
Modulation of tissue growth heterogeneity by responses to mechanical stress

Antoine Fruleux and Arezki Boudaoud∗

Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon,

UCB Lyon 1, INRA, CNRS, 46 Allée d’Italie, 69364 Lyon Cedex 07, France

(Dated: This is A20180906— September 24, 2018)

Morphogenesis often yields organs with robust size and shapes, whereas cell growth and defor-
mation feature significant spatio-temporal variability. Here, we investigate whether tissue responses
to mechanical signals contribute to resolve this apparent paradox. We built a model of growing
tissues made of fiber-like material, corresponding to the cytoskeleton or the extracellular matrix
of animals, or to the cell wall of plants, taking into account the synthesis and remodeling of this
fiber-like material, as well as the modulation of synthesis by isotropic and anisotropic response to
mechanical stress. Formally, our model describes an expanding, mechanoresponsive, nematic, and
active fluid. We show that mechanical responses buffer localized perturbations, with two possible
regimes - overdamped relaxation and underdamped relaxation, and the transition between the two
corresponds to a minimum value of the relaxation time. Whereas robustness of shapes suggests
that growth fluctuations are confined to small scales, our model yields growth fluctuations that have
long-range correlations. This indicates that growth fluctuations are a source of heterogeneity in
development. Nevertheless, we find that mechanical responses may dampen such fluctuations, with
a magnitude of anisotropic response that minimizes heterogeneity of tissue contours. We finally
discuss how our predictions might apply to the development of plants and animals. Altogether, our
results call for the systematic quantification of fluctuations in growing tissues.

Variability has emerged as an inherent feature of many
biological systems (1, 2), spanning molecular scales —
such as in cytoskeletal dynamics (3) — to tissular scales
— such as in organ expansion (4). For instance, cell
growth was found to be spatially heterogeneous (5–9),
cell cycle length may appear random (10), and there is ex-
tensive evidence of stochastic genetic expression (11, 12).
Such variability has been hypothesised to be required for
the emergence of complex shapes since it favors symme-
try breaking (13) and self-organisation (14) during devel-
opment. Nevertheless, growth variability would need to
be restrained to ensure robust morphogenesis. In plant
tissues, an increase in the spatial correlations of growth
fluctuations was shown to reduce the robustness of floral
organ size and shape (15). In animal tissues, work on the
wing imaginal disc of the fruit fly indicates that robust
wing development involves cell competition and requires
the modulation of cell division and apoptosis (16, 17).

Mechanical signals are natural candidates for the reg-
ulation of growth variability because spatial differences
in growth or in deformation rates induce mechanical
stress (18–20). In animals, a mechanical feedback af-
fecting the rate of cell divisions was hypothesized (21),
before being supported by experiments in Drosophila
and in zebrafish (22–25). Actomyosin cables are rein-
forced by mechanical tension in the wing imaginal disk
of Drosophila (26). In plants, mechanical sensing was
found to be required to prevent growth fluctuations in
roots (27). The deposition of cellulose fibers, which are
the main load-bearing component of the cell wall, was
shown to depend on wall tension (28, 29), which yields
cell wall stiffening in the direction of maximal tensile
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stress (30).
Previous theoretical studies have modelled how me-

chanical feedback regulates proliferation (21) and how
transitions in tissue rheology are induced by prolifera-
tion and apoptosis (31, 32) tissues. Here, we build upon
such studies; in addition, we account for small sources of
stochasticity and investigate the consequences on large
scale tissue growth. We focus on generic aspects of tis-
sue growth, so that our results may be broadly applicable
to active matter (33).

