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Summary  
 
The retina is a highly specialized neural tissue that senses light and initiates image processing. 
Although the functional organisation of specific cells within the retina has been well-studied, the 
molecular profile of many cell types remains unclear in humans. To comprehensively profile cell 
types in the human retina, we performed single cell RNA-sequencing on 20,009 cells obtained 
post-mortem from three donors and compiled a reference transcriptome atlas. Using 
unsupervised clustering analysis, we identified 18 transcriptionally distinct clusters representing 
all known retinal cells: rod photoreceptors, cone photoreceptors, Müller glia cells, bipolar cells, 
amacrine cells, retinal ganglion cells, horizontal cells, retinal astrocytes and microglia. Notably, 
our data reveal novel subpopulations of rod photoreceptors that can be distinguished by MALAT1 
expression levels. We also demonstrated the use of this retina transcriptome atlas to benchmark 
pluripotent stem cell-derived cone photoreceptors and an adult Müller glia cell line. This work 
provides an important reference with unprecedented insights into the transcriptional landscape of 
human retinal cells, which is fundamental to our understanding of retinal biology and disease. 
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Introduction 
 
The eye is a highly specialised sensory organ in the human body. Sight is initiated by the 
conversion of light into an electrical signal in the photoreceptors of the neurosensory retina.  The 
rod photoreceptors are responsible for light detection at extremely low luminance, while the cone 
photoreceptors are responsible for colour detection and operate at moderate and higher levels. 
Following preprocessing, by horizontal, bipolar and amacrine cells, the resultant signal is 
transferred via ganglion cells to the brain. Neurotransmitter support is provided by Müller glia, 
retinal astrocytes and microglial cells. Inherited retinal diseases are becoming the leading cause 
of blindness in working age adults, with loci in over 200 genes associated with retinal diseases 
(RetNet: https://sph.uth.edu/retnet/), often involving specific retinal cell types. Knowledge of the 
transcriptome profile of individual retinal cell types in humans is important to understand the 
cellular diversity in the retina, as well as the study of retinal genes that contribute to disease in 
individual retinal cell types. 1–5 

The transcriptome profiles of whole human retina from adults 6–10 and during fetal development 
11,12 have been previously described. However, these studies only assayed the averaged 
transcriptional signatures across all cell types, meaning that the cellular heterogeneity in the 
retina is lost. As such, the transcriptional pathways that underlie the highly specialised function 
of many human retinal cell types remain unclear; including the rod and cone photoreceptors, 
Müller glia cells, horizontal cells, and amacrine cells. Recent advances in RNA sequencing and 
microfluidic platforms have dramatically improved the accessibility of single cell 
transcriptomics, with increased throughput at a lower cost. Critically, single-cell microfluidics 
and low-abundance RNA library chemistries allow accurate profiling of the transcriptome of 
individual cell types. This has been demonstrated in the mouse, where transcriptome profiles of 
the mouse retina 13 and retinal bipolar cells 14 have been described at the single cell level using 
the Drop-seq method 13. These studies provided a molecular classification of the mouse retina 
and identified novel markers for specific cell types, as well as novel candidate cell types in the 
retina. Recently, single cell transcriptomics was used to analyse the human retina. Phillips et al. 
have profiled a total of 139 adult retina cells using the C1 Fluidigm platform 15, but the limited 
number of profiled cells presents challenges in the annotation and accurate identification of 
individual retinal cell types. Moreover, a flow cytometry approach was used to isolate 65 human 
fetal cone photoreceptors followed by scRNA-seq profiling 16.  

Herein we report the generation of a human neural retina transcriptome atlas using 20,009 single 
cells from three donors. Our data provide new insights into the transcriptome profile of major 
human retinal cell types and establish a high cellular-resolution reference of the human neural 
retina, which will have implications for identification of biomarkers and understanding retinal 
cell biology and diseases.  
 
Results 
Preparation of human neural retinal samples and generation of single cell transcriptome atlas  
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We obtained post-mortem human adult eyes approved for research purposes following corneal 
transplantation. As the transcriptome profile of human retina pigment epithelium cells has 
already been reported 17,18, we focused solely on the neural retina layers. We extracted the neural 
retina from eight donor eyes. We observed consistent cell viability across retinal tissues retrieved 
within 15 hours post-mortem (Supplementary figure 1A) and found that donor age does not 
impact negatively on cell viability in the extracted neural retina (Supplementary figure 1B).  To 
minimize potential risk of mRNA degradation due to reduced cell viability, we selected three 
donor samples retrieved within 15 hours post-mortem (Supplementary Table 1) and analysed 
them with single cell RNA sequencing (scRNA-seq) using the 10X Genomics Chromium 
platform.   
 
Sequence data from five scRNA-seq libraries derived from the three neural retinal samples were 
pooled for processing and analysis. From 23,000 cells, we obtained an average of 40,232 reads 
per cell and 1,665 UMIs (unique transcripts) per cell. Following quality control and filtering in 
Seurat, our final dataset contained 20,009 cells, which were taken forward for further analysis. 
 
The scRNA-seq data was initially analysed using an unsupervised graph clustering approach 
implemented in Seurat (version 2.2.1) to classify individual cells into cell subpopulations 
according to similarities in their transcriptome profiles. Overall, the cells were classified into 18 
transcriptionally distinct clusters (Figure 1A, Supplementary figure 2). We first assessed the 
variation between donor samples and between library preparations (Supplementary table 2, 
supplementary figure 3 and 4). Interestingly, although many of the identified clusters are present 
in all three donor retinal samples, we also observed several donor-specific clusters corresponding 
to rod photoreceptors (Figure 1B, Supplementary figure 3A and 3B). In contrast, we observed 
minimal variation between two different libraries prepared from the same donor sample, 
supporting the quality of the scRNA-seq datasets in this study (Supplementary figure 4).  
 
