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Abstract

Modeling variances in data has been an important topic in many fields, includ-
ing in financial and neuroimaging analysis. We consider the problem of regressing
covariance matrices on a vector covariates, collected from each observational unit.
The main aim is to uncover the variation in the covariance matrices across units that
are explained by the covariates. This paper introduces Covariate Assisted Princi-
pal (CAP) regression, an optimization-based method for identifying the components
predicted by (generalized) linear models of the covariates. We develop computa-
tionally efficient algorithms to jointly search the projection directions and regression
coefficients, and we establish the asymptotic properties. Using extensive simulation
studies, our method shows higher accuracy and robustness in coefficient estimation
than competing methods. Applied to a resting-state functional magnetic resonance
imaging study, our approach identifies the human brain network changes associated
with age and sex.

Keywords: Common diagonalization; Heteroscedasticity; Linear projection
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1 Introduction

Modeling variances is an important topic in the statistics and financial literature. In

linear regression with heterogeneous errors, various (generalized) linear models have been

proposed to model the error variances using the covariates directly or indirectly as a function

of the mean (see for example Box and Cox (1964); Carroll et al. (1982); Smyth (1989); Cohen

et al. (1993)). These models use separate regression models of the covariates to predict a

scalar variance parameter of the error, as well as the mean of the response. Usually, the

goal is to improve the efficiency of estimating the mean regression model, while the variance

regression model is of less interest.

Regression models for covariance matrices were studied before under different settings.

For time series, the “autoregressive conditionally heteroscedastic” (ARCH) models (Engle

and Kroner, 1995) were developed to model temporal heteroscedasticity. Anderson (1973)

proposed an asymptotically efficient estimator for a class of covariance matrices, where

the covariance matrix is modeled as a linear combination of symmetric matrices. Chiu

et al. (1996) proposed to model the elements of the logarithm of the covariance matrix as

a linear function of the covariates. Pourahmadi (1999) considered another type of matrix

decomposition, where the covariates predict linearly the unconstrained elements in the

Cholesky decomposition. However, this approach is not order invariant, and requires the

matrix columns/rows follow a meaningful ordering. These matrix regression models usually

require a large number of parameters to be estimated.

Several approaches were proposed to extend matrix outcome regression models to high

dimensions. Hoff and Niu (2012) introduced a regression model, where the covariance ma-

trix is a parsimonious quadratic function of the explanatory variables. Applying low-rank

approximation techniques, Fox and Dunson (2015) generalized the framework to a nonpara-
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metric covariance regression model and enabled scaling up to high dimensions. In a recent

paper, Zou et al. (2017) linked the matrix outcome to a linear combination of similarity

matrices of covariates, and studied the asymptotic properties of various estimators under

this model. These approaches again model the whole covariance matrix as outcomes, and

thus the interpretation could be challenging for large matrices.

Closely related to covariance matrices, principal component analysis (PCA) and re-

lated methods are widely used to generate interpretable results for large dimensional data.

These methods have been extended to model multiple covariance matrices. Flury (1984)

and Flury (1988) introduced a class of models, called common principal components mod-

els, to uncover the shared covariance structures. Boik (2002) generalized these models

using spectral decompositions. Hoff (2009) developed a Bayesian hierarchical model and

estimation procedure to study the heterogeneity in both the eigenvectors and eigenvalues

of covariance matrices. Assuming that the eigenvectors span the same subspace, Franks

and Hoff (2016) extended this to the so-called high dimensional setting with large p and

small n. It is unclear, however, how these methods can be extended to incorporate multiple

covariates.

In the application area of neuroimaging analysis, PCA-type methods are becoming

increasingly popular for modeling covariance matrices, partly because of their desirable in-

terpretability and computational capability for analyzing large and multilevel observations.

Covariance matrices (or correlation matrices after standardization) of multiple brain regions

are also commonly known as functional connectivity analysis (Friston, 2011). Decompos-

ing the covariance matrices into separate components enable identification of coherently

active brain subnetworks (Poldrack et al., 2011), and usually a few principal components

are needed to explain the variation in neuroimaging data (Friston et al., 1993). As before,

it is unclear how these methods can be extended to include multiple covariates.
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Indeed, modeling the covariate-related alterations in covariance matrices is an important

topic in neuroimaging analysis, because changes in functional connectivity have been found

to be associated with various demographic and clinical factors, such as age, gender, and

cognitive behavioral functions including developmental and mental health capacities (Just

et al., 2006; Wang et al., 2007; Luo et al., 2011; Mennes et al., 2012; Hafkemeijer et al., 2015;

Park et al., 2016). A commonly implemented method to analyze the covariance changes is

to regress one matrix entry on the covariates, and this model is repeatedly fitted for each

matrix element (see, for example, Wang et al. (2007) and Lewis et al. (2009)). Though this

approach has good interpretability and is scalable, it suffers from the multiplicity issues,

because of the large number of regressions involved. For example, p(p−1)/2 regressions for

p brain regions. Adapting the covariance regression model proposed in Hoff and Niu (2012),

Seiler and Holmes (2017) introduced a simplified model to analyze a large and multilevel

neuroimaging dataset.

In this paper, we propose a Covariate Assisted Principal (CAP) regression model for

multiple covariance matrix outcomes. This model integrates the PCA principle with a gen-

eralized linear model of multiple covariates. Analogous to PCA, our model aims to identify

linear projections to allow for interpretability of the covariance matrices, while being com-

putationally feasible for large data. Unlike PCA, our method targets the projections that

are associated with the covariates. This enables us to study the changes in covariance

matrices associated with subject-specific factors, such as individual demographic or disease

information.

This paper is organized as follows. In Section 2, we introduce our proposed CAP regres-

sion model. Section 3 presents the estimation and computation algorithms in identifying

the proposed principal projection directions. We compare the performance of our proposed

methods with competing approaches through simulation studies in Section 4. We then
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apply our methods to a real fMRI dataset in Section 5. Section 6 summarizes the paper

with a summary and discussion of future directions.

2 Model

For each i ∈ {1, . . . , n}, let yit ∈ Rp, t = 1, . . . , Ti, be independent and identically dis-

tributed random samples from a multivariate normal distribution with mean zero and

covariance matrix, Σi, where Σi may depend on explanatory variables, xi ∈ Rq−1. In our

application example, yit is a sample of brain fMRI measurements of p regions, and xi is a

vector of covariates postulated to be related to fMRI measurements, both collected from

subject i. We assume that there exists a vector γ ∈ Rp such that zit , γ>yit satisfies the

following multiplicative heteroscedasticity model:

log {Var(zit)} = log(γ>Σiγ) = β0 + x>i β1, (1)

where β0 and β1 are model coefficients. The logarithmic linear model follows from Harvey

(1976) in which Σi is a scalar.

A toy example of this model (p = 2) is shown in Figure 1. The covariance matrices,

represented by the contour plot ellipses, vary as the covariate x varies. On the first pro-

jection direction (PD1) with the largest variability, there is no variation under different x

values. However, the variance in the second direction (PD2) decreases as x increases. Our

proposed model (1) thus aims to identify the second projection direction. In other words,

the objective is to discover the rotation such that the data variation in the new space can

be best characterized by the explanatory variables.

