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Summary 

Genetic models in Drosophila have made invaluable contributions to our 

understanding of the molecular mechanisms underlying neurodegeneration. In 

human patients, some neurodegenerative diseases lead to characteristic 

movement dysfunctions, such as abnormal gait and tremors. However, it is 

currently unknown whether similar movement defects occur in the respective 

fly models, which could be used to model and better understand the 

pathophysiology of movement disorders. To address this question, we 

developed a machine-learning image-analysis programme — Feature 

Learning-based LImb segmentation and Tracking (FLLIT) — that 

automatically tracks leg claw positions of freely moving flies recorded on high-

speed video, generating a series of body and leg movement parameters. Of 

note, FLLIT requires no user input for learning. We used FLLIT to characterise 

fly models of Parkinson’s Disease (PD) and Spinocerebellar ataxia 3 (SCA3). 

Between these models, walking gait and tremor characteristics differed 

markedly, and recapitulated signatures of the respective human diseases. 

Selective expression of mutant SCA3 in dopaminergic neurons led to 

phenotypes resembling that of PD flies, suggesting that the behavioural 

phenotype may depend on the circuits affected, rather than the specific nature 

of the mutation. Different mutations produced tremors in distinct leg pairs, 

indicating that different motor circuits are affected. Almost 190,000 video 

frames were tracked in this study, allowing, for the first time, high-throughput 

analysis of gait and tremor features in Drosophila mutants. As an efficient 

assay of mutant gait and tremor features in an important model system,  

FLLIT will enable the analysis of the neurogenetic mechanisms that underlie 

movement disorders.  

 

 

Keywords: leg tracking; Drosophila; gait, neurodegeneration, Parkinson’s 

Disease, ataxia, tremor; feature learning 
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Introduction 
 

Walking requires coordination of the central and peripheral nervous 

systems, and the musculoskeletal system. Hence, neurological and 

musculoskeletal pathologies can manifest as movement abnormalities. For 

example, patients with Parkinson’s disease (PD) exhibit slowed movements 

(bradykinesia), rigidity and resting tremor1, while patients with cerebellar 

ataxias like Spinocerebellar ataxia Type 3 (SCA3) exhibit stumbling, jerky, 

uncoordinated movements, and action tremor2-5. The gait and tremor 

movements exhibited by patients give clues as to the affected brain regions, 

and are used to inform diagnosis6. Pathological gait and tremor cause 

difficulty for basic tasks required for daily living; yet, the mechanisms and 

affected neuronal circuitry are poorly described. One common disease 

signature is tremor: uncontrolled shaking of the body or appendages. While 

tremors can be temporarily triggered by physiological states like stress, 

pathological tremors are often symptomatic of an underlying neurological 

disorder. There is no cure for tremor, and its pathophysiological causes are 

not understood7,8. Movement disorders exhibit significant phenotypic 

heterogeneity3,9-11; hence, detailed characterisation of circuit dysfunction can 

aid in understanding the factors that influence disease severity and 

progression. To achieve this level of understanding requires linking detailed 

behavioural measurements with functional circuit analyses.  

Despite the differences in anatomy and scale between human and fly 

brains, Drosophila disease models have made substantial contributions to our 

understanding of the mechanisms underlying human neurodegenerative 

diseases12,13. However, while fly disease models recapitulate molecular 

features of disease, and fly and mammalian neurons share similar molecular 

machinery14, it is unknown whether flies can be used to model movement 

disorders, as gait and tremor characterisatics of fly neurodegeneration models 

have not been quantified. Conserved cellular roles for human disease genes 

may not result in conserved movement dysfunctions, which depend on circuit 

properties. Tremor behaviour, in particular, has eluded characterisation; while 

flies of several mutant genotypes have been reported to exhibit trembling 
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behaviour15-18, the quantitative characteristics of these tremors have not been 

determined.  

To characterise movement defects and tremors in flies requires an 

accurate, automated method for fly leg tracking. State-of-the-art methods 

include foot-printing-based approaches that report contact points with a 

detection surface19,20, and leg marking-based techniques that track distinct 

marked spots on the legs21. Semi-automated algorithms have been developed 

to aid high-resolution leg tracking in freely-moving, unmarked flies22-24, but 

these require a considerable degree of user annotation and/or user-led 

optimisation. Therefore, these methods were not feasible for use on the large 

volume of data required to quantify rapid and fine tremors in suspended legs. 

Two recent studies describe deep learning approaches for markerless 

tracking25,26. These methods require a substantial number of user annotated 

images for training, however, are versatile, as they can be applied to various 

models and behaviours. 

To enable accurate, automated leg tracking, we developed FLLIT 

(Feature Learning-based LImb segmentation and Tracking), a machine 

learning method able to automatically track leg movements of freely moving 

flies from high-speed video, with high accuracy and minimal user input. 

Importantly, FLLIT does not require user annotation of images for training, 

which sets it apart from other learning approaches25,26. Using FLLIT to 

characterise gait in fly models for PD and SCA3, we found that these models 

exhibit distinct movement signatures that recapitulate aspects of the 

movement dysfunctions in human patients. Such gait and tremor analyses 

can enable future studies into the genetic and neural basis underlying subtle 

limb behaviours and movement defects like tremors.  
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Results 

1. System setup and computational workflow 

We utilised a video recording setup that consists of a high-speed camera 

mounted below the sample, backlit by an infrared LED array (Figs. 1A, S1). 

The computational workflow carried out by FLLIT consists of: (i) Automated 

training set generation, (ii) Supervised learning of leg classification, (iii) 

Application of the trained classifier to novel images for leg segmentation, (iv) 

Leg tracking across frames, and (v) Results output (Fig. 1B).  A brief overview 

of each stage of the workflow is detailed below. 

 
Generating the training set 

To identify and segment legs in each video frame, we use an iterative learning 

approach that incorporates steps for the automated preparation of training 

sets. This circumvents the normally tedious manual preparation of training 

samples, as no user input is required for training. To achieve this, we perform 

a series of image processing steps (Fig. 1Bi) on a subset of the images from 

the video of interest: background subtraction27, medial axis skeletonisation 

and edge extraction, to identify only high-confidence positive (leg) and 

negative (non-leg) pixel examples for learning.  

 

Identification of legs  
Our iterative learning approach is based on the KernelBoost method28,29, and 

aims to learn a precise binary leg segmentation model from pixels in the 

training set (Fig. 1Bii). Training examples are extracted as square image 

patches consisting of a central pixel of interest and surrounding pixels. 

Candidate filters (convolution kernels) are applied to confer features onto 

each image patch, which are then used to learn parameters on decision trees 

(weak learners). High-confidence pixel classification predictions at the current 

iteration are added to the training set of the next iteration, and thus iteratively 

augment the training set in favour of the safe and/or high-confidence 

predictions. The feedback and retraining loops expand the training set to build 

a stronger segmentation model at each iteration (Fig. 1Bii). After the classifier 

has been trained, it can be used to predict leg pixels in novel images (based 
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on a set classification threshold) (Fig. 1Biii), and the predicted leg pixels are 

grouped as legs. These segmented leg images are saved by FLLIT, and can 

be used for further analysis. 

