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Abstract

Summary: Phylogenetic comparativemethods are powerful but presently under-utilizedways to identifymicrobial genes underlying
differences in community composition. These methods help to identify functionally important genes because they test for associations
beyond those expected when related microbes occupy similar environments. We present phylogenize, a pipeline with web, QIIME2, and
R interfaces that allows researchers to perform phylogenetic regression on 16S amplicon and shotgun sequencing data and to visualize
results. phylogenize applies broadly to both host-associated and environmental microbiomes. Using Human Microbiome Project and
Earth Microbiome Project data, we show that phylogenize draws similar conclusions from 16S versus shotgun sequencing and reveals
both known and candidate pathways associated with host colonization.
Availability: phylogenize is available at https://phylogenize.org and https://bitbucket.org/pbradz/phylogenize.
Contact: kpollard@gladstone.ucsf.edu

Introduction
Shotgun and amplicon sequencing allowpreviously intractable

microbial communities to be characterized and compared, but
translating these comparisons into gene-level mechanisms re-
mains difficult. Researchers typically correlate microbial gene
abundance with environments using metagenomes, either from
shotgun sequencing (Nayfach and Pollard, 2016) or imputed from
amplicon sequences (Langille et al., 2013; Aßhauer et al., 2015).
However, related microbes tend to both share genes and oc-
cupy similar environments, causing confounding. Phylogenetic
methods can correct for such confounding in metagenomics data
(Bradley et al., 2018), but are currently implemented only in
command-line, computationally intensive software.

We developed phylogenize, a pipeline allowing researchers
without specific expertise in phylogenetic regression to analyze
their owndatavia theweb, anRpackage (RCoreTeam,2017), or the
popular microbiomeworkflow tool QIIME2 (Bolyen et al., 2018). An
important innovation specific to phylogenize is that input data can
be shotgun metagenomes or 16S amplicon data, the latter being
lower-cost and available for more environments. Using these tax-
onomic profiles and sample environments (i.e., sources), the tool
returns genes associated with differences in community composi-
tion across environments.

Overview
Users provide phylogenize with taxon abundances and sample

annotations, in tabular or BIOM (McDonald et al., 2012) format.
Shotgun data should be mapped to MIDAS species (Nayfach et al.,
2016); amplicon data should be denoised to amplicon sequence
variants (ASVs) with DADA2 or Deblur. phylogenize uses BURST (Al-
Ghalith and Knights, 2017) to map ASVs to MIDAS species via indi-
vidual PATRIC genomes (Wattam et al., 2014), using a default cut-
off of 98.5% nucleotide identity (Rodriguez-R et al., 2018) and sum-

ming reads mapping to the same species. Taxa are linked to genes
using MIDAS and PATRIC, and then gene presence is tested for as-
sociation with one of two phenotypes: prevalence (frequency mi-
crobes are observed) or specificity (enrichment of microbes rela-
tive to other environments; see Bradley et al., 2018).

phylogenize is an R package with a QIIME2 wrapper written in
Pythonandaweb front-endwritten inPythonwith the Flask frame-
work (Ronacher, 2018) and a Beanstalk-based queueing system
(Rarick, 2014). phylogenize reports include interactive trees show-
ing the phenotype’s phylogenetic distribution, heatmaps of sig-
nificantly positively-associated genes, tables showing which SEED
subsystems (Overbeek et al., 2005) are significantly enriched, and
links to tab-delimited files containing complete results.

Example Applications
Human Microbiome Project

The Human Microbiome Project (HMP; Human Microbiome
Project Consortium, 2012) collected both 16S amplicon and shot-
gun sequences from16body sites on 192 individuals. Shotgundata
processing was previously described (Bradley et al., 2018). 6,577
amplicon samples were downloaded from the NCBI SRA and de-
noised with DADA2 (Callahan et al., 2016), combining reads from
the same individual and site. We ran phylogenize on both data
types to identify genes whose presence is associated with preva-
lence in the gut. Despite differing read depth and sequencing tech-
nology (454 versus Illumina), effect sizes for genes associated with
gut prevalence were similar for amplicon and shotgun (0.339 ≤
r ≤ 0.601) and similar pathways were enriched (Figure 1A).

Earth Microbiome Project
The Earth Microbiome Project (EMP) (Thompson et al., 2017)

comprises 16S data frommanybiomes andhabitats. Using the bal-
anced subset of 2,000 samples processed using Deblur (Amir et al.,
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Figure 1: A. Effect sizes from HMP shotgun (x-axis) versus 16S amplicon (y-axis) data are correlated. Genes with q < 0.05 in one or both analyses shown with their
Pearson correlation. Examples of SEED subsystems enriched for positively-associated genes with both data types include ”Sporulation gene orphans” in Firmicutes
(qshotgun = 2.7× 10−22, q16S = 0.019) and ”Type III, Type IV, Type VI, ESAT secretion systems” in Proteobacteria (qshotgun = 1.69× 10−11, q16S = 2.23× 10−6).
B. SEED enrichments in EMP data using phylogenize (x-axis; 61 subsystems) or a linear model (y-axis; 202 subsystems). Many shared subsystems are relevant to a plant-
associated lifestyle, such as nitrogen fixation (Mylona et al., 1995) and the metabolism of xylose (a pentose component of plant cell walls, Liu et al., 2015). Selected
enrichments labeled; full list in Supplemental Table 1.

2017), we ran phylogenize and linear models (no phylogenetic cor-
rection) to identify genes whose presence is specific to plant rhi-
zosphere compared to other environments. Linear models identi-
fied many more positively-associated genes (24,728 versus 7,490,
q ≤ 0.05), but these discoveries were less enriched for processes
known to be linked to plant rhizospheres (Figure 1B), suggesting
dilution by false positives, as previously seen in HMP shotgun data
and simulations (Bradley et al., 2018).

Conclusion
Manymicrobesof interest to clinicians, ecologists, andmicrobi-

ologists are poorly characterized or experimentally intractable. By
making it easier to analyze either 16S or shotgun data with more
precise statistical tools, phylogenize expands the toolkit for identi-
fyingmechanismsdrivingdifferences inmicrobial community com-
position.
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