we have developed a computational tool, CANCERSIGN, which
enables the users to easily apply a matrix factorization analysis to cancer mutation datasets and receive
a complete set of mutational signatures. Compared to the previously developed packages in R [6-8],
CANCERSIGN is unique in that it is a stand-alone package (i.e. it does not require additional software
programming). Therefore, to use this tool, no programming skills are required. Additionally, it enables

the users to perform de novo mutational signature analyses.

Application of CANSERSIGN is not limited to extracting mutational signatures based on nucleotides
immediately flanking the mutated site (i.e. tri-nucleotide motifs). It allows the users to extend the analysis
to two bases on each side of the mutated base (i.e. penta-nucleotides motifs). According to a recent
study [9], taking larger sequence contexts into consideration provides a greater power to explain
variability in genomic substitution probabilities. In addition, CANCERSIGN allows the user to select
trinucleotides of interest, and determine their penta-nucleotide mutational signatures. Furthermore, it
has a built-in clustering option to study the groupings of cancer samples based on the raw mutation
counts and/or composition of mutational signatures. In this manuscript, we introduce CANCERSIGN
and show the new mutational signatures obtained from a de novo analysis of whole genome ICGC
dataset. This analysis was performed for each cancer type separately and resulted in 77 mutational
signatures. Each of the obtained signatures were shown to be highly similar to at least one of the 30

signatures discovered previously [2], except five signatures that can be considered as novel.

DATA and METHODS

To develop CANCERSIGN and demonstrate its application, we used all the whole genome mutation
datasets available at the International Cancer Genome Consortium (ICGC) data portal. A summary of

the datasets used is shown in Supplementary table 1.
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A schematic of CANCERSIGN features is given in Supplementary figure 1. This tool deciphers
mutational signatures in somatic mutation datasets using a previously reported non-negative matrix
factorization (NMF) model [4]. It only requires a dataset of mutations in a simple format described in the
tool manual (https://github.com/masroor-bayati/cancer_analysis tool and https://github.com/ictic-
bioinformatics/CANCERSIGN).

CANCERSIGN then performs the requested analyses and outputs mutational signatures (3-mer and/or
5-mer formats) and clustering figures. The numerical outputs of the analyses are saved in a folder
named “output” (refer to the CANCERSIGN manual). This data can be used to gain further insight into
mutational processes in cancer. For example, the exposure matrix obtained from the NMF analysis, can
be used to determine the prevalence of each mutational signature in each sample.

Estimation of mutational signatures

Each mutational signature is defined by a total of 96 types of mutations within tri-nucleotide motifs [4].
Assuming that mj, represents the number of mutations of type i recorded in the mutational catalogue of

sample g, then the mutational catalogue of multiple samples is represented by a matrix M (K x G):

1 1 1 1
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Where, K represents the number of mutation types (K=96 for tri-nucleotide signature analysis) and G
represents the number of cancer samples. Therefore, the ith column of M has the number of each of 96
mutation types in the ith sample. Here, it is assumed that the mutational catalogue of each sample (i.e.
each column of M) is the result of linear superposition of several mutational signatures [4], each of which
corresponds to a particular mutational process. Assuming that the number of mutational signatures is
N, we need to factorize M into two matrices P and E with sizes K x N and N x G, respectively:

M=PXxE (Equation 1)

The expanded representation of the above equation is given by:
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Here, each column of P is interpreted as one mutational signature and each row of E represents the
exposures of each mutational signature in the corresponding sample genome (i.e. the prevalence of
each mutational signature in that sample). The process of estimating independent mutational signatures
from a mutational catalogue matrix is done using a nonnegative matrix factorization (NMF) method. Note
that the elements of the input catalogue matrix are nonnegative because they represent the number of

mutations.

The algorithm used in this framework consists of several iterative steps. The overall procedure is as
follows. Each iteration starts with sampling from matrix M and creating a new bootstrapped matrix M.
To do this, each column of M (mutation counts of one input cancer genome) is considered a discrete

probability distribution and is resampled to create the corresponding column of M. Next, the
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bootstrapped matrix M is factorized into matrices P and E by applying the NMF algorithm. These steps
will be repeated for a certain number of iterations (typically 600 iterations are enough to obtain a stable
result). The resulting matrices obtained after each iteration are stored and grouped into two sets: P
matrices and E matrices named S, and Sy, respectively. The set of columns of matrices in S, are then
clustered into N groups using a variation of the k — means clustering algorithm [10]. A similarity measure
between two columns is calculated using cosine similarity and the centroids of the clusters are obtained