Compared with existing methods, our proposed model has two main advantages. First,

different from the model proposed by Hoff and Niu (2012) and Zou et al. (2017), which
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directly model Σi by linear combinations of symmetric matrices constructed out of xi,

we assume a log-linear model for the variance component after rotation. The linear form

allows easy interpretation of the regression coefficient and provides the modeling flexibility

shared by all other (generalized) linear models, such as interactions. The projection enables

computational scalability similar to PCA. The common principal component approach,

studied in Flury (1984), only allows the eigenvalues to vary across a group indicator, our

model (1) provides a direct model of multiple covariates, including continuous ones. This

enables studying the covariate-related changes in covariances in our fMRI experiment.

Second, our model relaxes the standard complete common principal component assumption

imposed in Flury (1984) and Boik (2002), and we assume that there exists at least one

projection direction such that model (1) is satisfied. This partial common diagonalization

assumption is more realistic for data with higher dimensions.

3 Method

We propose to estimate the model parameters by maximizing the likelihood function under

a quadratic constraint:

minimize
β,γ

`(β,γ) :=
1

2

n∑

i=1

(x>i β) · Ti +
1

2

n∑

i=1

γ>Siγ · exp(−x>i β),

such that γ>Hγ = 1, (2)

where `(β,γ) is the negative log-likelihood function (ignoring constants), β = (β0,β
>
1 )> ∈

Rq, Si =
∑Ti

t=1 yity
>
it , and H is a positive definite matrix in Rp×p. Without the constraint,

`(β,γ), for any fixed β, is minimized by γ = 0. Thus the constraint is critical.

Two natural choices of H in the constraint are:
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(a) 3D contour plot.
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(b) 2D contour plot.

Figure 1: Covariance matrices, shown as contour plot ellipses when p = 2, vary as a

continuous X varies (z-axis in (a) and gray/color scales in (b)).

(C1) H = I which is equivalent to a unit constraint under `2-norm, i.e.,

γ>γ = 1; (3)

(C2) H = Σ̄ which is equivalent to a unit constraint with respect to the average sample

covariance, i.e.,

γ>Σ̄γ = 1, Σ̄ =
1

n

n∑

i=1

1

Ti
Si. (4)

(C1) is inspired by standard PCA. The second one is by common principal component

analysis. We show in the following proposition that (C1) will lead to a solution that is less

appealing in certain situations.
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Proposition 1. When H = I in the optimization problem (2), for any fixed β, the solution

of γ is the eigenvector corresponding to the minimum eigenvalue of matrix

n∑

i=1

Si

exp(x>i β)
.

The matrix Si/ exp(x>i β) can be regarded as a normalization on the covariance matrices

based on the explanatory variables. Thus, constraint (C1) achieves the projection direction

with the lowest normalized data variation. In the Appendix Section D, we further discuss

the property of these two constraints using examples. We will focus on constraint (C2) in

this paper because the signals are usually not associated with the smallest eigenvalue in

most scenarios.

3.1 Algorithm

The optimization problem (2) is biconvex. We propose to solve the optimization problem by

block coordinate descent. For given γ, the update of β is obtained by the Newton-Raphson

algorithm. For given β, the solving for γ requires quadratic programming. Though generic

quadratic programming packages could be used, we derive the explicit solution in Propo-

sition A.1 in the supplementary material. The algorithm is summarized in Algorithm 1.

This algorithm works for any positive definite H. To obtain robustness against obtaining

a solution in a local minimum, we propose to randomly choose a series of initial values and

take the estimate with the lowest objective function value.

3.2 Extension for finding multiple projection directions

It is possible that more than one projection direction is associated with the covariates. We

propose to find these directions sequentially. This is modified from the strategy of finding
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Algorithm 1 A block coordinate descent algorithm for solving optimization problem (2).

Input:

Y: a list of data where the ith element is a Ti × p data matrix

X: a n× q matrix of covariate variables with the first column of ones

β(0), γ(0): initial values

Output: β̂, γ̂

Given (β(s),γ(s)) from the sth step, for the (s+ 1)th step:

(i) update β by

β(s+1) = β(s)−
(

n∑

i=1

exp(−x>i β
(s))γ(s)>Siγ

(s)xix
>
i

)−1( n∑

i=1

(Ti − exp(−x>i β
(s))γ(s)>Siγ

(s))xi

)
,

(5)

where Si =
∑Ti

t=1 yity
>
it ;

(ii) update γ by solving

minimize
γ

1

2

n∑

i=1

exp(−x>i β
(s))γ>Siγ,

such that γ>Hγ = 1,

where H = I under (C1) and H = Σ̄ = (
∑n

i=1 Si/Ti)/n under (C2), using Proposi-

tion A.1.

Repeat steps (i)-(ii) until convergence.

multiple principal components one by one.

Suppose Γ(k−1) = (γ(1), . . . ,γ(k−1)) contains the first (k − 1) components (for k ≥ 2),

and let Ŷ
(k)
i = Yi − YiΓ

(k−1)Γ(k−1)>, where Yi = (yi1, . . . ,yiTi
)> for i = 1, . . . , n. We
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cannot directly apply Algorithm 1 to Ŷ
(k)
i as in PCA algorithms, since Ŷ

(k)
i is not of

full rank. We introduce a rank-completion step. The whole algorithm is summarized in

Algorithm 2. In the algorithm, step (iii) completes the data to full rank by adding nonzero

positive eigenvalues to those zero eigencomponents, which are the exponential of model

intercept of the corresponding directions. This step also guarantees that there are no

identical eigenvalues in the covariance matrix of Ỹi, which is a necessary condition for

unique eigenvector identification.

Analogous to the PCA approach, step (iv) is an orthogonal constraint to ensure that

the kth direction is orthogonal to the previous ones, which is equivalent to the following

optimization problem, for k ≥ 2,

minimize
β,γ

1

2

n∑

i=1

(x>i β
(k)) · Ti +

1

2

n∑

i=1

γ(k)>S
(k)
i γ(k) · exp(−x>i β

(k)),

such that γ(k)>Hγ(k) = 1,

and Γ(k−1)>γ(k) = 0. (6)

For any fixed β(k), we derive an explicit formula for solving γ(k), see Section A.2 of the

supplementary material. The proof is adapted from Rao (1964, 1973).

3.3 Choosing the number of projection directions

We propose a data-driven approach to choose the number of projection directions. Ex-

tending the common principal component model, Flury and Gautschi (1986) introduced

a metric to quantify the “deviation from diagonality”. Suppose A is a positive definite

symmetric matrix, the “deviation from diagonality” is defined as

ν(A) =
det{diag(A)}

det(A)
, (7)
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Algorithm 2 An algorithm for finding the kth projection direction under constraint (C2).

Input:

Y: a list of data where the ith element is a Ti × p data matrix

X: a n× q matrix of covariate variables with the first column of ones

Γ(k−1): a p× (k − 1) matrix contains the first (k − 1) directions

B(k−1): a q× (k− 1) matrix contains the model coefficients of the first (k− 1) directions

Output: β̂
(k)

, γ̂(k)

(i) For i = 1, . . . , n, let Ŷ
(k)
i = Yi −YiΓ

(k−1)Γ(k−1)>.