 
Leg tracking 

After the legs have been identified, tracking can be performed (Fig. 1Biv and 

Video 1). Each frame is body centred, and leg claw positions are matched 

across adjacent frames using the Hungarian method30. The tracked leg-tip 

data for each leg can then be extracted as a CSV file for analysis (Fig. 1Bv).  

 
FLLIT software 

The FLLIT software provides an interface for automated leg tracking of high-

speed videos. Besides the set of data files of tracked body and leg positions, 

it also automatically calculates 23 body and gait parameters, and provides 5 

plots and a video for visualising the tracked data (Table 1). The FLLIT 

program, readme and sample data can be downloaded from: 

https://github.com/BII-wushuang/FLLIT 

 

2. Accuracy of FLLIT segmentation and tracking results determined 
by ground truth 

To determine an optimal classification confidence threshold, we manually 

identified leg pixels in video frames of wild-type flies, and examined classifier 

performance at different thresholds (Fig. S2A). A threshold of 0.65 was 

selected for subsequent tracking analyses, based on the F0.5 scores for the 

tested classifiers, which peaked at 0.6–0.65. We then interrogated the level of 

similarity that can be expected between leg-tip annotations of the same set of 

images made by two individuals. Pixel deviation was measured as the 

Euclidean distance between the pixels selected by the two individuals (Fig. 

2A). We found that different individuals asked to identify leg claw positions in 

the same set of images located the same pixels (0 pixel deviation) about 33% 

of the time (Fig. 2B). The majority of tips were located 1–2 pixels apart. At our 

recording resolution, this deviation corresponded to ~0.75-1.5% of body 

length, which averaged 133 pixels (Fig. S2B).  
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We then compared the leg-tip positions reported by the algorithm to those 

determined by manual annotation. We found three categories of errors: 1) 

Misidentification errors; 2) Missing data of occluded or visible legs; 3) 

Deviation errors. These errors are detailed below. 

 

Misidentification errors 
Misidentification errors occurred when leg identities were erroneously 

assigned to the wrong body part, which can lead to tracking errors in 

subsequent frames. For example, in some strides, the forelegs may become 

occluded during leg retraction. Occluded objects cannot be detected using 

silhouette imaging. When trying to locate the occluded leg claw, the algorithm 

may falsely label the antenna or another leg (Fig. S2C). These errors are 

salient, and their correction can prevent perpetuation of the error through the 

rest of the video. We therefore corrected these errors before examining the 

rest of the tracked data (Fig. S2C). Absent leg claw positions that resulted 

from corrections were considered as missing data (next section). By this 

approach, we found that wild-type flies required an average of ~1.6 

corrections for misidentifications per 1,000 frames; 72% of videos required no 

corrections for misidentifications (Fig. 2C). We used FLLIT-automated 

background subtraction for all datasets examined in this study, and noticed 

that inefficient background subtraction—which causes poor segmentation—

contributed to misidentification errors. In these cases, loading of a background 

image, instead of using automated background subtraction, can improve 

segmentation and tracking (Fig. S2D). 

 

Missing values  
Missing leg claw data occurred as a result of occlusion or failure to track 

visible legs. An average of ~3.6% of tips per video were not tracked (Fig. 2D). 

The majority (~86%) of missing values occurred in the front legs, which are 

partially (28%; 235/833 missing tips; e.g. Fig. S2E) or completely (72%; 

598/833 missing tips, e.g. Fig. S2Ci) obscured by the body when they retract 

during each stride. Occasionally, hind legs were obscured by the wings. 
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Overall, ~8.1% leg-tip data for the front legs were unreported, compared to 

0.01% and 2.9% for the mid and hind legs, respectively (Fig. 2D).  
 

Deviation errors 
Deviation errors occurred when the predicted leg-tip positions differed from 

the ground-truth annotated positions, and were determined after correction of 

misidentification errors. We found that almost 98% of reported tip locations 

were accurate to within 3 pixels (Fig. 2E). Of note, deviations of up to 3 pixels 

occurred by manual annotation (Fig. 2B), and leg tips spanned ~3 pixels in 

width under our recording parameters (Fig. 2A).  

 

Effect of learning on segmentation and tracking accuracy 
We quantified the effect of learning on leg segmentation and tip tracking 

performance, compared to solely using morphological operations (as was 

used to derive the training set, Fig. 1Bi). As we selected only pixels of high 

confidence/precision for the initial training set (Fig. 1Bi), before learning, recall 

of leg pixels was low, while precision was high (Fig. 2F). After learning, recall 

scores showed stark improvement, demonstrating that the algorithm is able to 

generalize and classify additional leg pixels based on the narrow training set 

(Figs. 2F, S2F). This increase in recall does not result in decreased precision 

(Fig. 2F). We then examined tracking peformance after learning. The 

percentage of missing data decreased by ~31.5% on average for each 

sample (Fig. S2G). Of the found tips, deviation errors also decreased slightly 

(Fig. S2H).  

 

In summary, our learning-based method can accurately track the leg-tip 

positions of freely walking, unmarked wild-type flies from high-speed video, 

and is more accurate than using morphological parameters alone. 
 

3. FLLIT robustness assessment 

Image analysis software should be tolerant of deviations in recording 

parameters, as it is challenging to identically replicate a video recording setup 

from one lab to another. We examined the effect of altering the following 
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parameters on FLLIT performance: 1) Image contrast — Low, default and 

high infrared light intensity; 2) Resolution — 9, 10 and 12 mm field of view; 

and 3) Video capture speed — 250, 500 and 1000 frames per second (fps) 

(Fig. S3A). 

 

Upon altering video contrast, resolution and capture speed, the percentage of 

missing values ranged from 2.1–5.6% (Fig. S3Bi). The number of corrections 

needed to re-label misidentified legs ranged from ~0–9.3 per 1,000 frames 

(Fig. S3Bii). We then analyzed the final reported leg-tip positions. In all 

conditions, ~97.5% of the computationally identified tips were within 3 pixels 

of the manually annotated positions (Fig. S3Biii). These data support the 

conclusion that FLLIT can generate classifiers to track and analyse videos 

recorded under a range of settings, and is not dependent on a stringent set of 

conditions.  

 

As FLLIT is not rule-based, we asked whether it could also be used to 

automatically track leg movements in other arthropods. As a test, we chose 

the Myrmaplata plataleoides salticid spider, which has eight legs and 

measures ~13 mm in length, and thus differs markedly from Drosophila in 

body plan and proportions (Fig. S3C). Salticid leg misidentifications occurred 

when legs touched or crossed over (mean = 1.2 corrections/1000 frames; n = 

9 videos, 12,683 frames, 101,464 legs) (Fig. S3B). These corrections resulted 

in an average of ~0.66% of missing leg data (Fig. S3C). Computationally-

predicted leg-tip positions compared favourably with manual annotation; 

>99% of the tracked data deviated by <3 pixels from user-annotated positions 

(Fig. S3D). A small fraction deviated by >6 pixels, which was due to legs 

touching or crossing over during walking. In summary, these data suggest that 

FLLIT can be used to accurately track leg tips in other arthropods (Video S1).  