Identification of major cell types in the human retina using scRNA-seq 
 
Based on known markers 13,14,19–24, we were able to assign cell identities to the 16 of the 18 
clusters (Figure 1A, 1C, 1E), corresponding to rod photoreceptors (PDE6A, CNGA1, RHO), cone 
photoreceptors (ARR3, GNGT2, GUCA1C), Müller glia (RLBP1/CRALBP), retinal astrocytes 
(GFAP), microglia (HLA-DPA1, HLA-DPB1, HLA-DRA), bipolar cells (VSX2, OTX2), retinal 
ganglion cells (NEFL, GAP43, SNCG), amacrine cells (GAD1, CALB1, CHAT) and horizontal 
cells (ONECUT1, ONECUT2). The expression of selected marker genes are displayed in t-SNE 
plots (Figure 1E). Two clusters (C5 and C14) express markers from multiple retinal cell types 
(Supplementary figure 5), thus we were unable to assign cell identities to these 2 clusters and 
they were excluded from further analysis. Interestingly, our data demonstrated multiple 
transcriptionally distinct clusters within the rod photoreceptors (6 clusters) and bipolar cells (3 
clusters). In contrast, only one cluster was detected for cone photoreceptors, Müller glia, retinal 

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 24, 2018. ; https://doi.org/10.1101/425223doi: bioRxiv preprint 

https://doi.org/10.1101/425223
http://creativecommons.org/licenses/by-nc/4.0/


 
 
 
 

Page 5 

ganglion cells, horizontal cells, amacrine cells, retinal astrocytes and microglia respectively. 
Correlation analysis confirmed the similarity between clusters within the same cell type (Figure 
1F). As expected, we observed high correlations between the expression levels of transcripts 
within photoreceptor cell types (rod and cones), as well as glial cells (retinal astrocytes and 
Müller glia) and other retinal neurons (bipolar cells, retinal ganglion cells, amacrine cells and 
horizontal cells). The composition of cell populations across our three donors show that the 
majority of the cells in human neural retina were rod photoreceptors (~74%), followed by bipolar 
cells (~10%) and Müller glia (~3%) (Figure 1D). These results are similar to those reported in 
mice, where rod photoreceptors and bipolar cells form the majority of cells in the retina 13,25.  
 
To identify genes whose expression was specific to a given cell type, we performed differential 
gene expression analysis to identify marker genes for each cluster (Figure 1E). We subsequently 
extracted membrane-related proteins from gene ontology annotations to identify surface markers, 
which can be used to develop immuno-based methods to isolate primary culture of individual 
retinal cell types.  Figure 1H lists the identified surface markers for individual retinal cell types. 
We also assessed the gene expression of a panel of commonly known markers in amacrine cells 
and bipolar cells (Supplementary figure 6-7), as well as a panel of markers for subtype 
identification recently identified in mouse scRNA-seq studies 13,14. In summary, we profiled the 
transcriptomes of all major cell types in the human retina in the presented dataset. Due to their 
abundance, for the subsequent analyses we focused on the photoreceptors and glial cells.  
 
Presence of heterogeneous rod photoreceptor subpopulations in the human retina 
 
We profiled 14,759 rod photoreceptors and showed that they can be classified into six 
populations with distinct gene expressions (c0, c1, c2, c3, c4, c7; Supplementary table 3). We 
assessed these six clusters with a panel of 7 known rod or pan-photoreceptor markers (Figure 
2A). Our results suggest differential expression patterns among the 7 markers. All 7 rod markers  
are highly abundant, consistent with previous scRNA-seq studies of mouse and human retina 
13,15. The 7 markers showed differential expression patterns in the 6 identified rod photoreceptor 
clusters. In particular, RHO, GNGT1 and SAG have the highest levels of rod marker detected, 
followed by NRL, ROM1, GNAT1 and CNGA1. We also noted that ROM1 is expressed in both 
rod and cone photoreceptors, which is consistent with previous studies 26. Importantly, many rod 
photoreceptor clusters consist of a majority of cells from a single donor (>90% for c0, c2, c4 and 
>80% for c1, c7; Figure 2B). It is possible that this observation is due to the systematic biases 
such as differences in tissue retrieval time, age of donors, or other sample preparation variation. 
The exception is cluster c3, which is well represented by all three donors.   
 
Taking into account donor variations, we set out to further define and classify the difference 
between rod photoreceptor clusters. We observed that MALAT1, a long non-coding RNA that 
plays a role in retinal maintenance and diseases 27, was robustly expressed in ~66% of the 
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identified rod photoreceptors (9,750 cells) whilst the rest had little to no expression (5,009 cells; 
Figure 2C, Supplementary figure 8A). As such, we utilized MALAT1 expression as a 
discriminator and investigated differences between rod photoreceptors with high expression 
(MALAT1-hi; > 4.68 normalised transcripts per cell) or low expression (MALAT1-lo; < 4.68 
normalised transcripts per cell). MALAT1-hi and -lo rod photoreceptors were consistently found 
in each donor and library samples, with MALAT1-hi accounting for ~66%, 90% and 36% of the 
rods in donors #1, #2 and #3 respectively (Figure 2D). To further validate this finding, we 
performed RNA in situ hybridization in another three donor retinal samples. We consistently 
observed the presence of MALAT1-hi and -lo subpopulations of rod photoreceptors in all retinal 
samples (Figure 2E, Supplementary figure 9). Together, these results showed the presence of 
heterogeneity within rod photoreceptors that can be distinguished by MALAT1 expression .  
 