by averaging over the members of each cluster. The cosine similarity between the vectors A and B is
calculated as A - B/,/(A - A) x (B - B), where A - B represents the dot product of vectors A and B. Finally,

the N centroids are combined to form the columns of a single matrix P, which is the matrix of mutational
signatures. Since each column of matrix P corresponds to one specific row of matrix E, the procedure

of clustering columns of matrices in S, naturally leads to clustering of rows of matrices in Sg. Therefore,
the final exposure matrix E (prevalence of mutational signatures) is constructed in a manner similar to

P after the clustering step. Finally, the results are evaluated by calculating the reproducibility of
mutational signatures and the Frobenius reconstruction error of the NMF solution. The reproducibility is
measured by calculating the average silhouette width of the result of clustering step, while the
reconstruction error of the solution is quantified by the Frobenius norm of difference between matrix M,

— —2
and its estimation obtained by the factorization algorithm, i.e., |M — P x E|| . [4]. The overall procedure

described above is carried out for different values of N; the number of deciphered signatures. The range
of values for N can be specified by the user and the optimum value of N can be selected based on the
aforementioned evaluation measures [4]. An optimum N leads to high reproducibility and low
reconstruction error. CANCERSIGN produces an evaluation plot similar to the one proposed by
Alexandrov et al. [4].

CANCERSIGN is designed to carry out each iteration of the aforementioned algorithm, which consists
of one bootstrap and a complete NMF decomposition, independent and in parallel with other iterations.
This enables the user to distribute the whole task across CPU cores and speed up the procedure of
extracting mutational signatures. This tool also allows the user to specify the convergence criteria, the
number of NMF iterations, the number of bootstrapping iterations and the number of CPU cores for

parallelization.
Penta-nucleotide mutational signatures

In addition to extracting mutational signatures based on the immediately flanking nucleotides around
the mutated site (tri-nucleotides), CANCERSIGN enables the user to further investigate the underlying
mutational process, by expanding the mutational context to two bases upstream and downstream of the
mutated base (penta-nucleotides). For this purpose, the user can choose an arbitrary set of mutations
in tri-nucleotide motifs (up to 10 combinations). For each of these selected motifs, our tool quantifies the
number of mutations in the corresponding 16 penta-nucleotide motifs (e.g. when the motif C[G>T]A is
selected, 16 penta-nucleotide motifs of the form NC[G>T]AN are considered where N is each of four
nucleotides). The mutation counts of penta-nucleotides in all samples are then used as the input to the

NMF analysis, which produces a set of penta-nucleotide (or 5-mer) mutational signatures.
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Clustering of samples

One important application of CANCERSIGN is clustering of tumors based on mutations within selected
motifs (Matrix M in eq. 1) or based on the prevalence of mutational signatures (Exposure Matrix E in eq.
1). This feature allows the user to investigate between sample heterogeneity and to identify potential
outlier samples. Additionally, this information can be used to investigate correlation with clinical data

including treatment history and survival outcomes.

The clustering of samples is done using the k-means algorithm with Euclidian distance measure. For
this purpose, the NbClust function from NbClust package [11] in R is utilized which obtains the optimal
number of clusters automatically based on 30 indices. To visualize the result of clustering,
CANCERSIGN produces two types of plots. The first plot visualizes the clustering centroids, which are
obtained by averaging over features of the members of each cluster. The second plot visualizes a
projection of the samples in a 2D plane to show how samples within a cluster are similar to each other
and different from samples in other clusters. To do this, the tool performs a principal component analysis
(PCA) and generates a PC1-PC2 plot. The user can find the sample IDs associated with each cluster
by using tabular files produced by the tool (see CANCERSIGN manual). A snapshot of CANCERSIGN
is provided in Figure 1.

We have applied our tool to the mutational data of various cancers (18 types- Supplementary table 1)
and presented the results. The ICGC somatic mutations dataset (last updated June 2017) is used for
this analysis. General information and statistics about the data can be found in Supplementary tablel.

Details about our analyses, including the tool parameters, are provided in supplementary information.