GROWING TISSUES AS

MECHANORESPONSIVE ACTIVE FLUIDS

We built a continuous two-dimensional model of tissue
growth. The tissue is assumed to be made of a fiber-like
material, which may correspond to the cytoskeleton or
to the extra-cellular matrix (ECM) in an animal, and to
cellulose within the cell wall of a plant. Hence, the state
of the tissue is locally described by two order parameters,
the density of fibers and the nematic field describing the
orientation of fibers and their degree of alignment, which
confer isotropic and anisotropic mechanical properties to
the material, respectively. We account for fiber synthesis
and remodeling, which may be modulated by responses
to mechanical stress: reinforcement of actin stress fibers
or of the ECM, enhancement of myosin activity, or flu-
idisation by cell division, in animals; increase in cell wall
synthesis, cellulose synthesis, or cell division, in plants.
Synthesis has a small random contribution, considered as
a stochastic, uncorrelated source. Stochasticity in syn-
thesis induces growth heterogeneity, which results in me-
chanical stress and feeds back on synthesis. Formally,
the model describes an expanding, mechanoresponsive,
nematic, and active fluid.
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A model of nematic viscous fluid

We describe the fibers with a density ρ(~r) and a

nematic 2 × 2 tensor
↔
s (~r), that vary with the posi-

tion vector ~r. The nematic tensor
↔
s may be defined

as an average over a small region around position ~r,
↔
s (~r) = 〈n̂n̂ − 1/2

↔
1 〉~r, where the unit vector n̂ de-

fines the polarization of fiber monomers and
↔
1 is the

unit tensor. Regions of the material move at velocity
~v(~r), which may also vary spatially. In the following,
we use the gradient of the velocity field, decomposed

into strain rate,
↔
γ = 1/2

{
(∂~r~v) + (∂~r~v)

T
}
, and vortic-

ity
↔
ω = 1/2

{
(∂~r~v)− (∂~r~v)

T
}
, where ∂~r stands for the

partial derivative with respect to position (~r) and T for
the transpose of the preceding tensor.

We neglect diffusion of fibers in the tissue. The equa-
tions of continuity for density and nematic tensor are
then

∂t ρ+ ∂~r · {~v ρ} = κρ, [1]

∂t

{
ρ
↔
s
}
+ ∂~r ·

{
~v ρ

↔
s
}
+ ρ

{
↔
ω ·

↔
s −

↔
s ·

↔
ω
}
=

↔
κ
s
, [2]

where t is time, κρ is the rate of synthesis of material,

and
↔
κ
s

is a nematic tensor that describes the orientation
of synthesis and its degree of alignment; the third term
of [2] accounts for the corotation of the nematic tensor
with flow vorticity.

Expansion of the tissue is assumed to be driven by a
uniform and isotropic tension, p, which may correspond
to turgor pressure in plants, or to a pressure induced
by cell divisions in animals (31); this tension is one of
the active components of our model. The mechanical

stress,
↔
σ , then follows the force balance equation ∂~r ·

[↔
σ−

p
↔
1
]
= ~0. We consider time scales long enough for tissue

remodeling to occur, so that we neglect elastic behavior,

assuming that
↔
σ depends on the strain rate tensor, on

the density, and on the nematic tensor. This dependence
↔
σ (

↔
γ , ρ,

↔
s ) is the constitutive law that characterizes the

rheology of the tissue.
In the following, we will consider small fluctuations

around an average state. The statistical averages of vari-
ables are denoted by brackets. For convenience, tensorial

fields
↔

Φ = Φ
↔
1 +

↔

Φd are decomposed into hydrostatic

(Φ) and deviatoric (
↔

Φd) components,
↔

Φd being traceless.
On average, the tissue has uniform density, 〈ρ〉, and is

isotropic, 〈
↔
s 〉 =

↔
0 ; the tension 〈

↔
σ 〉 = 〈σ〉

↔
1 has only a

hydrostatic component 〈σ〉; areal growth rate 2γ = ∂~r · v
is on average uniform; through an appropriate change of
reference frame, the averaged velocity may be written as
〈~v〉 = 〈γ〉~r. Assuming small fluctuations in all fields, we
linearize the constitutive equation as a function of the

hydrostatic strain rate, γ, the deviatoric strain rate,
↔
γ d,

the density, ρ, and the nematic tensor
↔
s ,

σ = 〈σ〉 + η(1+ν) (γ − 〈γ〉) + cρ (ρ− 〈ρ〉), [3]

↔
σ d = η(1−ν)

↔
γ d + cs

↔
s , [4]

where η is an effective viscosity coefficient, cρ and cs are
effective compressibilities, and the constant ν is analog
to Poisson’s ratio.