We pooled all rod photoreceptors together (Clusters c0-4, c7) and performed t-SNE and 
differential gene expression assessment between MALAT1-hi and -lo rod photoreceptors. 
Stochastic embedding displayed MALAT1 expression as conforming well to cell-to-cell 
neighborhood clustering and delineation (Supplementary figure 8B), with MALAT1-hi cells up-
regulated for nuclear components and transcription factors such as AHI1 which is important for 
photoreceptor outer segment development 28, DDB1 which has been described to play a role in 
eye development 29, and DDX17 which is a member of the DEAD box protein family of RNA 
helicases that function as transcriptional co-regulator 30; Figure 2E). In addition, the MALAT1-hi 
cells also showed increased expression of PDE6A, RP1 and CNGB1, which are the genetic 
causes of retinitis pigmentosa when mutated 31. Further analysis indicated that many genes 
involved in the phototransduction pathways are enriched in MALAT1-hi rod photoreceptors 
(Figure 2F). On the other hand, MALAT1-lo cells showed up-regulation of the transcription 
factor NRL which is essential for rod photoreceptor specification 32, as well as mitochondrial 
genes (e.g. MT-CO3, MT-ND4, MT-ND3, MT-CYB), ribosomal genes (e.g. RPL36, RPL39, 
RPL143) and other phototransduction genes (PDE6G, GNGT1; Figure 2E). Taken together our 
results suggest the presence of two rod photoreceptor subpopulations in human retina that can be 
distinguished by MALAT1 expression levels. 
 
Transcriptome profile of cone subtypes in the human retina 
 
We detected 564 cone photoreceptor cells in our scRNA-seq data, which are distinguishable 
from the other cell types by the expression of the cone marker genes ARR3, CNBG3, GNAT2, 
GNGT2, GRK7, GUCA1C, PDE6C, PDE6H, OPN1LW, RXRG and THRB (Figure 3A). All 11 
marker genes analysed show specific expression patterns in the cone cluster (C10). We set out to 
further assess the composition of the cone cluster. In humans, there are three identified subtypes 
of cone photoreceptor which can be distinguished by expression of a sole opsin gene: OPN1SW-
positive S-cones, OPN1MW-positive M-cones and OPN1LW-positive L-cones respond 
preferentially to shorter, medium and longer wavelengths responsible for colour vision 33. 
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Notably OPN1LW and OPN1MW exhibit ~98% sequence homology and are unable to be 
distinguished by 3’ sequencing utilised in this study. By quantifying the number of cells that 
express the opsin genes, our results showed that the majority of the cone cluster are L/M cones 
(73.22%) and S-cones in much lower proportion (3.19%, Figure 3B), at levels consistent with 
those estimated by a previous adaptive optics and photo-bleaching study 33. As expected, the 
identified cone photoreceptors only express either OPN1SW or OPN1LW/MW (Figure 3C).  
 
To further study the molecular differences and identify molecular markers for the cone subtypes, 
we performed differential gene expression analysis to determine genes that can distinguish the 
cone subtypes. Our results identified a panel of genes that differentially marked S-cones (e.g. 
CCDC136, RAMP1, LY75, CADM3, TFPI2, CRHBP, RAB17, UPB1, RRAD, SLC12A1) and 
L/M-cones (e.g. THRB, KIF2A, LBH, PGP, CHRNA3, AHI1, LIMA1; Figure 3D). Together these 
results detailed the molecular profiles and identified marker genes that can distinguish the cone 
subtypes in human.   
 
Assessment of glial cells in human retina 
 
Next, we focused on two related glial cell types in the human retina, the Müller glia and the 
retinal astrocytes. Our scRNA-seq data has profiled a total of 2,723 Müller glia cells which 
classified into a single cluster (C9) and 49 retinal astrocytes which form a single cluster (C16). 
Figure 3E shows the expression of a panel of 9 commonly used markers for Müller glia and 
retinal astrocytes. Our results demonstrated that many of these markers are present in both 
Müller glia and retinal astrocytes at differential expression levels. VIM, GLUL and S100A1 
marked both Müller glia and retinal astrocytes at high expression levels. GFAP represents a 
reliable marker for retinal astrocytes, and its expression is consistent with a previous report 20. 
Notably, Müller glia are low in GFAP expression, indicating they are not in an activated state 
commonly caused by stresses and reactive gliosis 34. The S100B is also expressed in retinal 
astrocytes at varying levels but absent in Müller glia. Conversely, Müller glia can be 
distinguished from retinal astrocytes by high expression levels of RLBP1, and RGR to a lesser 
extent. Together these results provide insights into the differential expression patterns of known 
glial markers in Müller glia and retinal astrocytes in human.  
 