(ii) Apply singular value decomposition (SVD) on Ŷ
(k)
i , such that Ŷ

(k)
i = UiDiV

>
i .

(iii) Let Ỹ
(k)
i = UiD̃iV

>
i with

D̃i = diag{Di1, . . . , Di(p−(k−1)), exp(β10), . . . , exp(β(k−1)0)},

where {Di1, . . . , Di(p−(k−1))} are the first (p − (k − 1)) diagonal elements of matrix

Di, and β10, . . . , β(k−1)0 are the intercept of the first (k − 1) directions (first row of

B(k−1)).

(iv) Treat Ỹ
(k)
i (i = 1, . . . , n) as the new data, and apply Algorithm 1 under constraint

(C2) with an additional orthogonal constraint

Γ(k−1)>γ(k) = 0.

where diag(A) is a diagonal matrix with the diagonal elements the same as matrix A,

and det(A) is the determinant of matrix A. From Hadamard’s inequality, we have that

ν(A) ≥ 1, where equality is achieved if and only if A is a diagonal matrix.
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To adapt this metric in our model, we let Γ(k) ∈ Rp×k denote the matrix containing the

first k projection directions. We define the average deviation from diagonality as

DfD(Γ(k)) =

(
n∏

i=1

ν(Γ(k)>SiΓ
(k)/Ti)

Ti

)1/
∑

i Ti

, (8)

which is the weighted geometric mean of each subject’s deviation from diagonality. As k

increases, the requirement for Γ(k)>SiΓ
(k) to be a diagonal matrix, as in Flury and Gautschi

(1986), may become more stringent. In practice, we can plot the average deviation from

diagonality and choose the first few projection directions with DfD value close to one or

choose a suitable number right before a sudden jump in the plot. See an example in

Section E of the supplementary material.

3.4 Analysis under a Common Principal Component Model

We need additional assumptions to perform theoretical analysis. Following Flury (1986), we

assume that the covariance matrices Σ1, . . . ,Σn can be diagonalized by the same orthogonal

matrix. That is, there exists an orthogonal matrix Γ, such that

Σi = ΓΛiΓ
>, for i = 1, . . . , n, (9)

where Γ = (γ1, . . . ,γp) and Λi = diag{λi1, . . . , λip}. Suppose the eigenvalues are ordered

as λ̄1 > · · · > λ̄p, where λ̄j =
∑n

i=1 λij/n. Let Σ̂i = Si/Ti denote the sample covariance

matrix. Suppose Φ = (φ1, . . . ,φp) and ∆i = diag{δi1, . . . , δip} are the maximum likelihood

estimator of Γ and Λi (i = 1, . . . , n), respectively, using the method proposed in Flury

(1984). Flury (1986) showed that they are both consistent estimators, and thus Σ̃i =

Φ∆iΦ
> is a consistent estimator of Σi. Therefore, we have

‖ Σ̂i − Σ̃i ‖→ 0, as min
i
Ti →∞ and n→∞. (10)
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Based on (10), we replace Si by the consistent estimator TiΣ̃i in our optimization

problem (2). Since Φ is the orthonormal eigenbasis, γ can be represented by the linear

combination of the columns in Φ, i.e., γ = Φa =
∑p

j=1 ajφj, where a = (a1, . . . , ap)
>. The

optimization problem (2) is reformulated as:

minimize
β,a

1

2

n∑

i=1

(x>i β) · Ti +
1

2
a>
(

n∑

i=1

Ti exp(−x>i β)∆i

)
a,

such that a>Ha = 1, (11)

where H = I under (C1) and H = ∆̄ =
∑n

i=1 ∆i/n under (C2). With given β, under

constraint (C1), it is equivalent to solve

min
j∈{1,...,p}

n∑

i=1

Ti exp(−x>i β)δij. (12)

Suppose the eigenvectors are ordered based on the average eigenvalues (i.e., δ̄1 > · · · > δ̄p,

δ̄j =
∑

i δij/n), we have â = φp. Therefore, under constraint (C1), the method yields the

common eigenvector with the lowest average eigenvalue. Now consider the constraint (C2).

Let b = (b1, . . . , bp)
> with bj = aj

√
δj. Minimizing the objective function in (11) under

constraint (C2) is equivalent to solving the following problem,

min
j∈{1,...,p}

∑n
i=1 Tiδij/ exp(x>i β)∑n

i=1 δij
. (13)

Suppose λik = exp(x>i β) satisfies the model assumption, with Ti = T , the minimizer of

above optimization problem is k if

δ̄k >
1

π̄jk
δ̄j, for j 6= k, (14)

where δ̄j =
∑n

i=1 δij/n, π̄jk =
∑n

i=1 πijk/n, and πijk = δij/δik, j = 1, . . . , p. Since δij is

a consistent estimator of λij for i = 1, . . . , n and j = 1, . . . , p, we impose the following

condition.

12

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted September 23, 2018. ; https://doi.org/10.1101/425033doi: bioRxiv preprint 

https://doi.org/10.1101/425033


Condition 1 (Eigenvalue condition). Assume Σi = ΓΛiΓ
> is the eigendecomposition of

Σi with Γ = (γ1, . . . ,γp) an orthogonal matrix and Λi = diag{λi1, . . . , λip} a diagonal

matrix, for i = 1, . . . , n. The eigenvalues are ordered as λ̄1 > · · · > λ̄p, where λ̄j =
∑n

i=1 λij/n. Suppose there exists k ∈ {1, . . . , p} such that λik = exp(x>i β) satisfies the

model assumption, and assume

λ̄k >
1

τ̄jk
λ̄j, for j 6= k, (15)

where τ̄jk =
∑n

i=1 τijk/n, and τijk = λij/λik.

Under this condition, we propose a min-max algorithm (Algorithm 3) to identify the

common principal component with eigenvalues that fit the log-regression model (1) and

meanwhile explain large variations in the data. We call this algorithm a min-max ap-

proach as it contains a minimization (of the objective function) and maximization (of data

variation) steps. To acquire the first k (k ≥ 2) directions, we propose to order those ps

components that satisfy ŝ(j) = j in step (iv) by the average eigenvalues and return the

first min{k, ps} components. Thus this algorithm also provides an estimate of the number

of components.

3.4.1 Asymptotic properties

We first discuss the asymptotic property of β estimator given the true γ. As β is estimated

by maximizing the log-likelihood function, we have the following theorem.

Theorem 1. Assume
∑n

i=1 xix
>
i /n → Q as n → ∞. Let T = mini Ti, Mn =

∑n
i=1 Ti,

under the true γ, we have

√
Mn

(
β̂ − β

)
D−→ N

(
0, 2Q−1

)
, as n, T →∞, (16)

where β̂ is the maximum likelihood estimator when the true γ is known.
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Algorithm 3 A common principal component based method for solving optimization prob-

lem (2) under constraint (C2).