 

4. Side-by-side performance comparison 

Two types of approaches are currently available for automated Drosophila leg 

movement tracking (i.e. not requiring user input). One uses thresholding and 

dynamic masking methods (TDM) to automatically identify leg tips22,31, while 

two recent studies employ deep learning algorithms25,26 using user-annotated 
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training sets. We first compared the performance of FLLIT against TDM-

based software provided by Isakov, et. al22. We found that the TDM method 

was sensitive to image contrast, and required flies to walk sufficiently close to 

the centre of the video for thresholding. Hence, videos had to be cropped by 

trial and error for successful tracking. We directly compared the tracked 

positions, without making any error corrections for either method. The 

percentage of missing values when using either method was comparable (Fig. 

S4A). However, 16.1% of positions identified using TDM were located >3 

pixels from the manually-derived positions, compared to 1.2% for FLLIT (>13 

fold difference) (Fig. S4B). FLLIT also performed markedly better than TDM 

under other recording settings (Fig. S4C). Of note, we could not find 

parameters that allowed low contrast images to be tracked using TDM; these 

were accurately tracked by FLLIT (Figs. 3, S4A, C). To gauge the usefulness 

of a tracking tool, the magnitude of the deviation errors may matter less than 

the rate of error correction required. Hence, we assessed what percentage of 

frames required user correction (deviations >3 pixels; See text for Fig. 2). By 

the TDM method, ~32–63% of frames contained at least 1 one leg that 

deviated >3 pixels from the manually-derived positions, compared to 2.8–

8.1% when using FLLIT (a 4-22 fold difference)(Fig. S4D).  

 

A deep learning method for movement tracking, DeepLabCut, was recently 

published26. While FLLIT and the TDM method require no user input, 

DeepLabCut requires the user to pretrain the algorithm using at least 200 

user-annotated images. We compared the performance of DeepLabCut to 

FLLIT in our leg tracking task. When DeepLabCut on was trained on a subset 

of images from a video, and used to test on novel images from the same 

video, 28.1% of frames predicted using DeepLabCut contained at least 1 leg 

deviating >3 pixels, compared to 6.3% with FLLIT (Fig. S4D). When DeepLab 

Cut was trained on images from one video, and then used to track a different 

video taken under similar settings, 100% of frames contained at least 1 leg 

deviating >3 pixels, even when we manually matched predicted leg claw 

positions to the closest leg (i.e. using DeepLabCut to find leg claw positions, 

without requiring labelling of leg identity). We therefore conclude that FLLIT 

performs substantially better on this task than currently available methods. 
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5. Characterisation of gait in Drosophila models of Spinocerebellar 
ataxia 3 (SCA3) and Parkinson’s Disease (PD) 

 
Ataxic gait in SCA3 is typified by body veering, erratic foot placement, leg 

crossing over, lurching steps and intention/action tremor5,32, while gait in PD 

patients is marked by rigid, shuffling steps and resting tremor1,32 (Table 2). 

Therefore, these two diseases exhibit distinctly different gaits that arise from 

their underlying etiologies. We used FLLIT to determine gait characteristics of 

previously described fly models of the two diseases. For SCA3, we expressed 

wildtype and mutant human SCA3 under control of the pan-neuronal driver 

Elav-Gal433,34. For PD we looked at two models: Expression of human alpha-

synuclein (SCNA) under control of Elav-Gal435,36, and parkin mutant flies37-41. 

These models exhibit neurodegeneration and gross motor defects reflected in 

poor climbing ability33-41. To enable comparison of gait defects amongst the 

different genotypes, we used climbing ability as a readout of phenotypic 

severity, selecting for analysis mutant flies with similar climbing performance 

(Fig. 3A).  

 

Leg tracking with FLLIT showed that flies expressing wildtype human SCA3-

flQ27 in all neurons walk coordinatedly, with strides that form regular leg 

domains (Fig. 3Bi, Video 2). However, pan-neuronal expression of SCA3-

flQ84 mutants led to a strikingly aberrant gait (Fig. 3Bii, Video 3). Similar to 

that seen in SCA3 patients5,32, SCA3 flies exhibited repeated veering, 

detected as body turns (Figs. 3Ci, S5Ai). These uncoordinated movements 

and erratic foot placement resulted in low footprint regularity19, reflected in 

large standard deviations of the both the anterior (AEP, Figs. 3Ci, S5Aii) and 

posterior (not shown) extreme positions of the mid and hind legs, and longer 

(Figs. 3Ci, S5Aiii) leg domains of both the mid and hind legs. These leg 

domains were so large as to intersect with one another (Figs. 3Bii, 3Ci, 

S5Aiv).  

 

While these phenotypes were striking in their similarity to cerebellar ataxic 

gait42, they could result from non-specific toxicity due to pan-neuronal 

expression of a pathogenic protein that is not endogenously expressed in 
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Drosophila. We therefore examined gait in flies expressing alpha-synuclein 

(SCNA), the hallmark protein that accumulates in Lewy bodies in PD, which is 

also not endogenously present in Drosophila. Elav-Gal4-mediated expression 

of wild-type alpha-synuclein was previously shown to cause 

neurodegeneration and climbing defects36. We used a recently published 

codon-optimised version of UAS-alpha-synuclein with high Gal4-driven 

expression35. If both SCNA and SCA3 expression cause non-specific toxicity 

effects, flies of each genotype with similar climbing performance (Fig. 3A) 

should exhibit similar gait profiles. However, alpha-synuclein-expressing flies 

did not exhibit hyperkinetic movements of increased body turning, low 

footprint regularity, enlarged leg movement domains nor aberrant domain 

overlap (Figs. 3Biii, 3Cii, S5Bi-v, Video 4). To the contrary, they showed 

hypokinetic movements: leg rigidity in the form of short strides and smaller 

domain length especially in the hind legs, relative to the mid legs (Figs. 3Biii, 

3Cii, S5Biii, iv, vi and vii, Video 4). Therefore, interestingly, expression of two 

different non-endogenous human disease proteins in all fly neurons not only 

result in distinct gaits, but these gaits reflect that seen in the respective 

human disease. 

 

Dopaminergic neurons preferentially degenerate when alpha-synuclein is pan-

neuronally expressed, and their loss is implicated in the associated climbing 

defects36. We therefore asked whether other PD models that exhibit 

dopaminergic neuron degeneration show a similar gait profile. We examined a 

mutant of parkin, a conserved ubiquitin ligase that is one of the most common 

mutations underlying familial PD39,43,44 (Video 5). Interestingly, park1 mutant 

flies also exhibited a decrease in hind leg domain length (Figs. 3Biv, 3Ciii, 

S5Ciii) and hind leg stride length compared to the mid legs (Figs. 3Biv, 3Ciii, 

S5Cvi). This resulted in lowered ratios of hind to mid leg domain length (Fig. 