As glial cell proliferation has been linked to a range of pathological conditions including retinal 
gliosis and retinal injury 35, this provides a means of assessing the health of the profiled retinas. 
We assigned a cell cycle phase score to each cell using gene expression signatures for the G1, S, 
G2, and G2/M phases 36; Supplementary figure 10). We determined that most of the Müller glial 
cells expressed genes indicative of cells in G1 phase (75%), suggesting they are not proliferative. 
These results demonstrated the absence of hallmarks of gliosis/retinal injury and support the 
quality of the donor retinas profiled.  
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Using the human neural retina transcriptome atlas for benchmarking  
 
To demonstrate the use of our dataset as a benchmarking reference, we compared the scRNA-seq 
profiles of distinct cell types generated using alternative methods, including fetal human cone 
photoreceptors, human induced pluripotent stem cell derived-cone photoreceptors (hiPSC-cone; 
16, and a sample of adult human retina with 139 cells 15. Correlation analysis demonstrated that 
the adult human retina sample showed highest similarity to rod photoreceptor (0.63, 
Supplementary figure 11), which is expected as rod photoreceptors represent the majority of the 
cells in the retina. Interestingly, our results also showed that the transcriptome of hiPSC-cone 
after 15 weeks of differentiation exhibited the highest similarity to cone photoreceptors, and low 
similarities to all other retinal cell types (Figure 4A, Supplementary figure 11). In particular, 
hiPSC-cone showed high similarities to fetal cone photoreceptors and adult cone photoreceptors 
(0.71 and 0.61 respectively), and a much lower similarity to adult rod photoreceptors (0.33). In 
support of this, principal component analysis demonstrated that the hiPSC-cone are closer to 
fetal cone photoreceptors, rather than the adult counterpart (Figure 4B, Supplementary figure 
11). These results confirmed direct differentiation of hiPSCs to cone photoreceptors with good 
quality, and the hiPSC-derived cone photoreceptors are closer to fetal origin compared to their 
adult counterpart.  
 
In another benchmarking example, we set out to assess the potential differences between in vitro 
cell lines compared to adult cells in vivo. In this regard, we compared the spontaneously 
immortalised human Müller glia cell line MIO-M1 37 to all the retinal cell types identified in our 
dataset. Using scRNA-seq, we profiled 7,150 MIO-M1 cells with 23,987 reads per cell post-
normalization corresponding to 3,421 detected genes. t-SNE analysis showed that the MIO-M1 
cells formed one cluster that is transcriptionally distinct from all retina cell types identified in the 
human neural retina dataset (Fig 4C, Supplementary figure 11). Correlation analysis showed that 
MIO-M1 displayed similarities to retinal glial cells, with higher similarity to astrocytes 
compared to Müller glia (0.63 and 0.46 respectively, Fig 4D). In particular, we identified that 
MIO-M1 express high levels of thymosin beta 4 gene (TMSB4X), which has been linked to 
glioma malignancy 38, as well as the calcyclin gene (S100A6), which is implicated in macular or 
cone associated diseases 39; Figure 4E). Together, our results highlighted the similarities and 
differences of MIO-M1 to adult retinal glial cells in human.   
 
Discussion 
 
The data presented here describe the generation of a detailed reference transcriptome atlas of the 
human neural retina at the single-cell level. The establishment of reference transcriptome maps 
for individual cell types in the retina provide unprecedented insights into the signals that define 
retinal cell identity and advance our understanding of the retina. This human neural retina 
transcriptome data can be used as a benchmark to assess the quality and maturity of pluripotent 
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stem cell-derived retinal cells, such as retinal ganglion cells 40–42 and photoreceptors 43. We also 
confirmed that a relatively low level of sequencing depth (~40,232 reads per cell) is sufficient for 
identification and classification of cell types in a complex tissue like retina. 
 
One of the most interesting observations is the presence of heterogeneous subpopulations within 
known retinal cell types. This highlights the sensitivity of using a scRNA-seq approach to 
capture and classify retinal cell types in an unbiased manner. In particular, our results 
demonstrated the presence of two subpopulations of rod photoreceptor that display differential 
expression of MALAT1, a finding that has not previously been reported in human or any other 
species. Previous studies have demonstrated a role of MALAT1 in regulating the survival of 
retinal ganglion cells 44 and in pathogenesis of retinal pigment epithelium cells 45. Our study 
highlighted that with newly achieved sequencing depth and resolution, heterogeneity can be 
observed in what were previously thought to be homogeneous cell populations. Indeed, previous 
studies support the existence of two subpopulations of rod photoreceptors in mouse. Tsukamoto 
et al. demonstrated that a rod subpopulation forms synaptic contacts with cone bipolar cells, 
whereas another subpopulation forms synapses with rod bipolar cells 46. More recently, Kim et 
al. showed the presence of two subpopulations in developing mouse rod photoreceptors, with 
one subpopulation derived from S-cones during development 47. A key factor in regulating cone-
to-rod transition is the MAF family transcription factor NRL, where its presence is essential for 
rod specification and its absence lead to cone specification during development 32. Interestingly, 
our data showed that NRL expression is significantly higher in MALAT1-lo compared to 
MALAT1-hi rod subpopulations in human, which may indicate similarity to the two rod 
subpopulations found in mouse. Our results also indicated that genes related to phototransduction 
pathways are differentially expressed in MALAT1-lo and -hi rod photoreceptors, potentially 
suggesting functional differences of light responses in these two subpopulations. It is also 
possible that these two MALAT1 subpopulations reflect different cellular states rather than 
functionally distinct subpopulations. Future studies are warranted to investigate the role of 
MALAT1 in photoreceptors. Moreover, our transcriptome data revealed rod photoreceptor 
clusters specific to particular donor retinas, which could be due to the process of sample 
preparation or donor variations. Further studies with a larger number of donor samples will allow 
testing of the feasibility of using scRNA-seq to comprehensively analyse the retina in different 
individuals, such as assessment of the effects of aging or degenerative retinal diseases across 
different patients. 
 