Input:

Y: a list of data where the ith element is a Ti × p data matrix

X: a n× q matrix of covariate variables with the first column of ones

Output: β̂, γ̂

(i) Use Flury (1984) method to estimate Φ and ∆i (i = 1, . . . , n) for Y with n groups.

(ii) For j = 1, . . . , p, estimate β with γ = φj, denoted by β(j).

(iii) For each j, minimize the objective function with

ŝ(j) = arg min
s∈{1,...,p}

∑n
i=1 Tiδij/ exp(x>i β

(j))∑n
i=1 δij

.

(iv) For those ŝ(j) = j, maximize the variance with

k̂ = arg max
k∈{k:ŝ(k)=k}

n∑

i=1

exp(x>i β
(k)).

(v) Estimate β̂ = β(k̂) and γ̂ = φk̂.

When p = 1 and Ti = 1 (for i = 1, . . . , n), our proposed model (1) degenerates to

a multiplicative heteroscedastic regression model. The asymptotic distribution of β̂ in

Theorem 1 is the same as in Harvey (1976). We now establish the asymptotic theory when

γ is estimated from the common principal component approach (Flury, 1984).

Theorem 2. Assume Σi = ΓΛiΓ
>, where Γ = (γ1, . . . ,γp) is an orthogonal matrix and

Λi = diag{λi1, . . . , λip} with λik 6= λil (k 6= l), for at least one i ∈ {1, . . . , n}. There
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exists k ∈ {1, . . . , p} such that for ∀ i ∈ {1, . . . , n}, γ>k Σiγk = exp(x>i β). Let γ̂ be the

maximum likelihood estimator of γk in Flury (1984). Then assuming that the assumptions

in Theorem 1 are satisfied, β̂ from Algorithm 3 is
√
Mn-consistent estimator of β.

4 Simulation Study

In the simulation study, we generate data from a multivariate normal distribution with

p = 5 and covariance Σi for sample i. We assume the covariance matrices satisfy the

common diagonalization assumption, i.e., Σi = ΓΛiΓ
>, where

Γ =




0.447 0.447 0.447 0.447 0.447

0.447 −0.862 0.138 0.138 0.138

0.447 0.138 −0.862 0.138 0.138

0.447 0.138 0.138 −0.862 0.138

0.447 0.138 0.138 0.138 −0.862




(17)

is an orthogonal matrix, and Λi is a diagonal matrix with diagonal elements {λi1, . . . , λip}.
For the log-linear model, Xi (i = 1, . . . , n) is generated from a Bernoulli distribution with

probability 0.5 to be one. Thus q = 2 because of the additional intercept column. Two

scenarios are tested: (i) the null case with β1 = 0 and (ii) the alternative case with the

second and third eigenvalues satisfying the regression model. For the first cases with β1 = 0,

λij is generated from a log-normal distribution with mean β0 and variance 0.52; and for the

second case with β1 6= 0, λij = exp(x>i β) with xi = (1 Xi)
>. The simulation is repeated

200 times.

As demonstrated in Section 3, constraint (C1) yields the component with the lowest

normalized data variation. Thus, in this section, we only present the performance under

constraint (C2). Under constraint (C2), for higher-order directions, enforcing the orthogo-
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nality constraint reduces the parameter search space and increases computation complexity.

In this simulation study, we implement both cases with and without the orthogonality con-

straint. We compare the following methods:

(1) our proposed block coordinate descent method (Algorithms 1 and 2) under constraint

(C2) without the orthogonality constraint, denoted as CAP;

(2) our proposed block coordinate descent method (Algorithms 1 and 2) under constraint

(C2) with the orthogonality constraint, denoted as CAP-OC;

(3) our method under the complete common principal component model (Algorithm 3) for

finding the first k projection directions, denoted as CAP-C;

(4) a principal component analysis (PCA) based method, where we apply PCA on each

subject and regress each of the first k eigenvalues on the covariates, denoted as PCA;

(5) a common principal component method, where we apply common PCA on all subjects

using the method in Flury (1984) and regress each of the first k eigenvalues on the

covariates, denoted as CPCA.

We first evaluate the performance under the null case, i.e., β1 = 0. β0’s are set to be

β0 = (5, 4, 1,−1,−2)>. We present the estimate of β’s from CAP and CAP-C over 200

simulations in Figure E.2 in the supplementary material. Our estimate of β1 is centered

around zero with an average of 0.01 under CAP and -0.01 under CAP-C, both much smaller

than the corresponding standard errors.

Under the alternative scenario, we set β as

β =


5 4 1 −1 −2

0 −1 1 0 0


 ,
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where the first row is for the intercept term (β0’s). Under this setting, the second and

third eigencomponents of the covariance matrices follow the log-linear model (1) and the

eigencondition (Condition 1) is satisfied. Table 1 presents the estimate of model coefficients

β1 over 200 simulations with n = 100 and Ti = 100. Since the intercept term is not of our

study interest, we will not report the results here. For our proposed methods (CAP and

CAP-C), the coverage probability is obtained by both the asymptotic variance in Theorem 1

(CP-A) and 500 bootstrap samples (CP-B); while for PCA and CPCA approaches, only CP-

B is reported. As the data is generated under the complete common principal component

assumption, the CAP-C approach yields the estimate of β with the lowest bias. The

estimated β from CAP (or CAP-OC) for the first direction (the second eigencomponent) is

very close to those from CAP-C, and the coverage probability from either the asymptotic

variance or bootstrap achieves the designated level (α = 0.05). For the second direction (the

third eigencomponent), the estimate from CAP has slightly higher bias and the coverage

probability is smaller than 0.95. The estimation bias of CAP-OC is higher, due to the

orthogonality restriction. The higher bias in the proposed CAP approaches is possibly due

to the data manipulation step in Algorithm 2. Both PCA and CPCA do not take into

account the covariate information and thus the first two direction estimates are associated

with the β components corresponding the largest two eigenvalues, even though the first β

component is zero. The estimate of γ from CAP, CAP-OC and CAP-C are presented in

Table E.1 of Section E in the supplementary material.

To further assess the finite sample performance of our proposed CAP approach, we vary

the number of subjects with n = 50, 100, 500, 1000 and the number of observations within

subject with Ti = 50, 100, 500, 100. Figure 2 shows the estimate, coverage probability from

the asymptotic variance, and the mean squared error (MSE) of model coefficients of the

first two directions. From the figure, as both n and Ti increase, the estimate of β1 in
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Table 1: Estimate (Est.) of β1, as well as standard error (SE), coverage probability with

asymptotic variance in Theorem 1 (CP-A) and coverage probability from 500 bootstrap

samples (CP-B) from different methods under the alternative hypothesis. All values are

computed with n = 100 and Ti = 100 over 200 simulations.