RESULTS AND DISCUSSION

The results of separate analyses of whole genome mutation data from each of 18 tumor types reported
in the ICGC database are presented in Figures 2A-2R. The evaluation diagrams for each tumor type
are presented in Supplementary figures 2-19. These diagrams were used to determine the total
number of mutational signatures presented in Figure 2. For each tumor type, the numerical values of
the deciphered 3-mer signatures and the prevalence of each signature in each tumor sample are
obtained and provided in Supplementary tables 2-19. Totally, The CANCERSIGN program identified
77 signatures in 18 tumor-types (Figures 2A-2R). The majority of these signatures were highly similar
(Cosine Similarity > 50) to one or more of the previously reported 30 signatures [2]. But five of these
signatures had a Cosine similarity of <50, suggesting that they are possibly novel signatures that have
not been identified previously (Figure 3). For example, Figure 2A indicates nine mutational signatures
deciphered from the mutational data of breast cancer samples by using CANCERSIGN. For each of
these nine signatures there is at least one previously reported signature which can be considered as a
close match (Figure 3). Figure 2B shows the mutational signatures that CANCERSIGN has identified
in blood cancer samples. For this cancer type, one signature (Blood Signature No. 1) does not resemble
any of the previously reported signatures, i.e. it does not have >50% similarity to any of the previously

reported signatures (Figure 2B). Details of the correlations between all 77 signatures discovered by
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CANCERSIGN, and the signatures reported by Alexandrov et al. [2] are given in Supplementary table
20.

The 30 mutational signatures reported previously, is based on the analysis of all tumor types together.
These signatures seem to be a consensus and represent trends across all tumor types. However, this
global mutational signature analysis of multiple cancer types might produce results that are biased
toward signatures of the tumors with more samples in the dataset. Furthermore, pooling somatic
mutations obtained from whole exome sequencing with that of whole genome data can be another
source of bias that is not considered in the previous studies. These issues have been discussed in a
recent review by Nik-Zainal and Morganella [12]. Nevertheless, our tool can be used to extract
mutational signatures for all tumors together, or for each tumor separately. Typically, researchers use
mixed datasets (whole genome + whole exome) to extract mutational signatures. CANCERSIGN is able
to provide an option for users to extract mutational signatures from the whole genome, whole exome or
pooled data. For example, Figures 4 and 5 show the analysis of whole exome alone or whole exome +
whole genome for breast and skin cancers, respectively (The evaluation diagrams for these analyses
are presented in Supplementary figures 20-23). Figures 2A and 2N also show the analyses on whole
genome data for breast and skin cancers, respectively. Here, we identified ten signatures in breast
cancer pooled data (WGS+WXS) analysis. In the breast cancer whole genome analysis, we identified
nine signatures; the signature No. 7 in Figure 4A disappeared from the whole genome data analysis
and seems to be a WXS-specific signature. We then used breast cancer whole exome data as an input
for CANCERSIGN and identified five signatures, in which one of them (Signature No. 1 in Figure 4B)
has not been appeared in either pooled or whole genome data analyses. As a result, there are two
signatures (Signature No. 1 and Signature No. 4 in Figure 4B) in our analyses that seems to be
associated with only whole exome data. To find out if this is a sequencing bias, we extracted exome
parts of whole genome breast cancer samples; here, CANCERSIGN identified three signatures (Figure
6) that are identical with three of the five whole exome analysis signatures (Signatures No. 2, No. 3,
and No. 5 in Figure 4B). Signatures No. 1 and No.3 (Figure 4B) did not appear in this analysis,
suggesting that these two signatures are specific for whole exome samples. Our detailed investigation
of the breast cancer whole exome samples revealed that these samples have been sequenced ~2.5x
more deeply than whole genome samples. This may indicate that the two WXS-specific signhatures are
rare signatures and can be seen in the deeply sequenced samples. We then extracted non-coding
regions of the WGS breast cancer samples and used them as an input for CANCERSIGN. This analysis
revealed nine signatures as the same with the whole genome data (Figure 6); interestingly, five of the
nine signatures did not appear in the analysis of the WXS samples or exonic regions of the WGS

samples, suggesting that these five signatures are non-coding region specific.

Identification of differences between tumor samples using clustering feature of CANCERSIGN can be
informative, because this output can be used along with clinical data such as subtype, response to
therapies, and overall survival to identify potential associations. To demonstrate the clustering feature
of CANCERSIGN, we used breast cancer samples and performed both of the clustering options

available in this tool. One option is clustering based on the proportion of mutational signatures. The
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results of this clustering is shown in Figure 7. Based on the estimated proportion of the nine signatures
of breast cancer, CANCERSIGN classified the samples into three distinct groups (Figure 7). The second
option is clustering based on the proportions of 3-mer motifs. The selected motifs were T(C->G)A, T(C-
>G)T, T(C->T)A and T(C->T)T. The result of this clustering is shown in Figure 8.