Another outcome of this study is the assessment of biomarkers that allow identification of major 
retinal cell types and subtypes. Our results provide new insights into the cone photoreceptor 
subtypes in human. The cone subtypes are traditionally categorized based on expression of 
different opsins that allowed for cellular detection of light at various wavelength. While the S-
cones are structurally different from the other two cone subtypes, the L-cones and M-cones are 
structurally similar and difficult to distinguish from each other, except for the opsin they 
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expressed 48. We report the first description of the transcriptome profiles of S-cones in adult 
human and highlight novel marker genes that can be used to distinguish them. We also identified 
the transcriptome and novel marker genes for L/M-cones, however given the high sequence 
homology, particularly at the 3’ end, of OPN1MW and OPN1LW, we could not confidently 
separate L-cones and M-cones. In addition, we show that many of the known Müller glia 
markers are often expressed in retinal astrocytes, and we also provide a detailed assessment of 
commonly used retinal glial markers showing the differential expression pattern between Müller 
glia and retinal astrocytes.  
 
Finally, our results highlighted the use of this neural retina transcriptome atlas to benchmark 
retinal cells derived from stem cells or primary cultures. A major goal of pluripotent stem cell 
research is to derive cells that are similar to those in adults in vivo, which is important for 
development of stem cell disease models and regenerative medicine 49. Our analysis shows that 
hiPSC-derived cone photoreceptors are highly similar to both fetal and adult cones in 
comparison with all other major retinal cell types. We show that hiPSC-derived cells are more 
fetal-like than adult-like, which is consistent with other studies 50,51. We also benchmark a 
commonly used Müller glia cell line MIO-M1. Our results showed that while this cell line 
exhibits similarities to adult retinal glial cells, there are also some differences between MIO-M1 
and adult Müller glia, such as high expression of the glioma-related gene thymosin beta4 
(TMSB4X) in MIO-M1. Previous reports have also described differences in gene expression in 
MIO-M1 to Müller glia, and showed that MIO-M1 express markers for post-mitotic retinal 
neurons and neural stem cells 37,52. These results highlighted the potential effects of prolonged in 
vitro culture of primary retinal cells. Collectively, we showed that the human neural retina 
transcriptome atlas provides an important benchmarking resource to assess the quality of derived 
retinal cells, which would have implications for stem cell and neuroscience research.  
 
One of the limitations of this study is the finite number of profiled cell types less frequently 
represented in the retina such as the amacrine cells and the retinal ganglion cells, which are 
known to be highly complex. The presented dataset is limited in power to accurately identify 
differences in the transcriptomes of the subtypes in amacrine and retinal ganglion cells. With the 
identification of surface markers for these cell types in this study, this work lays the foundation 
for future research using selection and enrichment 14 of these and other cell types (such as 
horizontal cells or retinal microglia) to improve the resolution of the human neural retina 
transcriptome atlas. Another limitation is the use of 3’ gene expression profiling, which presents 
a challenge for distinguishing L-cones and M-cones. Given the high sequence homology of  
OPN1LW and OPN1MW (98%), future studies using full-length mRNA sequencing of single 
cone photoreceptor cells would provide greater distinction and classification accuracy of the 
OPN1MW and OPN1LW-positive cells.  
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This study describes the transcriptome of human neural retina at a single cell level and is the first 
to identify the transcriptome of all major human retinal cell types. Our findings shed light on the 
molecular differences between subpopulations within the rod photoreceptors and the cone 
photoreceptors. The presented dataset provides an important roadmap to define the genetic 
signals in major cell types in the human retina and can be used as a benchmark to assess the 
quality of stem cell-derived cells or primary retinal cells.  
 
Online Methods 
 
Human retina collection 
Collection of patient samples was approved by the Human Research Ethics committee of the 
Royal Victorian Eye and Ear Hospital (HREC13/1151H) and Save Sight Institute (16/282) and 
carried out in accordance with the approved guidelines. For scRNA-seq, post-mortem eye globes 
were collected by the Lions Eye Donation Service (Royal Victorian Eye and Ear Hospital) for 
donor cornea transplantation. The remaining eye globes were used for dissection to extract the 
neural retina. The lens, iris and vitreous were removed and the choroid/RPE layers were 
excluded from the sample collection. Following extraction, the neural retinal samples were 
dissociated and processed for scRNA-seq right away. Neural retina samples were dissociated 
into single cells in dissociation solution (2mg/ml papain, 120 Units/ml DNase I) for 15 minutes. 
The dissociated neural retina was filtered to ensure single cell suspension using a 30µm MACS 
Smart Strainer (Miltenyi). For sample from Patient SC, the Dead Cell Removal kit (Miltenyi) 
was utilised to remove dead cells prior to scRNA-seq. However, in our hands we found that the 
Dead Cell Removal kit only had a modest improvement in the cell viability (~8% improvement, 
data not shown).  
 
Single cell RNA sequencing (scRNA-seq) 
Single cells from three independent neural retina samples were captured in five batches using the 
10X Chromium system (10X Genomics). The cells were partitioned into gel bead�in�emulsions 
and barcoded cDNA libraries, then prepared using the single cell 3’ mRNA kit (V2; 10X 
Genomics). Single cell libraries were sequenced in 100bp paired-end configuration using an 
Illumina Hi-Seq 2500 at the Australian Genome Research Facility.   
  
Bioinformatics processing 
The 10X Genomics cellranger pipeline (version 2.1.0; 53 was used to generate fastq files from 
raw Illumina BCL files (mkfastq) and aligned to the human genome reference GRCh38 using the 
included STAR alignment software 54. Next, cellranger count was used to generate read count 
matrices. To overcome the stringent threshold implemented in cellranger that discards real cells 
under certain conditions, such as populations of cells with a low RNA content, the --force-cells 
parameter was set to 3000 for the donor 1 library and 5000 for donor 2 and 3 libraries. Using the 
barcode rank plot, these parameters were selected to increase the number of detected cells for 
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further analysis. The cellranger aggregation function (aggr) was used to combine the 5 libraries 
and normalize the between-sample library size differences. 
 