First Direction Second Direction
Method

Est. (SE) CP-A CP-B Est. (SE) CP-A CP-B

Truth -1.00 - - 1.00 - -

CAP -1.00 (0.03) 0.950 0.950 0.81 (0.58) 0.885 0.870

CAP-OC -1.00 (0.03) 0.950 0.950 0.52 (0.84) 0.730 0.715

CAP-C -1.00 (0.03) 0.950 0.955 1.00 (0.03) 0.975 0.960

PCA -0.02 (0.10) - 0 -0.98 (0.03) - 0

CPCA -0.01 (0.11) - 0 -1.00 (0.03) - 0

both the first and second identified direction converge to the true value. The coverage

probability of the first direction is always close to the designated level, and the coverage

probability of the second direction converges to 0.95 as both n and Ti increase. The MSE

of both directions converge to zero. The simulation results demonstrate that our proposed

method (CAP) can successfully recover the eigencomponents that possess multiplicative

heteroscedasticity. Similar results from CAP-C are shown in Figure E.3 of Section E in the

supplementary material.
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(d) D2: Estimate of β1.
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(e) D2: CP of β1.
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(f) D2: MSE of β̂1.

Figure 2: Estimate and coverage probability (CP) with asymptotic variance (Theorem 1)

of β1 for the first (D1) and second (D2) projection directions, as well as the mean squared

error (MSE) of β estimates under various combination of n and T values using CAP. The

gray dashed lines are the target of estimates in (a) and (d), the designated level 0.95 in (b)

and (e), and zero in (c) and (f).
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5 Resting-state fMRI data example

We apply our proposed method to Human Connectome Project (HCP) resting-state fMRI

(rs-fMRI) data. Our dataset includes n = 118 healthy young adults (39 aged 22-25 and 79

aged 26-30; 42 female and 76 male) from the most recent S1200 release. The sample size

selected here is typical for fMRI studies. The rs-fMRI dataset was preprocessed following

the minimal preprocessing pipeline in Glasser et al. (2013). Global signal regression was

performed to address whole brain fluctuations typically seen as nuisances (Murphy et al.,

2009; Fox et al., 2009). The blood-oxygen-level dependent (BOLD) signals are extracted

from p = 20 functional brain regions in the default mode network (DMN) (Power et al.,

2011) and averaged over voxels within the 5 mm radius. The BOLD time series are tem-

porally correlated, thus we first calculate the effective sample size (ESS) defined by Kass

et al. (1998), which infers the equivalent sample size of independent samples,

ESS(p) = min
j∈{1,...,p}

(
T

1 + 2
∑∞

s=1 Cor(y
(j)
1 ,y

(j)
1+s)

)
,

where y
(j)
t = (y

(j)
1t , . . . , y

(j)
nt ) is the data at time t of the jth brain region from all subjects,

for t = 1, 2, . . . and j = 1, . . . , p, and T = 1200 is the number of time points. We subsample

ESS(p) = 660 time points (demeaned and variance stabilized (Beckmann and Smith, 2004))

for analysis.

It has been shown that there exists sex discrepancy in functional connectivity in the

DMN (Gong et al., 2011; Zhang et al., 2018). In this study, the individual demographic

information, i.e., age and sex (both as categorical variables), together with their interaction

are considered as the explanatory variables. For age, the category 22-25 is the reference

level and labeled as Age1 and 26-30 as Age2; for sex, sex = 1 for male and 0 for female.

Four methods are compared in this study, including (i) element-wise correlation re-
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gression (Wang et al., 2007); (ii) common principal component method, i.e., the CPCA

method in Section 4; (iii) our CAP-C method; and (iv) our CAP method. In the simula-

tion study (Section 4), it is shown that the proposed CAP approach without orthogonal

constraint overperforms the approach with orthogonal constraint (CAP-OC). In this real

data analysis, we employ the CAP approach and include a post hoc procedure to examine

the orthogonality among the identified projection directions.

For the element-wise correlation regression, each off-diagonal element in the correlation

matrix is Fisher z-transformed and multiple testing adjustment is performed following the

Benjamini and Hochberg (1995) procedure to control the false discovery rate (FDR). None

of the FDR corrected p-values are significant at level 0.05. See Figure F.1 and Figure F.2

in the supplementary material for the raw and FDR corrected p-values.

We present the estimated regression coefficients (together with 95% confidence intervals)

of first ten common PCs from the CPCA approach in Figure F.3 in the supplementary

material. From the figure, only the model coefficients of the fourth component (CPC4) are

significant, indicating that not all of the top PCs are related to either age or sex. Under

the same common PCA assumption, CAP-C directly discovers the PCs that are relevant

to the covariates. Thus, the first component identified by CAP-C is CPC4. Figure F.4

shows the estimated model coefficients (and 95% confidence intervals from 500 bootstrap

samples) of the top seven discovered PCs.

Our CAP approach discovers five projection directions, where the number five is chosen

based on the average DfD (see Figure F.5 in Section F of the supplementary material), and

the orthogonality of these five directions are verified in Figure F.10. Figure 3 exhibits the

model coefficients (and 95% confidence intervals from 500 bootstrap samples) of the five

projection directions. From the figures, for each identified projection direction, at least

one of the covariates is significant. We use D1 as an example, which presents a significant
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age effect. To interpret the loadings, Figure 4a shows the loading profile, and six brain

regions have the loading magnitude greater than 0.2 (see Figure 4b in the brain map).

This suggests that the connectivity between these brain regions show significant difference

in the comparison (see Figure F.9 in the supplementary material for the scatter plot). In

in the supplementary material, additional loading plots and brain maps are available in

Figures F.7 and F.8, comparisons under different contrasts are shown in Figure F.6. To

compare with CAP-C, Table F.1 in the supplementary material displays the similarity

(similarity between -1 and 1, and 0 indicates orthogonal) of the projection directions to

the common PCs from CAP-C. The two significant PCs identified by CAP-C, CPC4 and

CPC18, have similarity greater than 0.6 to the projections D2 and D4 identified by CAP,

respectively.

To study the reliability of our proposed methods, we apply the estimated projections to

three other scanning sessions of resting-state fMRI data acquired from the same subjects.

Figure F.11 in the supplementary material shows the estimated model coefficients and 95%

bootstrap confidence intervals and Figure F.12 presents the comparisons under different

contrasts. From the figures, the estimate and significance are very similar to the result

presented in Figure 3, which validates the existence of difference between age groups and/or

sex within these five components (also known as brain subnetworks) of the DMN.

6 Discussion

In this study, we introduce a Covariate Assisted Principal regression model for multiple co-

variance matrix outcomes. Our approach allows the identification of projection directions

that are associated with the explanatory variables or covariates. Under certain regular-

ity conditions, our proposed estimators are asymptotically consistent. Using extensive
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Figure 3: Estimated model coefficients and 95% bootstrap confidence intervals of the six

identified projection directions by CAP.

simulation studies, our model shows high estimation accuracy. Applied to resting-state

fMRI studies, our method avoids the massive number of hypothesis testing suffered in the

element-wise regression approach.

One challenge in modeling covariance matrices directly is having a constraint of positive

definiteness. Via projections, the study of a positive definite matrix is decomposed into

modeling the eigenvalues in orthogonal spaces. This relaxes the constraint and preserves

geometric interpretation. The existing spectral decomposition based methods rely on the

assumption that there exists a common diagonalization of the covariance matrices. In

practice, this can be unrealistic, especially when p is large. Researchers are often more

interested in studying a subset of the components related to the covariates. Though CAP

enables identification of a small set of components, the theoretical analysis is challenging

without the complete common diagonalization regularity condition in CPCA. One future

direction will consider relaxing these assumptions.
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(a) The loadings. (b) Regions with |γj | above 0.2 in brain map.