Another feature of CANCERSIGN is to decipher mutational signatures based on mutations within
specific 5-mer motifs. To demonstrate this feature, we selected two 3-mer motifs (TCA and TCT) and
two mutation types (C>T and C>G) as an input (i.e. T(C>G)A, T(C>G)T, T(C>T)A and T(C>T)T). These
mutations are attributed to APOBEC enzymes and are the most abundant mutations in many cancer
types [13] [14]. The CANSERSIGN program quantified the number of mutations within all possible 5-
mer motifs that have been obtained from these 3-mer motifs. As an example, for C>G mutation within
the 3-mer TCA motif, the program correctly counts the number of mutations for all 16 possible 5-mers
(i.e. NT(C>G)AN where N:A, C, G, or T). The analysis by CANCERSIGN, over all the selected mutations
in breast cancer samples, revealed four 5-mer mutational signatures, as shown in Figure 9. The
evaluation diagram for this analysis is given in Supplementary figure 24. The numerical values of the
resultant 5-mer signatures and their prevalence for each breast cancer sample are provided in

Supplementary table 21.
Comparison with other tools

We have compared our tool with its well-known counterparts which have been developed for similar
purposes: SomaticSignatures [6], SigneR [7] and deconstructSigs [8]. The deconstructSigs package
is different from other tools as it is designed to determine the optimal linear combination of pre-defined
mutational signatures that most accurately reconstructs the mutational profile of a single tumor sample
[8], whereas others are designed to extract de novo mutational signatures from a cohort. Table 1
compares the tools based on a set of features. Note that this comparison only considers relevant
features of these tools rather than all capabilities. Please refer to the corresponding papers for more

information [6-8].

The tools were applied to a simulated dataset of mutations. We constructed the simulated dataset as
follows: 6 signatures were selected from the list of mutational signatures presented at the COSMIC
database [5] (signatures 1, 2, 3, 17, 21 and 29) as the underlying mutational processes, producing our
simulated mutational catalogue. The mutational load (total mutations) for each sample was determined
by taking a random number from a Rayleigh distribution with parameter ¢ = 8000 (this distribution was
used since we observed that the histogram of mutational loads for samples of a cancer is often unimodal
and positively skewed, and the average of mutational loads across all samples and all cancer types is
near 10’000 which is approximately equal to the mean of a Rayleigh distribution with scale parameter
of 8000). In the next step, the vector of mutations for each sample was generated by a linear combination
of the 6 signatures where the 6 coefficients were determined randomly (for each set of coefficients, we
selected 6 random numbers between 0 to 1, then normalized them such that they sum up to 1, and
finally multiply them with the amount of mutational load of the sample). The aforementioned algorithm

were used to generate 400 samples to form the simulated mutational catalogue.
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We tried to apply CANCERSIGN, SomaticSignatures and SigneR to the simulated dataset in an equal
condition. However, due to its Bayesian framework, SigneR is not scalable to large mutational
catalogues containing several hundreds of samples. Consequently, it is not feasible to test SigneR on
the simulation dataset, and instead performed the comparison between CANCERSIGN and

SomaticSignatures.

The parameters of the analysis were set as follows. The range of values of N (number of signatures to
decipher) was set from 2 to 12. The maximum number of bootstraps for each N was set to 100 for
CANCERSIGN, and the number of replicates (nReplicates) for SomaticSignatures was set to 20. With
these settings, the tools consumed approximately the same amount of time (~45 minutes) to decipher
mutational signatures from our simulated dataset (using a typical computer with four 1.7 GHz CPU cores
and 8GB memory). According to Figure 10, both tools have correctly found N = 6 as the optimal number
of underlying mutational signatures (the knee point in the diagram of summary statistics of
SomaticSignatures [6], and the point with a high reproducibility and the lowest reconstruction error in
the evaluation diagram of CANCERSIGN). The obtained mutational signatures are shown in Figure 11.
By a simple visual comparison, we can conclude that both tools have deciphered almost identical
signatures which are also identical to the original selected signatures (signatures 1, 2, 3, 17, 21 and 29
from the COSMIC database). This test shows that both tools can produce valid results when analysing

catalogues of somatic signatures.