Data were imported into the Seurat single cell analysis software (v2.0.1; 
https://github.com/satijalab/seurat). Quality control of sequenced libraries was performed to 
remove outlier cells and genes. Cells with 200-2500 detected genes and expressing < 10% 
mitochondrial genes were retained. Genes were retained in the data if they were expressed in ≥ 3 
cells. Additional cell-cell normalization was performed using the LogNormalize method, and 
inherent variation caused by mitochondrial gene expression and the number of unique molecular 
identifiers (UMIs) per cell was regressed out. 
 
Clustering was performed on PCA-reduced expression data using the top 20 principal 
components using the graph-based shared nearest neighbour method (SNN) which calculates the 
neighborhood overlap (Jaccard index) between every cell and its nearest neighbors. 
 
Prediction of the cell cycle phase of individual retinal cells was performed in Seurat using cell 
cycle-specific expression data 36. Briefly, genetic markers associated with G2/M and S phase 
were used to assign cell scores, and cells expressing neither of the G2/M or S phase markers 
were classified as being in G1 phase. 
 
Sequencing data for fetal (scRNA-seq) and hiPSC-derived cone photoreceptors (bulk RNA-seq) 
was obtained from ArrayExpress using the accession numbers E-MTAB-6057 and E-MTAB-
6058 16. Gene expression matrices were generated from the fastq files using the STAR aligner 
software. scRNA-seq data from 72 cells were quality-controlled, filtered and then normalised 
with the scran algorithm 55 as described 16, using the ascend (https://github.com/IMB-
Computational-Genomics-Lab/ascend) package in R, which resulted in 63 high quality single 
cell transcriptomes. Bulk RNA-seq data generated from 6 hiPSC-derived cone photoreceptor 
cultures was filtered such that each gene was represented by at least 10 counts in all samples and 
normalisation was performed in edgeR using the trimmed mean of M method 56. Pre-processed 
scRNA-seq data generated from adult retina 15 was obtained from the Gene Expression Omnibus 
(GSE98556). 
 
Identification of retinal cell types 
Cell types were classified using differential expression analysis, which compared each cluster to 
all others combined using the Wilcoxon method in Seurat to identify cluster-specific marker 
genes. Each retained marker gene was expressed in a minimum of 25% of cells and at a 
minimum log2 fold change threshold of 0.25. 
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In paired cluster analyses, differentially expressed genes were considered significant if the 
adjusted p-value was less than 0.01 (Benjamini-Hochberg correction for multiple testing) and the 
absolute log2 expression fold change was ≥ 0.5. 
 
Mapping cells between subpopulations in different samples 
To compare subpopulations identified in the merged dataset (5 samples), we applied scGPS 
(single cell Global Projection between Subpopulations), a machine learning procedure to select 
optimal gene predictors and to build prediction models that can estimate between-subpopulation 
transition scores. The transition scores are the probability of cells from one subpopulation that 
are in the same class with the cells in the other subpopulation. The scores, therefore, estimate the 
similarity between any two subpopulations. Here, we compared three main subpopulations from 
sample Retina 2A with all subpopulations in the sample Retina 2B. The source code of the 
scGPS method is available with open-access (https://github.com/IMB-Computational-Genomics-
Lab/scGPS).  
 
Correlation of scRNA-seq data with retinal cell types 
The mean expression levels of cells in each cluster were calculated and used to calculate 
Pearson’s correlations in a pairwise manner with each of the other clusters and results were 
deemed significant if the correlation P-value was less than 0.01. 
 
Pathway analysis 
Gene enrichment analysis was performed using Enrichr 57. The combined score, computed by 
taking the log of p-value from the Fisher exact test and multiplying by the z-score of the 
deviation of the expected rank, was used to determine the enrichment ranking for pathways, 
othologies, transcription factor network and protein network analysis.  
 
Fluorescent in situ hybridization 
Donor retinas were first dissected from the eye cup. The retinal tissues were subjected to 30% 
sucrose cryoprotection and were then frozen in -80°C. Sections were cut on a cryostat (Leica 
CM3050S) and mounted on glass slides (SuperFrostPlus).  The retinal samples were fixed in 
3.7% (vol/vol) formaldehyde and hybridized with Stellaris RNA FISH probes (Biosearch 
Technologies) against MALAT1 labeled with Quasar 570, following the manufacturer’s 
instructions. Briefly, samples were incubated with Quasar 570-labeled probes at 125nM in 
hybridization buffer and hybridized 5 hours at 37°C, followed by nuclear counterstain using 
DAPI. The samples are imaged using a ZEISS confocal laser-scanning microscope (ZEISS, 
LSM700). 
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Figure Legends 
 