3Ciii, S5Civ) and stride length (Fig. 3Ciii, S5Cvii). Overall, the PD models 

park1 and Elav-Gal4>alpha-synuclein showed gait profiles that were strikingly 

similar (Figs. 3Cii and 3Ciii), despite being genetically dissimilar. We 

wondered if hind leg rigidity was a basal property of poor motor function, and 

hence examined mir-263aKO flies, which also climb poorly18 (Fig. 3A). Mir-

263aKO flies did not exhibit preferential hind leg rigidity (Fig. 3Civ, S5C), and 
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its gait signature differed from that of SCA3 and PD flies (Figs. 3Ci-iv). The 

gait signature observed in alpha-synuclein and park1 flies led us to 

hypothesise that dopaminergic neuron dysfunction may be the common 

underlying cause. To test this, we expressed mutant SCA3 under control of 

the dopaminergic driver ple-Gal4. Interestingly, while pan-neuronal expression 

of mutant SCA3 caused ataxic gait and hyperkinetic movements leading to 

enlarged mid and hind leg domains (Figs. 3Bi, 3Ci, S5A, Video 6), expression 

of mutant SCA3 with ple-Gal4 had a hypokinetic effect. While there was no 

change in the length of the mid leg domains, the hind leg domain length, and 

the hind/mid leg domain length ratios decreased (Figs. 3Cv, S5D). This led to 

a gait signature that more closely resembled that of park1 and Elav-

Gal4>alpha-synuclein flies (Fig. 3Cv vs 3Cii, iii). These data suggest that 

perturbation of dopaminergic neuron function in Drosophila leads to 

preferential rigidity of hind leg movements, and a specific gait profile.  

 

6. Detection and characterisation of high frequency leg tremors in 
freely moving Drosophila  

 
To determine if FLLIT can detect and quantify trembling leg movements in 

freely-walking flies, we first examined flies known to tremble: Shaker (Sh5) 

and Hyperkinetic (Hk2) mutants, which carry lesions in alpha and beta 

subunits of the Shaker voltage-gated potassium (Kv) channel, and exhibit leg 

shaking under ether anesthesia45. Aged, freely walking Sh mutants have also 

been described to exhibit “quivering” behaviour17, but the characteristics of 

these movements have not been previously quantified compared to wildtype 

flies.  

 

Aged control (yw) flies exhibited infrequent sporadic shaking movements 

(Video 7), whereas Hk2 mutants appeared to exhibit a more consistent tremor-

like phenotype (Video 8). As such, wild-type legs followed relatively smooth 

paths, whereas leg paths of Hk2 mutants were relatively irregular and uneven 

(Fig. 4A).  To quantify these movements, local extrema of at least three pixels 

in amplitude were identified from the traces (circles and stars; Figs. 4A, B). A 

cutoff of three pixels was chosen to filter out small displacements that occur 
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due to tracking errors (Fig. 2E), and roughly corresponded to the width of a 

leg tip (Fig. 2A). 

 

Hk2 mutants exhibited ~42 shaking events/s on average, whilst wild-type 

controls and Sh5 mutants exhibited ~25 shaking events/s. However, this was 

not statistically significant (Fig. 4C). As tremors are periodic shaking 

movements, we then looked for tremor episodes: a series of three or more 

shaking events separated by <100 ms (conservatively chosen based on the 

average stride rate of ~10 Hz in control flies in our assay; Fig. 4Ai). Each of 

these events was defined as a tremor event (red circles and stars; Figs. 4A, 

B). Hk2 flies exhibited an average of ~8 tremor events per second, 

significantly more than control and Sh5 flies, which showed almost no tremor 

events (P < 0.01)(Fig. 4D).  

 

We determined the frequency of Hk2 leg tremor episodes by examining the 

time interval between consecutive tremor events. A predominant inter-peak 

interval of 20–30 ms was observed (P < 0.01 by running a permutation test 

with 100,000 iterations; Fig. 4E), corresponding to a tremor frequency of ~33–

50 Hz. Interestingly, Hk2 leg tremors mostly occurred in the hind legs: An 

average of 6.7 tremor events per second were observed in hind legs of Hk2 

flies, accounting for ~89% of the tremors in each fly on average (Fig. 4F). 

Therefore, our method is able to detect and measure Drosophila leg tremors.  

 

We then quantified tremor behaviour in the mutants that we previously 

examined for gait defects (Fig. 3). We found that SCA3 mutants were the only 

flies to show tremor behaviour amongst the genotypes examined (Fig. 4G, 

Video 3). PD flies did not show show tremors when walking, nor did flies 

expressing SCA3 only in dopaminergic neurons (Fig. 4G). Elav-G4>SCA3-

flQ84 tremor showed a similar frequency to that of Hk2 flies (P <0.0001 by 

running a permutation test with 100,000 iterations; Fig. 4H). However, unlike 

Hk2 flies, 95% of SCA3 tremors occurred in the mid legs: An average of 9.9 

tremor events per second were observed in mid legs of Elav-G4>SCA3-

flQ84flies, accounting for ~97.5% of the tremors in each fly on average (Fig. 

4Ii). A similar trend held when Elav-G4>SCA3-flQ84 mutants flies walked 
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upside-down/inverted– An average of 5.3 tremor events per second were 

observed in mid legs of inverted Elav-G4>SCA3-flQ84 flies, accounting for 

~95.7% of the tremors in each fly on average (Fig. 4Iii). This suggests that 

there are at least two different circuits whose perturbation can cause tremor.  

 

 

Discussion 

Our study describes the development of a machine learning method that 

segments legs and tracks leg claw positions of freely moving flies captured on 

video, and its use to study gait and tremors in fly models of Parkinson’s 

Disease and Spinocerebellar ataxia 3. We demonstrate that machine learning 

can improve upon an approach that uses only morphological parameters, so 

that supervised learning is carried out without requiring the time-consuming 

manual annotation of training sets. Most of the FLLIT method is fully 

automatic; only for the correction of tracked data is user input required. The 

number of corrections required will depend on the types of gait defects in the 

genotypes of interest. Tracking using FLLIT allowed us to analyse almost 

190,000 video frames in this study. 

 

FLLIT does not require a contact surface for detection19,20 or leg markers for 

tracking21, is not sensitive to variations in recording parameters and is not 

rule-based23. These strengths permit its application to other animals, which 

we show by application to spiders. Images of segmented legs are saved by 

FLLIT, and could potentially be used for subsequent analyses. Tracked FLLIT 

data may be applied to other methods that use tracked and/or labelled data to 

identify and describe complex behaviours and patterns46-48, or combined with 

methods for circuit manipulation and functional imaging. While FLLIT 

outperforms state-of-the-art methods in our walking task, it is not optimal for 

all applications. The semi-automatic FlyLimbTracker23 would be more suitable 

if tracking of other leg segments is required. FlyWalker19 may be more 

suitable than FLLIT if only footprint information is required. Also, FLLIT 

requires a fixed viewing angle, from either above or below a walking fly. 