We also compared the tools in terms of time efficiency. Note that the number of replicates for
SomaticSignatures is equivalent to the number of bootstraps for CANCERSIGN. It is observed that in
the same amount of time (~45 minutes), the number of bootstraps performed by CANCERSIGN was
more than the number of replicates in the process of SomaticSignatures (100 vs. 20). Thus, we can

conclude that CANCERSIGN performs the analyses faster than SomaticSignatures.

CONCLUSION

Systematic analyses of mutations in tumor biopsies from a large number of cancer types have identified
at least 30 mutational signatures, each pointing to distinct molecular mechanisms acting on cellular
DNA. The computational method used to extract mutational signatures is becoming an integral part of
cancer research. Therefore, in recent years, a number of studies have focused specifically on the
development of bioinformatics tools for analysis of mutational signatures. In the present study, we
reported the development of a stand-alone tool called CANCERSIGN, which does not require any
programming skills to be used. This tool has several unique features. Firstly, it has been optimized to
run parallel computational analysis in order to speed up de novo mutational signhature extraction.
Secondly, it enables the extraction of 5-mer mutational signature profiles in addition to the commonly
used 3-mer signature patterns. Thirdly, using the clustering features of this tool, differences between
patients and/or tumor types can be investigated using all mutation profiles and/or subsets of selected
mutations. In addition, using this tool, we identified a number of novel signatures. Overall,

CANCERSIGN is a multi-functional and user-friendly computational tool for accurate and quick analysis
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of mutation signatures and clustering of tumor samples. This tool is a stand-alone package, is freely

available, and does not require any specific computational skills to run.
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TABLES AND FIGURES LEGENDS

Table 1 | A comparison between packages for analysis of mutational catalogues.
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Figure 1 | Tool functionality map.

This diagram abstracts the functional features of our tool. The user can either choose to extract
mutational signatures in the conventional format which are the spectrums over 96 mutation types (3-
mer motifs) or extract 5-mer mutational signatures. The box indicating “NMF algorithm” consists of
several steps. Its main steps are bootstrapping from mutational catalogue matrix, NMF iteration and
clustering the results obtained from the bootstrapped data. In the clustering part, the user can choose
different sets of features to cluster the samples. These feature sets are based on either mutational motifs
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or mutational signatures. In the former case, counts or proportions of 3-mer or 5-mer mutational motifs
can be selected, and in the latter case, contributions of 3-mer or 5-mer mutational signatures can be
chosen for clustering features. Finally, in the simulation part, there are two options to simulate the
mutational catalogues and in either case, it produces simulated signatures to examine the statistical
significance of deciphered signatures from the input data.

Figure 2 | Deciphering whole genome 3-mer mutational signatures for various cancer types.

The 3-mer mutational signatures extracted from whole-genome samples of 18 cancer types. Each
cancer type is analysed separately. (A) Breast cancer 3-mer signatures. (B) Brain cancer 3-mer
signatures. (C) Esophagus cancer 3-mer signatures ... (R) Nervous system cancer 3-mer signatures.

Figure 3 | Correlation of 77 signatures identified by CANCERSIGN with 30 previously reported
signatures by Nik-Zainal et al. [15].

Here, each cell indicates percentage of similarity between signatures identified by our tool and
previously reported signatures. Those signatures with less than 50% similarity with previously reported
signatures have been highlighted.

Figure 4 | Mutational signatures deciphered from the whole exome and pooled (whole genome
and whole exome) data of breast cancer. (A) For the pooled data. (B) For the whole exome data.

Figure 5 | Mutational signatures deciphered from the whole exome and pooled (whole genome
and whole exome) data of skin cancer. (A) For the pooled data. (B) For the whole exome data.

Figure 6 | Mutational signatures deciphered from the whole genome, whole exome, exonic
section of whole genome and non-coding regions of whole genome breast cancer samples. (A)
Nine signatures discovered from whole genome analysis of breast cancer sample by CNCERSIGN. (B)
In the analysis of whole exome sequencing breast cancer samples, CANCERSIGN detected five
signatures. (C) CANCERSIGN also analysed exonic sections of WGS breast cancer samples and
identified three signatures. (D) In the analysis of non-coding regions of the WGS breast cancer samples,
CANCERSIGN detected nine signatures, in which five of them are seems to be non-coding specific
signatures.

Figure 7 | Clustering the samples of breast cancer based on contributions of 3-mer mutational
sighatures.