Figure 1: Single cell transcriptome atlas for human neural retina. t-SNE visualization of 
20,009 human retinal cells colored by A) annotation of 18 transcriptionally distinct clusters (C0-
C17) and B) their distribution in 3 donor retina samples. C) Feature expression heatmap showing 
expression patterns of major retinal class markers across 16 retinal cell clusters. The size of each 
circle depicts the percentage of cells expressing the marker within the cluster. Brown colour 
indicates ≥10 nTrans (number of transcripts). D) Fraction of major cell types in human retina 
were estimated by the cell number in each annotated clusters and compared to previous data in 
mouse retina obtained by microscopy techniques 25 and scRNA-seq 13. E) t-SNE plots showing 
expression of a set of selected marker genes for major retinal classes. F) Correlation matrix for 
the identified 18 clusters. The upper triangle depicts the z-value for correlation and the lower 
triangle depicts the correlation coefficient for gene expression in clusters.  G) Heatmap of 
differentially expressed genes used to classify cell types for each cluster compared to all other 
clusters for the 18 retinal cell clusters. The rows correspond to top 10 genes most selectively 
upregulated in individual clusters (p< 0.01, Benjamini-Hochberg correction) and the columns 
show individual cells ordered by cluster (C0-C17). H) Membrane-related markers were extracted 
from GO annotation using the differentially expressed genes in the major human retinal cell 
types.   
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Figure 2: Identification of MALAT1-hi and MALAT1-lo subpopulations of rod 
photoreceptors. A) Feature expression heatmap of a panel of known marker genes for rod 
photoreceptors across the identified 16 retinal cell clusters. Brown colour indicates ≥100 nTrans 
(number of transcripts).B) Representation of the three donor retina samples in the six rod 
photoreceptor clusters. C) Violin plot showing high or low expression levels of MALAT1 in rod 
photoreceptor clusters. D) Distribution of rod photoreceptor populations with high MALAT1 
expression (MALAT1-hi) or low MALAT1 expression (MALAT1-lo) in three donor retina 
samples. E) Fluorescent in situ hybridization analysis of human peripheral retina showing 
heterogeneous levels of MALAT1 expression in the rod photoreceptors located in the outer 
nuclear layer (ONL). INL: inner nuclear layer; OPL: outer plexiform layer. Scale bar = 20µm. F) 
Top 30 differentially expressing genes in rod photoreceptors with high (MALAT1-hi) or low 
MALAT1 expression levels (MALAT1-lo) ranked by logistic regression score. G) Gene 
enrichment analysis of 100 genes differentially up-regulated in high MALAT1 expressing cells 
(MALAT1-hi) compared to low MALAT1 expressing cells (MALAT1-lo) for metabolic and 
signaling pathway analysis (Reactome, Panther, Biocarta, KEGG, Wikipathways). The bars 
depict the combined score of the log of p-value from the Fisher exact test and the z-score of the 
deviation of the expected rank 57.  
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Figure 3: Assessment of cone photoreceptor and glial cell types in human retina . A) Feature 
expression heatmap showing the expression of 11 known cone photoreceptor markers across 16 
retinal cell clusters. Brown colour indicates ≥10 nTrans (number of transcripts). B) The 
proportion of cone photoreceptor subtypes identified in C10 cluster, based on expression of 
OPN1LW / OPN1MW (L/M cones) and  OPN1SW (S cones). C) Scatter plots showing expression 
of OPN1LW/OPN1MW or OPN1SW in individual cone photoreceptors for C10 cluster. The 
colour depicts expression level for OPN1LW/OPN1MW in individual cells. D) Heatmap of top 
20 differentially expressed genes between L/M cones and S cones. The colour depicts normalised 
gene expression (z-score capped at 2.5). E) Expression pattern of glial markers in Muller glia 
(C9) and retinal astrocytes (C16). x-axis depicts normalized transcript levels. 
 
 
 

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 24, 2018. ; https://doi.org/10.1101/425223doi: bioRxiv preprint 

https://doi.org/10.1101/425223
http://creativecommons.org/licenses/by-nc/4.0/


 
 
 
 

Page 23

 

23 

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 24, 2018. ; https://doi.org/10.1101/425223doi: bioRxiv preprint 

https://doi.org/10.1101/425223
http://creativecommons.org/licenses/by-nc/4.0/


 
 
 
 

Page 24 

Figure 4: Benchmarking retinal cells using the human neural retina atlas. A) Correlation 
analysis of scRNA-seq data of hiPSC-derived cone photoreceptors (week 15) against fetal cone 
photoreceptors 16, as well as adult cone and rod photoreceptors from this human neural retina 
atlas. B) Principal component analysis to assess transcriptome similarity of hiPSC-derived cone 
photoreceptors to fetal and adult photoreceptors. C) t-SNE analysis of the human MG cell line 
MIO-M1 with the retinal cell types identified in this human neural retina atlas. D) Correlation 
analysis of MIO-M1 with all major human retinal cell types. E) Top ranked differentially 
expressed genes identified in MIO-M1 compared to other retinal cell types based on logistic 
regression score.  
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Supplementary figures and tables: 
 
Supplementary table 1: Details for donor retina samples. 
  

Retina Patient 
ID 

Eye 
bulb 

Sex Age 
(years) 

Retrieval 
time (hrs) 

Ocular 
complications 

Assay scRNA-seq 
Library 

Targeted 
cell 

number 

Captured cell 
number after 

QC 

1 17-010 Right F 80 11.5 Cataract on left 
eye 

scRNAseq A 4000 2122 

2 SC Left M 42 6.2 - scRNAseq A 10000 4449 

        B 10000 4528 

3 17-011 Right F 53 14.5 - scRNAseq A 10000 4518 

        B 10000 4392 

4 16033 Left M 73 12 - FISH    

5 16061 Left M 79 25 - FISH    

6 16088 Left F 61 22 - FISH    

  
  
 
  
  

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 24, 2018. ; https://doi.org/10.1101/425223doi: bioRxiv preprint 

https://doi.org/10.1101/425223
http://creativecommons.org/licenses/by-nc/4.0/


 
 
 
 

Page 27 

Supplementary table 2: Breakdown of cell number assigned to individual donor libraries. The red 
highlight the number of cells assigned in the largest clusters, showing similar cell assignment to 
clusters between 2 replicates. 
  