Activity: mechanical responses and fluctuations

On the one hand, mechanical stress orients cell divi-
sions (22, 23, 34) and plant cell wall reinforcement (30).
On the other hand, synthesis of ECM or of cell wall and
cytoskeleton polymerization are not uniform in space,
having some level of randomness (3, 35, 36). The two
classes of phenomena are incorporated in the other active
component of our model, namely synthesis. Without loss
of generality, synthesis may be written at linear order in
fluctuations as

κρ = 〈κρ〉 −
〈ρ〉

τρ

(
ρ− 〈ρ〉

〈ρ〉
−

σ − 〈σ〉

σρ

)
+ ξρ, [5]

↔
κ
s
= −

〈ρ〉

τs

(
↔
s −

↔
σ d

σs

)
+

↔

ξ s, [6]

where τρ and τs are the response times of the mechanical
feedbacks, σρ and σs are constant coefficients determin-
ing the amplitudes of the mechanical feedbacks, and ξρ

and
↔

ξ s are the hydrostatic and deviatoric part of the
noise, respectively. Noise is assumed to be white and
Gaussian with zero mean, and has extended space corre-
lation characterized by noise strengths Kρρ and Kss and
by a correlation length ℓ, which is typically sub-cellular
or cellular. The correlations functions of noise take the
form 〈ξρ(t1, ~r1)ξρ(t2, ~r2)〉 = Kρρ δ(t1 − t2)g (|~r1 − ~r2|/ℓ) ,

and 〈
↔

ξ s(t1, ~r1)
↔

ξ s(t2, ~r2)〉 = Kss δ(t1− t2) g (|~r1 − ~r2|/ℓ) .
δ is the delta distribution and g(x) is a positive function
decaying quickly to zero as x → +∞. (We use g(x) = e−x

in calculations.) Cartesian coordinates of the 4-tensor

Kss are constrained by the traceless nature of
↔

ξ s to be of
the form Kssabcd = Kss {δadδbc + δacδbd − δdbδcd}, where
δij is the Kronecker delta. We do not take the limit ℓ → 0
for spatial correlations because otherwise the problem
would have no characteristic lengthscale. Accordingly,
we will use ℓ as a unit of length.

Dimensionless parameters

We rescale all fields and variables as follows.

P = cρ
ρ−〈ρ〉
2η〈γ〉 ,

↔

S = cs
2η〈γ〉

↔
s ,

↔

Γ =
↔

γ−〈
↔

γ 〉
2〈γ〉 ,

Ξρ =
cρ

4η〈γ〉2 ξρ,
↔

Ξs =
cs

4η〈γ〉2

↔

ξ s,
↔

Σ =
↔

σ−〈
↔

σ 〉
2η〈γ〉 ,

T = 2t〈γ〉, ~R = ~r
ℓ ,

~V = ℓ~v−〈~v〉
2〈γ〉 .
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P and
↔

S are the dimensionless density fluctuation and
nematic tensor. They are associated to the dimension-

less random components of synthesis Ξρ and
↔

Ξs.
↔

Γ is the

dimensionless fluctuation of strain rate tensor,
↔

Σ is the

dimensionless stress fluctuation. T, ~R, and ~V are, respec-
tively, the dimensionless time, position vector, and veloc-
ity fluctuation. The dimensionless versions of Eqs. [1-6]
are given in [SI].