This clustering is applied to whole-genome samples of breast cancer. The features of samples for this
clustering are the contributions of 3-mer mutational signatures to each sample. (A) Average
contributions of signatures within each cluster. (B) The result of principal component analysis of all
samples in the space of clustering features. The axes of the plot are the first two principal components.

Figure 8 | Clustering the samples of breast cancer based on proportions of 3-mer mutational
motifs.

This clustering was applied to whole-genome samples of breast cancer. The features of samples for
this clustering are proportions of the 3-mer mutational motifs recorded in each sample. (A) Average

12


https://doi.org/10.1101/424960
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/424960; this version posted January 9, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

counts of motifs within each cluster. (B) The result of principal component analysis of all samples in the
space of clustering features. The axes of the plot are the first two principal components.

Figure 9 | Deciphering whole genome 5-mer mutational signatures for breast cancer.

The 5-mer mutational signatures extracted from whole-genome samples of breast cancer. Here, we
have chosen four 3-mer motifs, namely T(C>G)A, T(C>G)T, T(C > T)A and T(C > T)T, to expand to 5-
mer motifs and extracted the corresponding 5-mer signatures.

Figure 10 | Evaluation diagrams produced by SomaticSignatures and CANCERSIGN packages
when applied to the sample dataset (for tool comparison).

(A) For SomaticSignatures package. (B) For CANCERSIGN package.

Figure 11 | Mutational signatures deciphered by SomaticSignatures and CANCERSIGN packages
when applied to the sample dataset (for tool comparison). (A) For the SomaticSignatures package.
(B) For the CANCERSIGN package.

SUPPLEMENTARY FIGURES LEGENDS
Figure S1 | Tool functionality map.

This diagram abstracts the functional features of our tool. The user can either choose to extract
mutational signatures in the conventional format which are the spectrums over 96 mutation types (3-
mer motifs) or extract 5-mer mutational signatures. The box indicating “NMF algorithm” consists of
several steps. Its main steps are bootstrapping from mutational catalogue matrix, NMF iteration and
clustering the results obtained from the bootstrapped data. In the clustering part, the user can choose
different sets of features to cluster the samples. These feature sets are based on either mutational motifs
or mutational signatures. In the former case, counts or proportions of 3-mer or 5-mer mutational motifs
can be selected, and in the latter case, contributions of 3-mer or 5-mer mutational signatures can be
chosen for clustering features.

Figure S2 | Evaluation plot for deciphering 3-mer mutational signatures. Whole genome samples
in breast cancer.

Figure S3 | Evaluation plot for deciphering 3-mer mutational signatures. Whole genome samples
in blood cancer.

Figure S4 | Evaluation plot for deciphering 3-mer mutational signatures. Whole genome samples
in pancreas cancer.

Figure S5 | Evaluation plot for deciphering 3-mer mutational signatures. Whole genome samples
in stomach cancer.
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Figure S6 | Evaluation plot for deciphering 3-mer mutational signatures.

in brain cancer.

Figure S7 | Evaluation plot for deciphering 3-mer mutational signatures.

in kidney cancer.

Figure S8 | Evaluation plot for deciphering 3-mer mutational signatures.

in liver cancer.

Figure S9 | Evaluation plot for deciphering 3-mer mutational signatures
in prostate cancer.

Figure S10 | Evaluation plot for deciphering 3-mer mutational signatures.

in bladder cancer.

Figure S11 | Evaluation plot for deciphering 3-mer mutational signatures.

in colorectal cancer.

Figure S12 | Evaluation plot for deciphering 3-mer mutational signatures.

in Oesophagus cancer.

Figure S13 | Evaluation plot for deciphering 3-mer mutational signatures.

in ovary cancer.

Figure S14 | Evaluation plot for deciphering 3-mer mutational signatures.

in head & neck cancer.

Figure S15 | Evaluation plot for deciphering 3-mer mutational signatures
in skin cancer.

Figure S16 | Evaluation plot for deciphering 3-mer mutational signatures.

in lung cancer.

Figure S17 | Evaluation plot for deciphering 3-mer mutational signatures.

in bone cancer.

Figure S18 | Evaluation plot for deciphering 3-mer mutational signatures.

in uterus cancer.
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Figure S19 | Evaluation plot for deciphering 3-mer mutational signatures. Whole genome samples
in nervous system cancer.

Figure S20 | Evaluation plot for deciphering 3-mer mutational signatures. Mixed data (whole
genome and whole exome) samples in breast cancer.