Recently developed deep learning approaches25,26 allow for tracking of varied 

behaviours and setups based on user-annotated training sets.  
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Using FLLIT, we characterise, for the first time, gait signatures of fly models of 

neurodegeneration. Interestingly, SCA3 and PD flies recapitulate distinct gait 

features of the respective human disease. SCA3 flies exhibit lurching, ataxic 

gait, while PD flies show stride rigidity, especially in the hind legs. These 

phenotypes are not differing in degree, rather, they are opposite in character: 

The former being hyperkinetic, and the latter, hypokinetic. Our study suggests 

that perturbation of dopaminergic circuits underlie the PD fly gait dysfunctions, 

resulting in a specific, striking gait signature in PD fly models that are 

otherwise genetically unrelated. Going forward, manipulation of other subsets 

of neurons may help us to understand how specific behavioural dysfunctions 

can result from perturbation of disease genes in different circuits. 

Classification of mutants with similar gait signatures may reveal novel 

relatedness of disease pathways and molecular mechanisms. 

 

Tremor is increasingly prevalent in our aging population49, and improving our 

understanding of the mechanisms underlying tremor is important for the 

rational development of treatments. In this study, we detect and quantify leg 

tremor in freely-moving Drosophila, from large datasets of leg movement data 

tracked from high-speed video. To our knowledge, this is the first automated, 

image-based method for tremor measurement in any animal model. We 

propose that by combining these data with functional and imaging-based 

genetic tools, Drosophila models will be useful for understanding the 

mechanisms underlying tremor and tremor-associated diseases. Our analysis 

of Hk2 and SCA3 mutants indicated that fly tremors occurred at 30–50 Hz. 

This is much more rapid than the tremors that occur in humans, such as those 

in Essential Tremor (4–12 Hz50), and orthostatic tremors (13–18Hz51). The 

reason for this can only be determined when the biophysical and cellular 

mechanisms underlying tremor are better understood. Our study only 

measured tremors that occured during walking, which are likely action 

tremors. Several other types of tremor exist in humans, including resting and 

postural tremors52. Notably, the PD flies examined did not exhibit action 

tremors. We also did not observe resting tremors in these flies; however, 

different assay conditions may need to be developed to systematically 
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determine if other categories of tremor found in humans also occur in 

Drosophila.  It will be now interesting to examine other mutants that exhibit 

tremors, to determine their different tremor “signatures”, and to compare these 

to corresponding human diseases. 

 

In summary, we have developed an automated program for segmenting and 

determining leg-tip positions of freely-walking flies captured on high-speed 

video. Our method, FLLIT, uses machine learning, without the need for 

manual annotation of training sets. Using FLLIT to quantify gait and tremor 

characteristics of fly models of PD and SCA3, we find marked similarities in 

these models compared to the respective human disease. We identify a gait 

signature of PD flies and dopaminergic circuit dysfunction, and a signature of 

fly SCA3 tremors. These experiments set the stage for experimentation with 

more limited subsets of neurons in difference disease contexts, in order to 

understand how specific behavioural dysfunctions result from perturbation in 

different circuits, and for exploration of causal cellular and molecular 

pathways. 
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Figure Legends 
 
Figure 1. System setup and overview of computational workflow. A. Camera and arena 

setup used for video capture. B. Segmentation and tracking procedure. i) Training samples 

are automatically generated by identifying high confidence leg pixels (px) located at the 

intersection between skeletonisation and edge morphological operations. ii) Training sets are 

learned and grown by iterative supervised segmentation to derive a classifier. iii) 

Segmentation of novel images is carried out using the trained classifier. iv) Tracking occurs 

by matching leg claw positions across adjacent frames. v) Results are given as positions of 

leg claws in each frame. 

 
Figure 2. Ground truth demonstrates the accuracy of FLLIT (Feature Learning-based 
LImb segmentation and Tracking) segmentation and tracking results. A. Representative 

images of wild-type Drosophila legs taken using the default settings, and the manual leg-tip 

positions identified by two different human users. Blue and green insets are 10 pixels wide 

and show the respective boxed regions in the top image. Red and yellow dots represent the 

pixels identified as tip pixels by the two users, within the respective blue and green boxes. B. 

Frequency distribution of the deviation (in pixels) between leg-tip positions annotated by the 

two users (n = 54 frames, 324 leg tips, from two videos). Discrepancies can occur in both the 

X and Y directions, and are represented as the Euclidean distance between the two pixels. C. 

Number of corrections required for misidentified legs, normalised to per 1,000 frames (Mean 

= 1.7 corrections; n = 29 videos, 15,166 frames). Plotted as a frequency distribution and a 

scatter plot (inset). D. Percentage of missing data in wild-type Drosophila after tracking (n= 29 

videos, 15,166 frames). E. Frequency distribution of the deviation (in pixels) between 

computationally and manually derived leg tip positions (n= 106 frames, 636 leg tips from two 

videos). F. Segmentation F0.5, precision and recall scores for each video, using only 

morphological parameters alone, or after learning and application of a FLLIT leg classifier. (n 

= 8 videos, 2-3 images per video). Bars represent the means and standard deviations. 

 

See also Video 1. 

Figure 3. Gait signatures of Drosophila models of neurodegeneration reveal properties 

of underlying circuit dysfunctions. A. Climbing performance (highest height climbed in 30 

s) of flies analysed. Data points are coloured as in Figure S5. B. Representative FLLIT-

derived walking leg traces of the respective genotypes. C. Cliff’s delta indices of effect sizes 

(filled circles) of gait parameters with 95% confidence intervals (horizontal lines), with 

respective P values. Positive Cliff’s delta indicates an increase in mutant flies compared to 

respective controls, whilst negative Cliff’s delta indicates a decrease. Detailed statistics are 

given in Supplementary Table 1. Raw values are plotted in Figure S5. The following gait 

parameters were analysed: Body veering (Number of body turns normalised to the average 
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number of strides per leg), Footprint regularity (Standard deviations of the anterior extreme 

position, normalised to body length), Leg domain lengths (normalised to body length), 

Average ratio of the hind vs mid domain length of the right and left sides, Domain overlap 

(number of pixels overlapping between leg domains, normalised to the average number of 

strides per leg), Stride lengths of the mid and hind legs (normalised to body length), Average 

ratio of the hind vs mid stride lengths of the right and left sides.  *P < 0.05, **P < 0.01, ***P < 

0.001, ****P < 0.0001. Genotypes examined: Elav-Gal4>SCA3-flQ27 (n = 10), Elav-

Gal4>SCA3-flQ84 (n = 10), Elav-Gal4>+ (n = 9), Elav-Gal4>SCNA (n = 9), yw (n = 11), park1 

(n = 10), mir-263aKO (n = 11), ple-Gal4>SCA3-flQ27 (n = 14), ple-Gal4>SCA3-flQ84 (n = 15). 

P values were calculated using a non-parametric Mann-Whitney test except for park1 and mir-

263aKO which shared the same control (yw), hence, P was calculated using a non-parametric 

Kruskal-Wallis test with Dunn’s multiple comparisons post-hoc test (See Fig. S5).  

See also Videos 2 - 6. 