This rescaling shows that the model has 8 dimen-
sionless parameters. ωρ = 1 + 1/(2τρ〈γ〉) and ωs =
1 + 1/(2τs〈γ〉) characterize the relaxation of the tissue
in absence of mechanical feedback. β0 = cρ〈ρ〉/(2η〈γ〉)
characterizes the convexity of growth versus density. ν is
the dimensionless difference between effective dilatational
and shear viscosities. Kρρ = Kρρ/(16 η

2〈γ〉4) and Kss =
Kss/(16 η

2〈γ〉4) are the rescaled magnitudes of random
synthesis. βρ = cρ〈ρ〉/(2τρ〈γ〉σρ) and βs = cs/(2τs〈γ〉σs)
are the measures of isotropic and anisotropic responses
to mechanical stress.

RESPONSE TO PERTURBATIONS IN

SYNTHESIS

General results

We consider the tissue size to be much larger than the
correlation length, ℓ, and than the characteristic scale of
the perturbation. We assume that the perturbations do

not induce large scale rotation (〈∂~R ∧ ~V〉 = ~0) and we

chose the reference frame with origin such that ~V(T,R =
~0) = ~0. Given this, we investigate the response to generic
perturbations. Because the average strain rate profile
stretches all patterns, see [1-2], we consider a modified
Fourier transform defined as

Φ̃(~q,T) =

∫
d2~R e−T e−i~q·~Re−T/2

Φ(T, ~R),

with the position ~R rescaled by the average growth factor
eT/2.

Defining q̂ = ~q/|~q| as the direction of the wavevector,
the Fourier transform of the nematic tensor can be writ-

ten as
↔

S̃ = S̃qq[2q̂q̂ −
↔
1 ] + {q̂

~̃
Sq⊥ +

~̃
Sq⊥q̂}. The linear

response for material density and nematic tensor is then
given by

[
P̃(T, ~q)

S̃qq(T, ~q)

]
=

∫
T

−∞

dτ

[
e
(τ−T) [ω]

]
·

[
Ξ̃ρ(τ, ~q)

Ξ̃s qq(τ, ~q)

]
,

~̃
Sq⊥(T, ~q) =

∫
T

−∞

dτ eωs(τ−T)~̃
Ξs q⊥(τ, ~q),

where
[
e(τ−T) [ω]

]
is a matrix exponential involving the

relaxation matrix [ω], as detailed in [SI], and the fields

~̃
Ξs qq = q̂ ·

↔

Ξ̃s(τ, ~q) · q̂ and
~̃
Ξs q⊥ = q̂ ·

↔

Ξ̃s(τ, ~q) · [
↔
1 − q̂q̂]

are the components of the noise Fourier transform.
Finally, the Fourier transform of the strain rate tensor

is decomposed as
↔

Γ̃ = 2Γ̃ q̂q̂ + q̂
~̃
Γq⊥ +

~̃
Γq⊥q̂, so that the

linear response of strain rate is given by,

Γ̃(T, ~q) = −

∫
T

−∞

dτ
eωε(τ−T)

2

[
Cε

ρ Ξ̃ρ(τ, ~q) + Cε
s Ξ̃s qq(τ, ~q)

]
,

[7]

~̃
Γq⊥(T, ~q) = −

1

1−ν

∫
T

−∞

dτeωs(τ−T) ~̃
Ξs q⊥(τ, ~q), [8]

where the integrand in the r.h.s. of [7] is a sum over the
values {+,−} of the index ε and ω± are the two eigenval-
ues of [ω]. The expression of ω± and the coefficients C±

ϕ

can be found in [SI]. We thus obtain the full response of
the tissue to any perturbation of synthesis, in terms of
the modified Fourier transform of the sources of density
and of nematic order.