Clusters Retina 1 Retina 2A Retina 2B Retina 3A Retina 3B 

0 58 1927 1924 103 66 

1 307 33 30 1419 1330 

2 3 1275 1299 9 9 

3 172 413 425 447 670 

4 74 23 46 999 864 

5 232 59 74 398 384 

6 156 170 139 273 264 

7 737 6 8 42 41 

8 97 98 124 208 190 

9 106 184 189 93 86 

10 33 83 80 180 188 

11 42 83 68 93 77 

12 55 35 35 108 82 

13 18 20 40 58 51 

14 14 7 11 62 71 

15 11 4 12 13 9 

16 5 8 11 9 9 

17 2 21 13 4 1 
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Supplementary table 3: List of top 10 differential gene expression in rod photoreceptor clusters 
  

Cluster Top 10 differential genes 

Rod PR C0 NR2E3, ARL4D, AHI1, OSBP2, EPB41L2, RP1, RIMS2, 
FAM161A, SCAPER, SORBS2 

Rod PR C1 IMPG1, RBP3, PDE6G, COX6A1, CPE, RP11-184I16.4, RP11-
6E9.5, RP11-e9E3.3, SYCE1L, ATP1A3 

Rod PR C2 HSP90AA1, RPS4Y1, SAG, ALDOC, RBP3, ARL4D, CLUL1, 
CKB, KCNV2, ELOVL4 

Rod PR C3 MT-ND3, MT-ATP6, MT-ND2, MT-CO3, MT-ND5, MT-ND4, MT-
CYB, MT-ND1, MT-CO2, MT-ND4L 

Rod PR C4 MYO9A, XIST, NTM, NR2E3, RP11-798M19.6, ZMYND19, 
OVOS2, LENG8, LINC00599, BCO2 

Rod PR C7 LENG8, HSPA1B, PPEF2, HSPA1A, XIST, MPP4, DMD, OVOS2, 
ABCA4, JUN 
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Supplementary figure 1: Correlation of cell viability of post-mortem human neural retina with A) 
time of tissue retrieval after death, and B) age of donor.  
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Supplementary figure 2: Heatmaps of the top 12 principal components explaining the primary
sources of heterogeneity in the retinal scRNA-seq data. Cells and genes are ordered by PCA
score calculated by Seurat. The genes driving the majority of the variance are determined using
the top 500 cells. 
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Supplementary figure 3: Distribution of frequency of the 18 clusters (C0-C17) in individual
single cell libraries ordered by A) individual single cell library or B) identified clusters. 
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Supplementary figure 4: Prediction of cluster relationship between library technical replicates in
Retina 1 and Retina 2. The Sankey plot shows edges connecting clusters, with larger edge
indicating higher similarity, ranging from 0 to 100%. The size of the edge was quantitatively
estimated by implementing scGPS modelling approach for pairs of clusters, as described in the
method section. The three largest clusters in Retina 2A were compared with all clusters in Retina
2B. Consistently we see C2 in Retina 2A is most similar to C2 in Retina 2B. The same trend is
seen for C0 and C3. These results demonstrated that the variation between library replicates is
minimal in our dataset, and that the clusters determined from the merged dataset were consistent
across samples. We also found higher similarities among Rod photoreceptor clusters (C0, 2, 3  in
Retina 2A with clusters C0, 2, 4, 7 in Retina 2B) than compared with other clusters. 
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Supplementary figure 5: Feature expression heatmap showing expression patterns of A) rod

photoreceptor markers, B) cone photoreceptor markers and C) other major retinal class markers

(MG: RLBP1; astrocytes: GFAP; microglia: HLA-DPA1, HLA-DPB1, HLA-DRA; Bipolar

cells: VSX2, OTX2; retinal ganglion cells: NEFL, GAP43, SNCG; Amacrine cells: GAD1,

CALB1; Horizontal cells: ONECUT1, ONECUT2) in unassigned clusters C14 and C5. The size

of each circle depicts the percentage of cells expressing the marker within the cluster. 
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Supplementary figure 6: t-SNE plots showing gene expression in  the compiled human neural
retina transcriptome atlas (20,009 cells) for A) 4 commonly used bipolar markers and B) 14 new
markers for individual bipolar subtypes identified in previous mouse scRNA-seq study 14. 
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Supplementary figure 7: t-SNE plots showing gene expression in  the compiled human retina
transcriptome atlas (20,009 cells) for A) 10 commonly used amacrine markers and B) new
markers for amacrine subtypes identified in previous mouse scRNA-seq study 13. 
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Supplementary figure 8: A) t-SNE plot showing MALAT1 expression across all retinal cells. Blue
colour indicate normalised gene expression level. B) The six rod photoreceptor clusters were
pooled together for t-SNE clustering analysis and showed that the clusters can be categorized by
high levels (red/orange) or low levels (blue) of MALAT1 expression. 
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Supplementary figure 9: Fluorescent in situ hybridization showing expression of MALAT1 in
three donor retina samples (Retina 4-6). Green arrows highlight rod photoreceptors with low
levels of MALAT1 in Retina 4 and 6, white arrows highlight rod photoreceptors with high levels
of MALAT1  in Retina 5. Scale bars = 20µm 
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Supplementary figure 10: Cell cycle scores across major retinal cell clusters showing the
likelihood for the proportion of cells in G1, S or G2/M phases.  
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Supplementary figure 11: Correlation matrix to benchmark hiPSC-derived cone photoreceptors
(week 15, week 20; 16, fetal cone photoreceptors 16, adult retina 15 and the human Müller glia cell
line MIO-M1 against all retinal cell types identified in this human neural retina atlas. 
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