 
Figure 4. Detection and characterisation of high frequency leg tremors in Drosophila 

mutants show that at least two circuits underlie tremor. A. Representative leg traces of 

freely walking control (yw) and Hk2 mutant Drosophila. Red indicates the displacement traces 

in the X direction, and blue indicates the displacement traces in the Y direction. Stars indicate 

the shaking events at least 3 pixels in size: black and red stars mark all shaking events, 

whereas red stars mark only tremor events occurring in three consecutive peaks or valleys 

(shown in B). B. Schematic of a representative trace showing the parameters used to 

determine shaking and tremor events. C. Number of shaking events in control (n = 11), Hk2 (n 

= 17) and Sh5 (n = 21) Drosophila. D. Number of tremor events in control, Hk2 and Sh5 

Drosophila. E. Distribution of the time interval durations between tremor peaks or valleys in 

Hk2 flies. A significant proportion of events showed an interval duration of 20-30 ms (P <0.01; 

P value was determined by running a non-parametric permutation test with 100,000 

iterations), reflecting a tremor frequency of ~33-50Hz. F. Top: Number of tremors per second 

in the fore, mid and hind legs of each Hk2 fly that exhibited tremors (n = 17, of which 10 flies 

showed a total of 140 tremors/s). Bottom: Percentage of all tremors accounted for by either 

the fore, mid or hind legs in each Hk2 fly that exhibited tremors. G. Number of tremors per 

second exhibited by each of the genotypes examined: Elav-Gal4>SCA3-flQ27 (n = 10), Elav-

Gal4>SCA3-flQ84 (n = 10), Elav-Gal4>+ (n = 9), Elav-Gal4>SCNA (n = 9), yw (n = 11), park1 

(n = 10), mir-263aKO (n = 11),  ple-Gal4>SCA3-flQ27 (n = 14), ple-Gal4>SCA3-flQ84 (n = 15). 

H. Distribution of the time interval durations between tremor peaks or valleys in Elav-

Gal4>SCA3-flQ84 flies. A significant proportion of events showed an interval duration of 20-

30 ms (P <0.0001; P value was determined by running a non-parametric permutation test with 

100,000 iterations), reflecting a tremor frequency of ~33-50Hz.  I. Top: Number of tremors per 

second in the fore, mid and hind legs of each Elav-Gal4>SCA3-flQ84 fly that exhibited 

tremors when (i) Walking upright (n = 10, of which 8 flies showed a total of 104 tremors/s), or 

(ii) Walking inverted (n = 15, of which 7 flies showed a total of 85 tremors/s). Bottom: 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 25, 2018. ; https://doi.org/10.1101/425405doi: bioRxiv preprint 

https://doi.org/10.1101/425405
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 25 

Percentage of all tremors accounted for by either the fore, mid or hind legs in each Elav-

Gal4>SCA3-flQ84 fly that exhibited tremors when (i) Walking upright (n = 10), or (ii) Walking 

inverted (n = 15). *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001.  All data were analysed 

using a non-parametric Kruskal-Wallis test with Dunn’s multiple comparisons post-hoc test 

unless otherwise stated above. Bars represent the means and standard deviations. 

See also Videos 7 and 8. 

 

 
Table 1. Movement and gait parameters produced by FLLIT include raw body and leg 

claw position data, as well as 23 gait parameters, 5 plots and a tracked video. 
 
Table 2. Gait features of Parkinson’s Disease and Spinocrebellar ataxia in human 

patients, and corresponding gait parameters used to analyse these features in FLLIT. 
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Methods 
 
Iterative Training Module for Leg Segmentation 
 
Leg segmentation is achieved using a supervised learning approach. Training 

images are automatically generated via image-processing steps, without user 

annotation. 

 

First, a pool of representative images is obtained from a set of input images. 

In cases where the image set is an entire video, the representative images 

are obtained by uniform sampling from the video frames. To this aim, we 

select one image frame from every 20 frames. The operations described 

below are carried out for each image in the pool. 

 

1. The silhouette of the subject animal (Drosophila) is extracted as a 

binary foreground via background subtraction, using the following 

formula: 

 

Silhouette = Image x, y − Background > 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 

 

2. Skeletonisation and edge detection of the silhouette foreground 

(standard image morphological operations) was performed on the 

images. The overlap between the skeleton image and the edge image 

primarily occur in the leg regions. The pixels within these regions are 

identified as positive samples containing the leg segments. The 

negative image consists of the fly body and background. 

 

3. A fixed number of high-confidence samples are extracted after 

morphological operations on the segmented results, and used in a 

supervised learning approach. Each training sample is extracted as an 

image patch of 41 x 41 pixels and represented as an instance label pair 

(𝒙!,𝑦!), where 𝒙!  denotes the image patch and 𝑦! = ±1 denotes the 

corresponding label of the central pixel. This process provides the 

initial training dataset to learn the following Kernel-Boost classifier53,54: 
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𝜑 𝑥 = 𝛼!ℎ!(𝑥)
!

!!!

 

Where the classifier function 𝜑 𝑥  is a weighted sum of 𝑀 = 100  weak 

learners ℎ!  with corresponding weights 𝛼! . The primary framework of the 

Kernel-Boost classifier is gradient boosting, which adopts a greedy algorithm 

with quadratic approximation (Box 1). 

 

Box 1: Greedy Algorithm with Quadratic Approximation55,56 

 
 

The Kernel-Boost classifier uses the following approach to update the weak 

learner of the algorithm (Box 1, step 4). The training set 𝑇 is randomly split 

into two sets of fixed sizes: 

 

𝑇 = 𝑇1 ∪ 𝑇2 

 

Instead of relying on pre-defined features, here features are automatically 

learnt on the first training set 𝑇1 in the form of convolution kernels. The weak 

INPUT:  

Labelled training samples {(𝒙!, 𝑦!)}  

Exponential loss function 𝐿(𝑦! ,𝜑(𝒙!)) = 𝑒!!!(𝒙!) 

# Iterations 𝑀 = 100 

1. Initialize model with: 𝜑!(⋅) = 0 
2. For 𝑗 = 1 ∶ 𝑀 
3. Compute the weight 𝑤!

! = !!!(!,!)
!!!

|!!!!!!  

and the “pseudo-residual” 𝑟!
! = − !

!!
!
!"(!,!)
!"

|!!!!!! 

4. Update the j-th weak learner ℎ!:  

ℎ!(⋅) = argmin!(.)!𝑤!
!!ℎ(𝒙!) − 𝑟!

!!
!

!

!!!

 

5. Update the j-th weight 𝛼! by line search:  
𝜑!(⋅) = 𝜑!!!(⋅) + 𝛾𝛼!ℎ!(⋅) 

6. End for on j 

OUPUT:  

𝜑(𝑥) =! 𝛼!ℎ!(𝑥)
!

!!!
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learners are simultaneously learnt in the form of decision trees on the second 

training set 𝑇2. Essentially, the weak learners ℎ!  will be a combination of 

kernels 𝑲 and tree parameters 𝜏 (split threshold), 𝜂 (leaf values). 

 
Learning Kernels on T1 
The kernels are square windows, 4-19 pixels in length and operate on a 

specific fixed square region within each image patch 𝒙! . A total of 100 

candidate kernels are obtained at boosting iteration 𝑗, with the p-th kernel (𝑲!
! ) 

being identified by: 

 

𝑲!
! = argmin

𝑲
𝑤𝑖
𝑗(𝑲 ∗ 𝒙! − 𝑟!

!)!
!∈!!