Figure 4: The loading profile and brain regions with absolute loading greater than 0.2 in

projection direction D1 identified by CAP.

The current framework assumes the dimension of the data, p, is fixed and less than

both the number of observations within a subject and the number of subjects. Another

future direction is to extend the method to settings of large p, small n.

References

Anderson, T. (1973). Asymptotically efficient estimation of covariance matrices with linear struc-

ture. The Annals of Statistics, pages 135–141.

Beckmann, C. F. and Smith, S. M. (2004). Probabilistic independent component analysis for

functional magnetic resonance imaging. IEEE transactions on medical imaging, 23(2):137–152.

24

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted September 23, 2018. ; https://doi.org/10.1101/425033doi: bioRxiv preprint 

https://doi.org/10.1101/425033


Benjamini, Y. and Hochberg, Y. (1995). Controlling the false discovery rate: a practical and pow-

erful approach to multiple testing. Journal of the Royal Statistical Society. Series B (Method-

ological), pages 289–300.

Boik, R. J. (2002). Spectral models for covariance matrices. Biometrika, 89(1):159–182.

Box, G. E. and Cox, D. R. (1964). An analysis of transformations. Journal of the Royal Statistical

Society. Series B (Methodological), pages 211–252.

Carroll, R. J., Ruppert, D., and Holt Jr, R. N. (1982). Some aspects of estimation in heteroscedas-

tic linear models. Statistical decision theory and related topics, III, 1:231–241.

Chiu, T. Y., Leonard, T., and Tsui, K.-W. (1996). The matrix-logarithmic covariance model.

Journal of the American Statistical Association, 91(433):198–210.

Cohen, M., Dalal, S. R., and Tukey, J. W. (1993). Robust, smoothly heterogeneous variance

regression. Applied statistics, pages 339–353.

Engle, R. F. and Kroner, K. F. (1995). Multivariate simultaneous generalized arch. Econometric

theory, 11(1):122–150.

Flury, B. (1988). Common principal components & related multivariate models. John Wiley &

Sons, Inc.

Flury, B. N. (1984). Common principal components in k groups. Journal of the American

Statistical Association, 79(388):892–898.

Flury, B. N. (1986). Asymptotic theory for common principal component analysis. The annals of

Statistics, pages 418–430.

Flury, B. N. and Gautschi, W. (1986). An algorithm for simultaneous orthogonal transformation

of several positive definite symmetric matrices to nearly diagonal form. SIAM Journal on

Scientific and Statistical Computing, 7(1):169–184.

25

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted September 23, 2018. ; https://doi.org/10.1101/425033doi: bioRxiv preprint 

https://doi.org/10.1101/425033


Fox, E. B. and Dunson, D. B. (2015). Bayesian nonparametric covariance regression. Journal of

Machine Learning Research, 16:2501–2542.

Fox, M. D., Zhang, D., Snyder, A. Z., and Raichle, M. E. (2009). The global signal and observed

anticorrelated resting state brain networks. Journal of neurophysiology, 101(6):3270–3283.

Franks, A. and Hoff, P. (2016). Shared subspace models for multi-group covariance estimation.

arXiv preprint arXiv:1607.03045.

Friston, K., Frith, C., Liddle, P., and Frackowiak, R. (1993). Functional connectivity: the

principal-component analysis of large PET data sets. Journal of Cerebral Blood Flow &

Metabolism, 13(1):5–14.

Friston, K. J. (2011). Functional and effective connectivity: a review. Brain connectivity, 1(1):13–

36.

Glasser, M. F., Sotiropoulos, S. N., Wilson, J. A., Coalson, T. S., Fischl, B., Andersson, J. L., Xu,

J., Jbabdi, S., Webster, M., and Polimeni, J. R. (2013). The minimal preprocessing pipelines

for the human connectome project. Neuroimage, 80:105–124.

Gong, G., He, Y., and Evans, A. C. (2011). Brain connectivity: gender makes a difference. The

Neuroscientist, 17(5):575–591.
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Supplementary Materials of “Covariate Assisted Principal

Regression for Covariance Matrix Outcomes”

A Theory and Proof

A.1 A proposition for Algorithm 1 and proof of Proposition 1

Proposition A.1. Suppose the vector x ∈ Rp is subject to the restriction

x>Hx = 1,

where matrix H is positive definite. Then, the stationary points and values of x>Ax are the

eigenvectors and values of A with respect to H.

Proof. The Lagrangian of the optimization problem is

L(X, λ) = X>AX− λ
(
X>HX− 1

)
.

Taking partial derivatives gives

∂L
∂X

= 2AX− 2λHX = 0,

∂L
∂λ

= X>HX− 1 = 0.

Then

AX− λHX = 0. (A.1)

1
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Thus the solution (X, λ) is the eigenvector and eigenvalue of A with respect to H. The proof of

Proposition 1 is straight forward by replacing H with I.

To find the eigenvectors and eigenvalues of A with respect to H, we first assume x0 is a solution

eigenvector that has Euclidean norm 1, i.e, x>0 x0 = 1. Since H is positive definite, let x = H−1/2x0,

then

x>Hx = x>0 H
−1/2HH−1/2x0 = x>0 x0 = 1,

which satisfies the constraint condition. Replace X with x = H−1/2x0 in (A.1),

AH−1/2x0 − λHH−1/2x0 = 0,

⇒ H−1/2AH−1/2x0 = λx0.

Therefore, x0 is the eigenvector of matrix H−1/2AH−1/2.

In Algorithm 1, for the (s+ 1)the step,

A =

n∑

i=1

exp(−x>i β(s))Si, H =





I, if under constraint (C1)

Σ̄, if under constraint (C2)

.

We can first find the eigenvectors of H−1/2AH−1/2, left multiplied by H−1/2, solve for β using

formula (5). The update of γ and β will be the pair that jointly minimizes the objective function.

A.2 Details of Algorithm 2

In Algorithm 2, with the new data Ỹ
(k)
i , we need to solve the following optimization problem

minimize
γ,β

1

2

n∑

i=1

Ti(x
>
i β) +

1

2
γ>
(

n∑

i=1

TiΣ̃
(k)
i

exp(x>i β)

)
γ,

subject to γ>
(

1

n

n∑

i=1

Σ̃
(k)
i

)
γ = 1,

Γ(k−1)>γ = 0,

2
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where Σ̃
(k)
i = Ỹ

(k)>
i Ỹ

(k)
i /Ti. With given (or an initial) β, let

A =
n∑

i=1

TiΣ̃
(k)
i

exp(x>i β)
, H =

1

n

n∑

i=1

Σ̃
(k)
i , C = Γ(k−1),

we first apply the solution in Rao (1964, 1973) to find the stationary points, which are the eigen-

vectors of (I−P)A with respect to H, where P = C(C>H−1C)−C>H−1 is the projection operator

ontoM(C) (the linear manifold spanned by C). For each eigenvector, find the solution for β using

the formula in Algorithm 1. The update of γ and β will be the pair that jointly minimizes the

objective function.