Example: localized disk-shaped isotropic

perturbation

As an illustration, we now discuss the case of an
isotropic perturbation localised in space – a disk of ini-
tial radius ℓ – and in time – a duration that is small with
respect to all other time scales. Formally, the perturba-

tion to density synthesis is Ξρ(T, ~R) = δ(T)H(1 − |~R|),
with H the Heaviside function, while the perturbation to

synthesis of nematic order vanishes,
↔

Ξs(T, ~R) =
↔
0 . We

compute the fields Φ = P,
↔

S ,
↔

Σ,
↔

Γ and find that they

have self-similar forms, Φ(T, ~R) = AΦ(T)BΦ(~R e−T/2),
where AΦ represents the amplitude of the perturbation
and BΦ its pattern. The dynamics of the amplitude is
specific to each field, whereas the pattern always expands
with a characteristic lengthscale ℓ exp〈γ〉t (in dimensional
units). AΦ(T ) and BΦ are represented in Fig.1a-e and
are explicitly given in [SI]. An immediate consequence
of the perturbation is to stiffen the tissue, which re-
duces expansion (AΓ(0) < 0) and increases stress levels
(AΣ(0) > 0); then the anisotropic mechanical response
gradually induces radial fibers and reinforcement in the
direction of the main stress. The behavior at longer times
depends on the levels of mechanical responses. For low
anisotropic response, i.e. for βs smaller than a thresh-
old that depends on other parameters, all amplitudes
evolve monotonously as a function of time and vanish at
times that are long with respect to the correlation time
τc; tissue nematic orientation, strain rate, and mechani-
cal stress are all mainly radial. For high anisotropic re-
sponse, i.e. for βs above this threshold, amplitudes show
an underdamped-like dynamics: they change sign before
decaying to 0; after well-defined times, density becomes
slightly smaller than average density, and all of nematic
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a. Snapshots of tissue density and orientation

b. Tissue density c. Tissue anisotropy

1

1

1

.5

d. Strain rate e. Mechanical stress

1

-.5

f. Correlation time versus magnitudes of mechanical responses

1 20

3

-1

FIG. 1. Example of mechanical response: tissue relaxation
following a localized disk-shape isotropic perturbation. a.

Snapshots at dimensionless times T = 0, 0.5 and 1. The den-
sity is color-coded according to the heat map on the left (white
corresponds to no deviation from average density). The ne-
matic order parameter is shown by the blue lines: the angle
corresponds to line orientation and the degree of anisotropy to
line length. The mechanical responses strengths are βs = .3
and βρ = .6. b-e Amplitudes Aϕ of the perturbations in
tissue density, P, tissue anisotropy, S, strain rate, Γ, and me-
chanical stress, Σ; the corresponding patterns (Bϕ) are shown
as insets. The blue and the green lines show the relaxation
of the amplitude of the perturbations for low, βs = 0.3, and
high, βs = 1.2, anisotropic response, with βρ = .6. Time is
rescaled by the characteristic time, τc. f. The correlation
time, τc, as a function of the strength of the isotropic (βρ)
and anisotropic (βs) mechanical responses. ωρ = 1, ωs = 1,
β0 = 1, and ν = 0 for all panels.

order, strain rate, and mechanical stress become circum-
ferential. This underdamped regime can be understood
as follows. An initially high mechanical anisotropy of the

tissue reduces the radial strain until strain becomes cir-
cumferential, leading to circumferential stress and then
circumferential nematic order.

These dynamics occur on a time scale τc, which is the
maximal relaxation time scale in response to a pertur-
bation (see [SI]), shown in Fig.1f as a function of the
magnitudes of mechanical responses. Isotropic mechan-
ical feedback makes perturbations more persistent, be-
cause τc increases with βρ. The effect of the anisotropic
feedback on relaxation is more complex: τc first decrease
and then increase as βs is increased; the minimum of τc
corresponds to the transition between the overdamped
and the underdamped regimes. This characteristic time
τc will also appear to be important for the effect of noise.