+ 𝜆! (𝑲(!) −𝑲(!))!
!,!  !"#$%&'()*

 

 

Where 𝑲 ∗ 𝒙! denotes the convolution of kernel 𝑲 on the fixed square region 

within image patch 𝒙!. The second term 𝜆! (𝑲(!) −𝑲(!))!!,!  !"#$%&'()*  is a 

regularization term introduced to impose a smooth kernel. Here, 𝑲(!) denotes 

the 𝑚-th pixel of kernel 𝑲 and 𝜆! is a regularization factor for the p-th kernel 

that is randomly assigned to one of three values: 100, 500 or 1,000. 
 

Constructing Decision Tree on T2 
 
Decision tree learning is performed one split at a time, up to a depth of five 

levels (32 leaf nodes). To learn the tree parameters (split threshold 𝜏! and leaf 

values 𝜂!
!, 𝜂!

! ) at a decision node, a split search is first performed on T2 for 

every candidate kernel 𝑲!
!  as follows: 

 

𝜏!
! , 𝜂!,!

! , 𝜂!,!
! = argmin

!,!!,!!
𝑤!
! 𝜂! − 𝑟!

! !

!∈!!|𝑲!
! ∗𝑿!!!

+ 𝑤!
! 𝜂! − 𝑟!

! !

!∈!!|𝑲!
! ∗𝑿!!!

 

 

Where 𝜏!
!  is the split threshold and 𝜂!,!

! , 𝜂!,!
!  are the leaf values for a specific 

kernel 𝑲!
! . In actual implementation, the optimal split threshold 𝜏! is found by 
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exhaustive search. Subsequently, the leaf values 𝜂!
!  are simply given by the 

weighted sum: 

𝜂!,!
! =

1
𝑤!
!

!∈!!|𝑲!
! ∗𝑿!!!

𝑤!
!𝑟!

!

!∈!!|𝑲!
! ∗𝑿!!!!

 

 

𝜂!,!
! =

1
𝑤!
!

!∈!!|𝑲!
! ∗𝑿!!!

𝑤!
!𝑟!

!

!∈!!|𝑲!
! ∗𝑿!!!!

 

 

The split cost is evaluated for each candidate kernel 𝑲!
! : 

 

split  cost! = 𝑤!
!(𝜂!,! − 𝑟!

!)!

!∈!!|𝑲!
! ∗𝑿!!!!

+ 𝑤!
!(𝜂!,! − 𝑟!

!)!

!∈!!|𝑲!
! ∗𝑿!!!!

   

 

The kernel giving the smallest split cost is chosen for this split.  

 

Subsequently, the split search is performed recursively up to the desired tree 

depth and the final output for the 𝑗-th weak learner is the set of kernels 𝑲!
!  as 

well as the decision tree. A summary of the parameters used is shown in 

Table S1. 
 

Prediction with the Kernel-Boost classifier 
 

During the prediction phase, the classifier is applied onto the subject animal 

(Drosophila) silhouette foreground. For each pixel, the learned kernels and 

decision tree splitting are applied onto the image patches. Passing through all 

iterations gives a confidence probability that the pixel of interest belongs to a 

leg. From our experiments, we found that a confidence threshold of 0.6–0.65 

was optimal. 

 

Parameter Value 

Number of Positive Samples 30000 

Number of Negative Samples 30000 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 25, 2018. ; https://doi.org/10.1101/425405doi: bioRxiv preprint 

https://doi.org/10.1101/425405
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 30 

Sample image patch size 41 square pixels 

Number of samples for learning 

convolutional kernels 

10000 

Min. Kernel Size 4 square pixels 

Max. Kernel Size 19 square pixels 

Number of kernels to explore for 

training one weak learner 

100 

Regularization factor 100;500;1000 

Max. Decision Tree Depth 5 

Shrinkage Factor 𝛾 0.1 

 
Table S1. Parameters used in the Kernel-Boost Algorithm 

 

Tracking module 
 
For tracking, the segmented leg pixels are promoted from pixel level to object 

level representation by grouping connected sets of identified leg pixels while 

rectifying irregularities and noise arising during segmentation. 

 

By obtaining the centroid and angle-of-rotation from the silhouette image, 

each frame is translated and rotated such that the subject animal (Drosophila) 

is aligned with the y-axis. After a single pixel-wide skeletonisation of the legs, 

the leg claw is identified as the endpoint at a maximum distance from the fly 

body. Tracking is automatically initialized by identifying the first frame with the 

correct number of identified legs, which are then labelled according to their 

geometric positions. In the case of Myrmaplata plataleoides (salticid spider) 

spider-leg tracking was manually initiated by marking each leg tip in the first 

frame. Subsequent tracking proceeds as normal.  

 

Leg tracking invokes an optimal linear assignment problem where the leg tips 

in the next frame have to be consistently labelled as those in the current 

frame, as follows: 
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Given tips 𝒙!
!  the position of the 𝑗 -th leg in frame 𝑖  (in body centred 

coordinates), consistent labels 𝑗 = 1,… ,6 have to be assigned to 𝒙!!! of frame 

𝑖 + 1. 

 

The assignment cost is the distance between the tips across the frames and 

the problem seeks a global minimization of this distance to assign a label to 

the tips in the next frame. Formally, the problem can be stated as: 

 

𝒙!!!
!(!) = argmin

!∈!(!,!)
𝒙!!!
!(!) − 𝒙!

!

!

!

!

 

Where there are 𝑚 tips identified in frame 𝑖 and 𝑛 tips identified in frame 𝑖 + 1 

and 𝜎 is an injective mapping from the set of 𝑚 elements to the set of 𝑛 

elements, subject to the constraint that 𝒙!!!
!(!) − 𝒙!

!

!
≤ 20, (i.e. the tip of a leg 

cannot move >20 pixels across a single frame). 

 

We denote the set of all such possible mappings as 𝐾(𝑚,𝑛), using the 

Hungarian method55,56 𝑂(𝑚!) combinatorial algorithm. In the event that legs 

are not found, the last located position of the missing legs in a previous frame 

is utilised to match with any left-over tips in frame 𝑖 + 1. Similarly, in cases of 

leg occlusion or false negatives in identifying leg tips, the previous frame’s 

history is used to restore the correct identity upon leg tip re-appearance. A 

summary of the tracking procedure and parameters is shown in Box 2. A 

manual correction feature in the FLLIT program allows the user to correct 

mislabelled legs or make adjustments to tip positions. 
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Box 2: Tracking Procedure 

 

INPUT:  

Segmented leg pixels in each frame 

 Drosophila Silhouette in each frame 

Maximum Distance Constraint moved by a leg tip 

1. For 𝑖   =   1 ∶  Total number of frames 
2. Obtain centroid position and orientation of the Drosophila from the 

binary silhouette. Translation and rotation operation to align the 
drosophila along the y-axis. 

3. Group segmented leg pixels as different legs and identify leg tips as the 
endpoints at a maximum distance from the body. This gives all leg tips 
𝒙! across all frames. 

4. End for 𝑖 
5. Tracking initialization: identify the starting frame with all legs being 

visible, and label them according to geometric position. This gives 𝒙!"#$"
!  

for 𝑗 = 1,… ,#legs. 
6. For 𝑖 = Starting  Frame + 1 ∶   End  Frame 
7. Labelling tips in frame 𝑖: 𝒙!