Figure S21 | Evaluation plot for deciphering 3-mer mutational signatures. Whole exome samples
in breast cancer.

Figure S22 | Evaluation plot for deciphering 3-mer mutational signatures. Mixed data (whole
genome and whole exome) samples in skin cancer.

Figure S23 | Evaluation plot for deciphering 3-mer mutational signatures. Whole exome samples
in skin cancer.

Figure S24 | Evaluation plot for deciphering 5-mer mutational signatures. Whole genome samples
in breast cancer.

SUPPLEMENTARY TABLES LEGENDS

Table S1 | General statistics of the dataset of somatic mutations.

Table S2 | Numerical values of deciphered 3-mer mutational signatures. Whole genome samples
in breast cancer.

Table S3 | Numerical values of deciphered 3-mer mutational signatures. Whole genome samples
in blood cancer.

Table S4 | Numerical values of deciphered 3-mer mutational signatures. Whole genome samples
in pancreas cancer.

Table S5 | Numerical values of deciphered 3-mer mutational signatures. Whole genome samples
in stomach cancer.

Table S6 | Numerical values of deciphered 3-mer mutational signatures. Whole genome samples
in brain cancer.

Table S7 | Numerical values of deciphered 3-mer mutational signatures. Whole genome samples
in kidney cancer.
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Table S8 | Numerical values of deciphered 3-mer mutational signatures.

in liver cancer.

Table S9 | Numerical values of deciphered 3-mer mutational signatures.

in prostate cancer.

Table S10 | Numerical values of deciphered 3-mer mutational sighatures.

in bladder cancer.

Table S11 | Numerical values of deciphered 3-mer mutational signatures
in colorectal cancer.

Table S12 | Numerical values of deciphered 3-mer mutational sighatures
in esophagus cancer.

Table S13 | Numerical values of deciphered 3-mer mutational signatures.

in ovary cancer.

Table S14 | Numerical values of deciphered 3-mer mutational sighatures.

in head & neck cancer.

Table S15 | Numerical values of deciphered 3-mer mutational signatures.

in skin cancer.

Table S16 | Numerical values of deciphered 3-mer mutational sighatures.

in lung cancer.

Table S17 | Numerical values of deciphered 3-mer mutational signatures
in bone cancer.

Table S18 | Numerical values of deciphered 3-mer mutational signatures
in uterus cancer.

Table S19 | Numerical values of deciphered 3-mer mutational signatures.

in nervous system cancer.

Whole genome samples

Whole genome samples

Whole genome samples

. Whole genome samples

. Whole genome samples

Whole genome samples

Whole genome samples

Whole genome samples

Whole genome samples
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Table S20 | Numerical values of correlation of 77 signatures identified by CANCERSIGN with 30

previously reported signatures by Nik-Zainal et al. [15].
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Table S21 | Numerical values of deciphered 5-mer mutational signatures. Whole genome samples
in breast cancer.

17


https://doi.org/10.1101/424960
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/424960; this version posted January 9, 2019. The copyright holder for this preprint (which was
Figure 1 not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY-NC-ND 4.0 International license.

Preprocess input mutational catalog

Put your data f le inside "data" folder. Then type the name of input f le below:

Select the input format:
@ ICGC
C TCGA
C Other

How many cancer types are included in this dataset?
@ Single Cancer Type
€ Multiple Cancer Types

How many CPU cores do you want to use?
Number of CPU cores for parallelization

o8B

Extract 3-mer mutational signatures

Select the accuracy level:

@ Moderate

€ High

€ Very High

=>NMF convergence threshold = le-4
=> Bootstrap convergence threshold =0.1

Extract 5-mer mutational signatures

Select the 3-mer motifs which you want to expand:

Select the accuracy level:

@ Moderate

€ High

€ Very High

=>NMF convergence threshold = le-4
=> Bootstrap convergence threshold =0.1

Clustering the samples

Select the method of clustering:
(€ Cluster based on 3-mer mutational motifs
(€ Cluster based on 5-mer mutational motifs
(= Cluster based on proportions of 3-mer signatures
€ Cluster based on proportions of 5-mer signatures

C

[

-ll“l!Jh!I“!l“||-||II|

Averago propertions of
mutationalsignaturos n each lustor (%)

Cluster 1

Cluster2  Cluster3

PCA of nput samples
n he space ofsolectod features

Principal component 2
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