GROWTH FLUCTUATIONS

Correlation functions

Using the linear response of flow velocity to synthesis
perturbations [7-8], we derived the velocity fluctuations,
as detailed in [SI]. The correlation tensor of velocity fluc-
tuations is proportional to the unit tensor,

〈~V(T, ~R1)~V(T+∆T, ~R2)〉 =
↔
1
{
Kϕ1ϕ2

C ε1
ϕ1

Cε2
ϕ2
I(~R1, ~R2,∆T, ωε1 , ωε2) [9]

+ 4Kss/(1−ν)2 I(~R1, ~R2,∆T, ωs, ωs)
}
,

for ∆T > 0, with the same C±
ϕ coefficients as in [7-8] and

I(~R1, ~R2,∆T, ω1, ω2) = e∆T( 1
2
−ω1)

{
I(|~R2|e

−∆T

2 , ω1 + ω2)

+I(|~R1|, ω1 + ω2)− I(|~R1 − ~R2e
−∆T

2 |, ω1 + ω2)
}
,

where I (R, ω) = 1
2

∫ 0

−∞ dτeτ(ω−1)
∫
R eτ/2

0
dx
x

∫ x

0 drr g (r).
This explicitly defines the correlation functions, which
we analyse in the following section. In particular, the
correlation function of the areal strain rate has power-law

tails, 〈Γ(~R1)Γ(~R2)〉 ∼ ‖~R1 − ~R2‖
−α, yielding long-range

correlations.

Results

In practice, growth (areal strain rate in 2D) is mea-
sured at the scale of the spatial resolution of experi-
ments, which may be the cell scale or larger scales de-
pending on the landmarks used. We therefore define
a coarse-grained growth rate and we consider the time
correlation function G(R,T) of the growth of a disk of
radius R, where R is the coarse-graining size i.e. the
resolution size. It is simply related to velocity fluc-

tuations by G(R,T) = 1/(πR2)2〈
∫ 2π

0
dθ
∫ 2π

0
dϕ ~R(θ) ·

~V(~R(θ), 0) ~R(ϕ) · ~V(~R(ϕ),T)〉. This correlation function
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a. Time correlations of areal growth

- 2 2

1

b. Size-dependence of areal growth mean square deviation

FIG. 2. Growth fluctuations. a. Time correlation function
G(R,T) (normalized by its initial value) as a function of time,
T, normalized by the correlation time, τc. The blue and green
curves correspond to low (βs = .3) and high (βs = 1.2)
anisotropic mechanical response, with βρ = .6. b. Growth
mean square deviation, G(R,T), as a function of the coarse-
graining size, R, for low (blue) and high (green) anisotropic
mechanical response. G(R,T) and R are normalized using
R0 = 10. The asymptotic power-law for low anisotropic me-
chanical response is shown by the blue dashed line. For high
anisotropic mechanical response, G(R,T) oscillates around a
power-law (dashed green line). ωρ = 1, ωs = 1, β0 = 1, and
ν = 0 for the two panels.

is plotted in Fig.2. Panel a shows time correlations for
high and low anisotropic mechanical feedback, respec-
tively corresponding to the overdamped and the under-
damped regimes. The negative correlations for high feed-
back are related to underdamped relaxation. The corre-
lation function decays quickly to 0 with a characteristic
time scale that is exactly the relaxation time, τc, shown
in Fig.2e. Areal growth mean square deviation appears
roughly scale-invariant, see Fig.2b; it is exactly scale-
invariant in the overdamped regime and oscillates around
a scale-invariant trend in the underdamped regime. Two
regimes are observed, that are unrelated to the over-
damped and underdamped regimes already described.
When τc < 2, growth mean square deviation scales with
the inverse of the coarse-graining area, G(R, 0) ∼ R−2, an
exponent due to the central limit theorem. When τc > 2,
growth mean square deviation decays more slowly with
the coarse-graining area, G(R, 0) ∼ R

−4/τc , see [SI] for a
rationale.

FLUCTUATIONS OF ORGAN SHAPE

We are now interested in the effects of noise in syn-
thesis on tissue contours or on organ shape. In a homo-
geneous and isotropic tissue, quantifying the fluctuation
of contours is equivalent to determining the fluctuation
of a vector joining two landmarks followed throughout
growth of the tissue. Hence, we use a Lagrangian de-

scription and consider the position, ~X(T), at time T of

a landmark initially at position ~X0, which is determined

by the dimensionless velocity field ~V through

d ~X(T)

dT
=

1

2
~X(T) + ~V(T, ~X(T)).