B Proof of Theorem 1

Proof. With true γ, our proposed estimator of β is the maximum likelihood estimator (MLE).

Therefore, the asymptotic results of MLE can be applied.

For subject i (i = 1, . . . , n) observation t (t = 1, . . . , Ti), the log-likelihood function (with a

constant difference) is

`it = −1

2
x>i β −

1

2
(γ>yity

>
itγ) exp(−x>i β).

For the full dataset, let Mn =
∑n

i=1 Ti and

LnT (β) =
1

Mn

n∑

i=1

Ti∑

t=1

`it.

β̂ is the solution to L′nT = 0. We expand the function at the true parameter β0 as

0 = L′nT (β̂) = L′nT (β0) + L′′nT (β0)(β̂ − β0) +RnT ,

where RnT is the residual term.

⇒ β̂ − β0 = −
(
L′′nT (β0)

)−1 [L′nT (β0) +RnT

]

`′it(β) = −1

2
xi +

1

2
exp(−x>i β)(γ>yity

>
itγ)xi ⇒ Eβ0

`′it(β) = 0.

3
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`′′it(β) = −1

2
exp(−x>i β)(γ>yity

>
itγ)xix

>
i ⇒ −Eβ0

`′′it(β) =
1

2
xix
>
i .

Under the assumption that
∑n

i=1 xix
>
i /n→ Q,

√
Mn

(
β̂ − β0

) D−→ N
(
0, 2Q−1

)
, as n, T →∞,

where T = mini Ti.

C Proof of Theorem 2

Proof. We propose to estimate γ and β by maximizing the likelihood function. Under the complete

common principal component assumption, Flury (1986) showed the asymptotic distribution of γ̂.

Together with the conclusion of Theorem 1, the consistency of β̂ follows.

D Toy examples

We use three examples to demonstrate the property of the two considered constraints. Assume Xi

is generated from a Bernoulli distribution with probability 0.5 to be 1.

D.1 Example I

Let β1 = (2, 3)> and β2 = (2,−3)>, and assume Σi = ΓΛiΓ
>, where

Γ =
1√
2




1 1

1 −1


 , Λi =




exp(x>i β1) 0

0 exp(x>i β2)


 ,

where xi = (1, Xi)
>. When Xi = 1, Σi = ΓΛ

(1)
i Γ> with Λ

(1)
i = diag{exp(5), exp(−1)}, and when

Xi = 0, Σi = ΓΛ
(0)
i Γ> with Λ

(0)
i diag{exp(2), exp(2)}, where the projection onto the first eigenspace

contains larger variation in the data. We generate yit’s from the multivariate normal distribu-

tion with mean zero and covariance matrix Σi, for t = 1, . . . , Ti = 100 and i = 1, . . . , n = 100.

4
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Then Γ>yit follows the multivariate normal distribution with covariance matrix Λi. Figures D.1a

presents the contour plot of the objective function in 2 with β∗ = β1. Under (C1), from Algo-

rithm 1, the solution for γ is the eigenvector corresponding to the minimum eigenvalue of matrix

∑n
i=1 exp(−x>i β)Si. Constraint (C2) regulates the shape of the constraint set by the average sample

covariance matrix.

D.2 Example II

Let β1 = (1, 0)> and β2 = (−1, 0)>, which is the null scenario of β. The rest parameter settings are

the same as in Example I. Under this scenario, exp(−x>i β) is a constant, and thus the constraint

set under (C2) is parallel to the contour plot of the objective function under the true β (see

Figure D.1b). Therefore, the estimate of γ can be any value in the constraint set.

D.3 Example III

Let β = (1,−3)>, and Σi = ΓΛiΓ
>, where Λi = diag{σ2i1, exp(x>i β)} and log(σ2i1) follows a normal

distribution with mean two and standard deviation one. The rest parameters are set to be the same

as in Example I. In this example, the component with lower variation is relevant to the covariate

X. Figure D.1c shows the contour plot under the true β. Both constraints identify the second

component as the estimator of γ.

Using Examples I to III, we conclude that under constraint (C1), the proposed method yields

the estimate of the component with the lowest variation in the data; while constraint (C2) identifies

the component that satisfies the model assumption (1).

5
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(a) Example I with β∗ = β1.
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(b) Example II with β∗ = β1.

γ1

γ 2

 0 

 20000 

 20000 

 40000 

 40000 

 60000 

 60000 

 80000 

 80000 

 1e+05 

 1e+05 

 120000 

 120000 

 140000 

 140000 

 160000 

 160000 

 180000 

 180000 

 2e+05 

 2e+05 

 220000 

 220000 

 240000 

 240000 

 260000 

 260000 

 280000 

 280000 

 3e+05 

 3e+05 

 320000 

 320000 

 340000 

 340000 

 360000 

 360000 

 380000 

 380000 

 4e+05 

 4e+05 

 440000 

 440000 

 5e+05 

 5e+05 

−1.0 −0.5 0.0 0.5 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

●

● γ'γ = 1 γ'Σγ = 1

(c) Example III with β∗ = β.

Figure D.1: The contour plot of the negative log-likelihood function in (a) Example I, (b) Example

II and (c) Example III. The blue curve and point are the constraint (C2) function and the estimate,

respectively; and the red are under constraint (C1).

E Additional Simulation Results

We first use a simulated example to demonstrate the performance of the “deviation from diagonal-

ity” metric defined in (8). The data is generated following the alternative scenario in Section 4.

Figure E.1a shows the average DfD and Figures E.1b and E.1c are the boxplot of individual DfD,

where the γ’s are estimated using our proposed CAP method. From the figures, for all samples,

when moving to the third component, the DfD value jumps to over 106. Thus, two is the proper

number of components to be chosen, which is the same as the truth. Therefore, the proposed

average DfD is an appropriate metric to chose the number of projection directions.

Under the null case, we present the estimate of β’s from CAP and CAP-C over 200 simulations

in Figure E.2. As demonstrated in the toy example II in Section D, under constraint (C2), our

method could not identify the principal direction of projection, and thus the estimate of β0 from

CAP and CAP-C varies according to the estimated γ. However, the estimate of β1 is centered

around zero with an average of 0.01 (SE: 0.20) under CAP and -0.01 (SE: 0.15) under CAP-C.
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(c) Individual DfD (zoomed in).

Figure E.1: Average and individual “deviation from diagonality” of a simulated example.
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(a) CAP
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(b) CAP-C

Figure E.2: Estimate of β0 and β1 in the 200 simulations from (a) CAP and (b) CAP-C methods

with n = 100 and Ti = 100 under the null case.
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Table E.1 presents the estimate of γ using CAP and CAP-C methods with n = 100 and Ti = 100.

Both methods yield correct identification of the two principal directions. CAP-C attains lower bias

and variation, which is optimal under the complete common principal component assumption.

Table E.1: Estimate (standard error) of γ under the alternative scenario with n = 100 and Ti = 100.

