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Abstract

Summary: Microbes differ in prevalence across environments, but in most cases the causes remain opaque. Phy-
logenetic comparative methods have emerged as powerful, specific methods to identify microbial genes underlying
differences in community composition. However, to apply these methods currently requires computational exper-
tise and sequenced isolates or shotgun metagenomes, limiting their wider adoption. We present phylogenize, a web
server that allows researchers to apply phylogenetic regression to 16S amplicon as well as shotgun sequencing data
and to visualize results. Using data from the Human Microbiome Project, we show that phylogenize draws similar
conclusions from 16S and from shotgun sequencing. Additionally, we apply phylogenize to 16S data from the Earth
Microbiome Project, revealing both known and candidate pathways involved in plant colonization. phylogenize has
broad applicability to the analysis of both human-associated and environmental microbiomes.

Availability: phylogenize is available at https://phylogenize.org with source code available at https://bitbucket.

org/pbradz/phylogenize.
Contact: kpollard@gladstone.ucsf.edu

Introduction

Shotgun and amplicon sequencing have enabled pre-
viously intractable microbial communities to be charac-
terized and compared. However, while these communi-
ties have the potential to yield clinical (Moayyedi et al.,
2015) and agricultural tools (Mendes et al, 2011), trans-
lating microbe-to-environment correlations into gene-
level mechanisms remains difficult.

Phylogenetic regression is a powerful, underutilized
technique (Washburne et al., 2018) that can help inter-
pret these correlations by accounting for the confounder
of common descent. Previously, we demonstrated that
applying this technique to shotgun metagenomic data
can identify microbial genes linked to human body sites
without the high false-positive rate of standard regres-
sion (Bradley et al., 2018).

Here, we present phylogenize, a web tool that makes
this technique available to researchers without specific
expertise in this area by allowing them to upload and an-
alyze their own data. We also provide the source code of
phylogenize, allowing more experienced users to run it
locally.

In addition to shotgun metagenomic data, phyloge-
nize also allows researchers to analyze abundances de-
rived from 16S amplicon sequencing. 16S data is much

less expensive to generate and already exists for many
environments, allowing researchers to get more from
their data.

Overview

phylogenize (Figure 1) takes the following basic in-
puts. First, users provide a table of taxon abundances
across a set of samples. These taxa should be ASVs
from DADAZ2 (Callahan et al, 2016) or Deblur (Amir
et al., 2017) (for 16S data) or MIDAS species (for shotgun
data). Second, users provide a table of sample annota-
tions matching sample IDs to environments and datasets.
The abundances and sample annotations can be provided
separately or as a single BIOM-format (McDonald et al.,
2012) file.

Next, the user selects one environment out of those
represented in the sample annotations. Finally, the user
chooses whether to link gene presence to prevalence (the
frequency a microbe is observed in the selected environ-
ment) or specificity (how specific a microbe is for the
chosen environment compared to all others: see Bradley
et al,, 2013).

phylogenize uses the fast mapper BURST (Al-Ghalith
and Knights, 2017) to map sense or anti-sense ASVs to
individual PATRIC genomes (Wattam et al., 2014), using
a cutoff of 98.5% nucleotide identity (Rodriguez-R et al,
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2018), then matches these genomes to MIDAS species
(which are clusters of PATRIC genomes). Reads for se-
quences mapping to the same species are summed within
samples.

The web front-end for phylogenize is written in
Python using the Flask framework with a Beanstalk-
based queueing system. For each job, phylogenize uses
RMarkdown (Allaire et al., 2018) and knitr (Xie, 2014) to
generate an HTML report. This report includes interac-
tive trees showing the phenotype’s phylogenetic distri-
bution, heatmaps of significantly positively-associated
genes, and tables showing which SEED subsystems
(Overbeek et al., 2005) were significantly enriched at a
25% FDR. phylogenize also provides tab-delimited files
containing the calculated phenotype, p-values and effect
sizes for all FIGfams tested, and protein annotations for
the significant, positively-associated hits.

Example Applications

Human Microbiome Project comparison: We
first used phylogenize to associate gene presence-
absence with microbial prevalence in the gut. To do
so, we used 454 16S amplicon sequencing data from the
Human Microbiome Project (HMP) (Human Microbiome
Project Consortium, 2012). 6,577 samples from 192 in-
dividuals across 16 sites were downloaded from the Se-
quence Read Archive and denoised with DADA2 (Calla-
han et al., 2016). Reads were combined for all samples
from the same individual and site.

Previously, we performed a similar analysis using
HMP’s shotgun sequencing data (Bradley et al., 2018),
which we use here as a benchmark. Despite differ-
ences in read depth and technology, species prevalence
estimates obtained by mapping 16S ASVs to MIDAS
genomes were similar to those from shotgun sequenc-

ing (r = 0.6), and the effect sizes calculated for genes as- )

Figure 1: Schematic showing phylogenize pipeline. Dark gray indicates user-provided data or options; light gray
indicates data included in phylogenize.

sociated with gut prevalence were also broadly similar
(0.339 < r < 0.601, Figure S1). When we compared the
significantly-associated genes, we also observed shared
pathway enrichments, including for genes in the SEED
subsystems “Sporulation gene orphans” in Firmicutes
(Gshotgan = 2.7 x 10722, g1¢s = 0.019), and "Type III,
Type IV, Type VI, ESAT secretion systems” in Proteobac-
teria (Gshotgun = 1.69 x 107, qies = 2.23 x 107°).

Earth Microbiome Project: The Earth Microbiome
Project (EMP) (Thompson et al, 2017) comprises 16S
data sampled across many biomes and habitats. Us-
ing the balanced subset of 2,000 samples processed us-
ing Deblur (Amir et al, 2017), we calculated a speci-
ficity score for being plant-associated, as opposed to be-
ing animal-associated or free-living. phylogenize iden-
tified genes enriched in processes known to be relevant
to a plant-associated lifestyle, such as nitrogen fixation
(Mylona et al., 1995), the metabolism of opines (metabo-
lites whose biosynthesis in plants is induced by parasitic
Agrobacterium species (Schell et al, 1979)), and xylose
metabolism (xylose is a plant cell wall component: Liu
et al,, 2015).

Conclusion

Phylogenetic regression offers a computational way
to identify genes potentially involved in site coloniza-
tion, even for clinically or ecologically important mi-
crobes that are poorly characterized and/or experimen-
tally intractable. Previously, applying this method to
microbiome data required specialized computational ex-
pertise and either shotgun metagenomics data (Bradley
et al., 2018) or a large collection of sequenced isolates
(Levy et al, 2018). By making it significantly easier to
analyze either 16S or shotgun data with phylogenetic re-
gression, phylogenize expands the toolkit for researchers
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studying microbial communities.
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Figure S1: phylogenize makes similar inferences from 16S and shot-
gun data. On the x-axis are effect sizes of genes associated with gut preva-
lence using shotgun data from HMP; the y-axis has effect sizes derived from
454 16S data. Only genes significant at ¢ < 0.05 in at least one dataset are
shown.


https://doi.org/10.1101/425231
http://creativecommons.org/licenses/by/4.0/

	Introduction
	Overview
	Example Applications
	Conclusion