In the following, we compute the fluctuations of ~X.

Formulation

We look for the probability P
[
~X(T)

]
that a material

point follows a path ~X(T). For sufficiently small fluctua-
tions, this probability can be explicitly derived from the

statistical properties of ~V and simplified as

P
[
~X(T)

]
∼ δ( ~X(0)− ~X0) e

−A[ ~X(T)], [10]

A
[
~X(T)

]
=

∫
dT

∣∣∣ ~X(T)
dT − 1

2
~X(T)

∣∣∣
2

2
∫∞

0
dτe−

τ
2 〈~V(0, ~X(T)) · ~V(τ, ~X(T)e

τ
2 )〉

,

where the correlation function 〈~V( ~X1,T1)~V( ~X2,T2)〉 is
given by [9]. We determined the asymptotic statistics of
the Lagrangian flow by applying the saddle point method
(37) to the probability P . As expected, P is maximized

by the average trajectory 〈 ~X(T)〉 = ~X0 e
T/2. The corre-

lation tensor of the position ~X(T) is given by (see [SI],
for details)

〈∆ ~X(T1)∆ ~X(T2)〉 = [11]
↔
1 X2

0e
T2+T1

2 J
(
X0e

T2
2

)(
1− J

(
X0e

T1
2

)
/J (X0)

)
,

J (u) =
1

u2

∫ ∞

0

dt′
∫ ∞

0

dτ〈~V(0, u e
t′

2 ) · ~V(τ, u e
t′+τ

2 )〉e−t′− τ
2 ,

with T1 ≤ T2 and X0 = ‖ ~X0‖. Note that this correlation
tensor is not a function of T2 −T1 because of the lack of
invariance with respect to translations in time.

Results

Heterogeneity in development can be quan-
tified by the coefficient of variation, CV(T) =
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〈‖∆ ~X(T)‖2〉1/2/〈‖ ~X(T)‖〉, which is plotted in Fig.3a.
Its asymptotic trend for long times depends on the value
of the correlation time τc. If τc < 2, then CV ∼ T1/2e−T,
and for τc > 2, CV scales e−2T/τc for low feedback and
oscillate around this trend for high feedback.

We represent in Fig.3b the maximal value of the coef-

ficient of variation, normalized by K
1/2
ρρ . This enables us

to assess the fluctuations of contours in the tissue or of
organ shapes. In absence of anisotropic feedback, βs = 0,
we find that heterogeneity increases with as isotropic
feedback. Accordingly, a positive isotropic feedback
maintains perturbations and induces long-range correla-
tions as seen in previous sections. Conversely, negative
isotropic feedback dampens perturbations. In absence
of isotropic feedback, βρ = 0, we find that heterogeneity
has a single minimum, decreasing with anisotropic feed-
back below this minimum, and increasing above. The
transition at the minimum corresponds to the transition
between the overdamped and the underdamped regime.
In the overdamped regime, increasing anisotropic feed-
back dampens perturbations. In the overdamped regime,
increasing anisotropic feedback enhances perturbations
due to the oscillatory overshoot. In general, for βρ 6= 0
and βs 6= 0, the two trends previously described are com-
bined. Finally, we note that the behavior of heterogene-
ity in Fig.3b is qualitatively similar to the behavior of
correlation time (τc) in Fig.1f, indicating that the corre-
lation time is a major factor for the level of heterogeneity
because the correlation time sets how the tissue keeps a
memory of its previous state.