γ Truth CAP CAP-OC CAP-C

γ1 0.45 0.42 (0.125) 0.42 (0.125) 0.45 (0.002)

γ2 -0.86 -0.82 (0.057) -0.82 (0.057) -0.86 (0.002)

γ3 0.14 0.13 (0.050) 0.13 (0.050) 0.14 (0.004)

γ4 0.14 0.13 (0.161) 0.13 (0.161) 0.14 (0.002)

First Direction

γ5 0.14 0.14 (0.210) 0.14 (0.210) 0.14 (0.002)

γ1 0.45 0.43 (0.085) 0.43 (0.111) 0.45 (0.002)

γ2 0.14 0.15 (0.110) 0.13 (0.157) 0.14 (0.003)

γ3 -0.86 -0.76 (0.282) -0.61 (0.423) -0.86 (0.001)

γ4 0.14 0.13 (0.087) 0.11 (0.171) 0.14 (0.003)

Second Direction

γ5 0.14 0.06 (0.288) -0.06 (0.408) 0.14 (0.002)

Figure E.3 shows the estimate of β using CAP-C as both n and Ti increases. As CAP-C correctly

identifies the two components that satisfy the model assumption (1), the estimate of β is close to

the true value and the coverage probability reaches the designated level under all combinations of

n and Ti values.
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(b) D1: Coverage probability of β1.
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(c) D1: MSE of β̂1.
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(d) D2: Estimate of β1.
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(e) D2: Coverage probability of β1.
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(f) D2: MSE of β̂1.

Figure E.3: Estimate and coverage probability (CP) with asymptotic variance (Theorem 1) of β1

for the first (D1) and second (D2) projecting direction, as well as the mean squared error (MSE)

of β estimates under various combination of n and T values using CAP-C. The gray dashed line in

(a) and (d) are the target of estimates and zero in the rest.
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(c) Age-Sex interaction.

Figure F.1: Significance of model coefficients with original p-value at level of 0.05 in the element-

wise correlation regression. The yellow elements are significant, and the red are not.

F Additional Real Data Analysis Results

F.1 The element-wise regression approach

Figure F.1 shows the significance of model coefficients with original p-value less than 0.05 in the

element-wise regression analysis. Figure F.2 shows the significance after multiple testing correction,

where all become insignificant.

F.2 The CPCA approach

We present the estimated model coefficients (together with 95% confidence interval from the re-

gression model) of the first ten common PCs from the CPCA approach in Figure F.3. From the

figure, the model coefficients of CPC5, CPC6 and CPC7 are not significant, indicating that brain

connectivity within the corresponding brain network does not show any difference when comparing

age and sex groups. The CAP-C method builds on the common diagonalization assumption as in

the CPCA approach, but targets on the PCs that satisfy the log-linear model assumption.
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(c) Age-Sex interaction.

Figure F.2: Significance of model coefficients with adjusted p-value at level of 0.05 in the element-

wise correlation regression. The yellow elements are significant, and the red are not.
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(c) Age-Sex interaction.

Figure F.3: Estimated model coefficients and 95% confidence interval of the first ten common PCs

in the CPCA approach.
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Figure F.4: Estimated model coefficients and 95% bootstrap confidence interval of the three iden-

tified common PCs from the CAP-C approach.

F.3 The CAP-C approach

Figure F.4 shows the estimated model coefficients (and 95% confidence interval from 500 bootstrap

samples) of the three discovered PCs, which also satisfy the eigenvalue condition (Condition 1).

Though CPC3 has significant coefficient in sex, the corresponding eigenvalue condition is violated

and thus is not identified by the CAP-C approach.

F.4 The CAP approach

Figure F.5 presents the average and individual “deviation from diagonality” of the first seven

projection directions in the real data analysis. We observe a sudden jump on the sixth direction,

therefore we choose the first five components.

Figure F.7 presents the loadings of the five projection directions from the CAP approach, and

Figure F.8 is the visualization of the loadings in the brain map. Figure F.9 shows the scatter plot

of the model outcome log(γ>Σ̂iγ) by age and sex group for the five projection directions from the

CAP approach. From the figure, we observe the interaction effect in D2, D4 and D5.
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Figure F.5: The average and individual “deviation from diagonality” of the first seven ((a)-(b))

and first five ((c)-(d)) projection directions in the real data analysis.
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Figure F.6: Pair-wise comparison of the five identified projection directions from the CAP approach.

The confidence interval is obtained from 500 bootstrap sample.

Table F.1 displays the similarity (similarity between -1 and 1, and 0 indicates orthogonal) of

the projecting directions to the PCs from CAP-C. The proposed CAP approach recovers the three

PCs with high similarity and detects three additional. Using the definition in Krzanowski (1979),
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Figure F.7: The loadings of the five projection directions from the CAP approach.
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(a) D1. (b) D2.

(c) D3. (d) D4.

(e) D5.

Figure F.8: The loading map of the five projection directions from the CAP approach. The color

legend indicates the value of γ.
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Figure F.9: Scatter plot of the outcome in the log-linear model (log(γ>Σ̂iγ)) by age and sex groups

for the five projection directions from the CAP approach.
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Figure F.10: Orthogonality of the five identified projection directions from CAP.
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Table F.1: Similarity between the five projecting directions from CAP and the seven PCs from

CAP-C method.

CAP-C

CPC4 CPC6 CPC8 CPC10 CPC17 CPC18 CPC19

D1 -0.115 -0.065 0.020 0.140 0.024 0.202 0.165

D2 0.638 0.144 0.053 -0.051 -0.086 0.139 -0.078

D3 -0.193 -0.311 -0.007 0.056 -0.067 -0.118 -0.096

D4 -0.072 0.051 0.208 0.234 -0.329 -0.669 -0.339

CAP

D5 -0.214 0.432 0.192 -0.016 0.009 -0.153 0.349

the similarity between the two spaces discovered by CAP and CAP-C is 0.386, indicating that the

space spanned by the seven identified PCs from CAP-C is different from the one spanned by the

five components discovered by CAP.

To study the reliability of our proposed method, we apply the same linear projection to the

rest three sessions of resting-state fMRI data acquired from the same subjects in the HCP study.

Figure F.11 shows the estimated model coefficients and 95% bootstrap confidence interval. From

the figure, the estimate and significance are very similar to the result presented in Figure 3 of

Section 5, which postulates the existence of difference between age groups and/or sex within these

five subnetworks of the DMN.
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Figure F.11: Estimated model coefficients and 95% bootstrap confidence interval of the five iden-

tified projection directions from the CAP approach in Section 5 tested on the rest three sessions of

resting-state data collected from the same subjects in the HCP study.
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Figure F.12: Pair-wise comparison of the five identified projection directions from the CAP ap-

proach in Section 5 tested on the rest three sessions of resting-state data collected from the same

subjects in the HCP study.

21

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted September 23, 2018. ; https://doi.org/10.1101/425033doi: bioRxiv preprint 

https://doi.org/10.1101/425033


References

Flury, B. N. (1986). Asymptotic theory for common principal component analysis. The annals of

Statistics, pages 418–430.

Krzanowski, W. (1979). Between-groups comparison of principal components. Journal of the

American Statistical Association, 74(367):703–707.

Rao, C. R. (1964). The use and interpretation of principal component analysis in applied research.
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