DISCUSSION

We built a continuous model of tissue growth, describ-
ing density and nematic order of the tissue, and modelled
material synthesis and responses to mechanical stress.
The responses are characterized by two parameters, βρ

and βs, corresponding to isotropic response - increase
in density due to increase in stress when βρ > 0 - and
anisotropic response - increase in tissue anisotropy due
to increase in stress anisotropy when βs > 0, and con-
versely when these parameters are negative. In plants,
it is believed that cell wall synthesis is enhanced when
tension increases (38), which corresponds to βρ > 0. The
alignment of cortical microtubules with maximal stress
orientation leads to the anisotropic stiffening of the cell
wall in this direction (30, 39), while cell divisions are as-
sociated with new cell walls oriented in the direction of
maximal stress (34); both processes yield βs > 0. In
animal tissues, experiments indicate that tissues are flu-
idised by cell divisions (22–25): proliferation is enhanced
by tensile stress and daughter cells tend to separate along
the direction of highest mechanical stress, which corre-
sponds to βρ < 0 and βs < 0, respectively. At shorter
time scales, actomyosin cables are reinforced in the di-
rection of applied stress (26), which yields βρ > 0. It is
unclear how ECM remodeling would contribute to me-

a. Coefficient of variation of position versus time

2 ��

b. Tissue heterogeneity versus mechanical responses

21�

1

-�

FIG. 3. a. Coefficient of variation of position,
〈‖∆ ~X(T)‖2〉1/2/〈‖ ~X(T)‖〉, normalized by its maximal value
CVmax as a function of time, T, normalized by the correla-
tion time, τc.The blue and the green curve are examples of low
βs = .3 and high βs = 1.2 anisotropic mechanical response,
with βρ = .6. The dashed line represents the asymptotic
limit for X0 ≫ 1 for low anisotropic feedback. b. Coefficient

of variation of position, normalized by K
1/2
ρρ , as a function of

the magnitude of anisotropic mechanical response for various
levels of anisotropic feedback. ωρ = 1, ωs = 1, β0 = 1, ν = 0,
and X0 = 10 for the two panels.

chanical responses, because its role in morphogenesis has
not received attention until recently (40–43).

In this study, we determined tissue response to a local-
ized perturbation, as a function of the mechanical feed-
back parameters βρ and βs. We generalized predictions
that anisotropic mechanical feedback buffers such a per-
turbation (29), in agreement with observations on tri-
chomes, a cell type with transient faster growth, in Ara-
bidopsis sepals (29). Here, we unravelled two possible
regimes: an overdamped regime at low anisotropic feed-
back in which perturbations decay monotonously and
an underdamped regime at high anisotropic feedback
in which perturbations oscillate before decaying, with a
characteristic time that is minimal at the transition be-
tween the two regimes. This case study provides an assay
of mechanical responses in both plant and animal sys-
tems, for instance by inducing clones with altered growth
rate and quantifying the relaxation timescales in back-
grounds with different levels of mechanical response.

We then investigated the statistical properties of tissue
growth, unravelling long-range correlations, with slowly
decaying correlation functions. To test this, it would cru-
cial to examine correlation functions in live imaging data
of growing organs, e.g. (15, 44–47). Long-range correla-

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted September 24, 2018. ; https://doi.org/10.1101/425355doi: bioRxiv preprint 

https://doi.org/10.1101/425355


7

tions could be mediated by signals that could be chemical
or mechanical. Further experiments would be required to
test whether mechanical signals are involved in such cor-
relations.

Finally, we found that heterogeneity of contours
and shapes is minimal for a well-determined level of
anisotropic mechanical response. This generalizes a sim-
ilar conclusion reached for local heterogeneity using a
cell-based toy model (48). Here we also accounted for
isotropic mechanical responses and considered hetero-
geneity at all scales. We identified the correlation time
as a key parameter determining the extent of spatial cor-
relations and the level of heterogeneity of organ shape.

Based on our results, we make the following predictions.
In plants (βρ > 0 and βs > 0), heterogeneity in develop-
ment can be significantly high unless anisotropic feedback
is close to the value that minimizes heterogeneity. In an-
imals, if we discard possible contributions of the ECM,
βρ < 0 and βs < 0 at long time scales, heterogeneity
in development is minimal when anisotropic feedback is
negligible. Based on our results, we propose that the ro-
bustness of morphogenesis constrains how tissues respond
to mechanical stress. More generally, characterizing the
fluctuations of cell properties appears as a promising av-
enue to shed light on how signals orchestrate organismal
development.
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