!(!) = argmin!∈!(!,!)∑ !𝒙!
!(!) −!

!

𝒙!!!
! !

!
subject to the constraint !𝒙!

!(!) − 𝒙!!!
! !

!
< 20 pixels with 

Hungarian algorithm. 
8. Recovering missing tips with last seen information and left-over tips: 

𝒙!
!"##"$%= argmin

!∈!(#!"##"$%,#!"#$!!"#$)
∑ !𝒙!!"#$!!"#$ − 𝒙!"#$  !""#

!"##"$% !
!

#!"##"$%
!  

9. End For 

OUTPUT:  

Trajectory of leg tips from start to end frame in both the body-centred as 
well as arena-centred frames of reference 
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Experimental Methods 
 
System setup and video recording 
Figures 1 and S1 illustrate the video setup. In brief, a Photron FastCam MC2 

high speed camera was mounted below an arena containing the sample. The 

arena was backlit with a diffused infrared LED array. For Drosophila, the floor 

and ceiling of the arena consisted of glass microscope slides and the arena 

walls were cut from 1.5 mm thick transparent acrylic sheets, representing the 

height of the arena. For Myrmaplata plataleoides video recordings, the floor, 

ceiling and walls of the arena were cut from transparent acrylic sheets. The 

walls of the arena were 6.5 mm high. 

 

Drosophila were transferred into the arena by mouth aspiration or after brief 

incapacitation by cooling on ice, and allowed to acclimatize for at least 5 min 

(mouth aspiration) or 15 min (on ice) before starting the recording. The field of 

view ranged from 9 mm x 9 mm square, to 12 mm x 12 mm square (10 mm x 

10 mm default unless otherwise indicated). For M. plataleoides, the field of 

view measured 50 mm x 50 mm. Video recordings were carried out at 1,000 

frames per second, with 512 x 512 pixel resolution at 25°C, unless otherwise 

indicated. Videos were captured when the animal walked straight through the 

middle of the arena, without touching the perimeter. For efficient automated 

background subtraction by FLLIT, only videos where the subject animal 

moved at least 1.5 body lengths were used. If the user wishes to analyse 

videos where the subject did not traverse at least 1.5 body lengths, they 

should separately upload a background image (see below).  

 

Animal handling 
Drosophila stocks (Sh5 (BL111), Hk2 (BL55), Elav-Gal4 (BL8765), ple-Gal4 

(BL8848), UAS-SCNA (BL51376) SCA3-flQ27 (BL33609), SCA3-flQ84 

(BL33610) and park1 (BL34747)) were obtained from the Bloomington 

Drosophila Stock Centre (Indiana, USA).  Mir-263aGal4KO/bft24 flies (referred 

to as mir-263aKO) were previously described18. Flies were reared at 25 ± 1°C 

in 70% relative humidity in an environmentally controlled incubator on a 12 h 

light-dark schedule. Crosses were set up with 20 females per bottle and 
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flipped every 2 days to prevent overcrowding. Groups of 15–20 males were 

collected within 24 hr of eclosion and aged without further CO2 exposure. 

Flies were flipped onto fresh food every 2–3 days, and vials were laid on their 

sides to minimise flies getting stuck in the food. For ground truth, wildtype flies 

were analysed at 4-7 days. For the mutant genotypes, the age chosen for 

analysis was one at which ~50% of flies climbed below 1.5 cm (4th etching on 

tubes used; see single fly climbing assay protocol below); and flies that 

climbed between 0.3-0.9cm were used for recording (2nd and 3rd etchings on 

tubes used). Based on this criteria, yw, Sh5 and Hk2 aged flies (Fig. 4) were 

analysed at 35-41 days. Elav-G4>SCA3-flQ27 and Elav-G4>SCA3-flQ84 flies 

were analysed at 20-25 days. Elav-G4>+ and Ela-vG4>SCNA flies were 

analysed at 48 days. Yw and park1 flies were analysed at 35 days, mir-263aKO 

flies were analysed at 22-24 days. Ple-G4>SCA3-flQ27 and ple>SCA3-flQ84 

flies were analysed at 21-25 days. All data provided are from males walking 

upright, except for yw, Sh5 and Hk2 aged flies in Fig. 4, which were recorded 

walking upside down/inverted.  

 

M. plataleoides were collected in Singapore and housed individually in 

cylindrical cages (6.5 cm x 8.5 cm) and reared to maturity in captivity. They 

were reared at 25 ± 1 °C and 80-90% relative humidity, on a 12 h light-dark 

schedule. The spiders were fed six fruit flies (D. melanogaster) twice a week 

with access to water ad libitum.  

 
Segmentation groundtruth 
To empirically determine the classification threshold for leg pixel 

segmentation, we manually identified leg pixels in image frames randomly 

sampled from videos of wild-type Drosophila, taken using default recording 

parameters (8 videos, 2–3 images per video). We then determined the 

precision, recall and F0.5 scores achieved using the FLLIT segmentation 

classifiers. 
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Figure M1. Representative image of an annotated, wild-type (yw) Drosophila. 

 

The blurry regions on the edges of the legs are marked with white pixels and 

given a weight of 0, so that they will not be important in assessing the 

precision and recall scores (Fig. M1). The F0.5 score for the tested classifiers 

peaked at 0.6–0.65 (Fig. S2A); hence, we selected this threshold for 

subsequent analyses. Users may adjust the classification threshold in the 

FLLIT interface based on their requirements. 

 
Tracking groundtruth 
Users were instructed to zoom in to the image frame to 800% magnification, 

and to label the leg-tip pixel as accurately as possible with no time constraint. 

One in every 20 frames (5% of each video) was annotated in this way. 

Different colours were used to label each leg tip, and labelled positions were 

then compared with leg-tip positions that were derived computationally or from 

another user.  

 

Error identification 
Misidentification errors occurred mainly during leg retraction and occlusion, 

and had to be corrected to prevent error propagation. Corrections of these 

errors were carried out to minimize the need for further corrections, while 

allowing for missing data. We took advantage of the algorithm’s ability to 

match tips only within a set distance threshold (20 pixels) across frames, by 

locating a correction <20 pixels away from where the leg may reappear after 

occlusion, and >20 pixels away from the site of misidentification, to prevent 

subsequent further cases of misidentification (Fig. S2C). To avoid using these 

incorrectly annotated positions, sharp movements occurring within 1 ms were 

filtered out before carrying out subsequent analyses. Tips that were reported 

absent as a result of these corrections were included in the missing data tally. 
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Background loading 

Segmentation and tracking accuracy depend on clean background subtraction 

(the first step of image processing). As such, an automated background 

subtraction step was built into FLLIT. This automated background subtraction 

algorithm requires the subject animal to move at least a distance of 1.5 body 

lengths; hence, videos were made with this criteria in mind. All data shown 

were generated using the FLLIT-derived automated background subtraction. 

In most cases, this procedure performed well; in some cases, or if the subject 

animal does not traverse at least 1.5 body lengths, loading of a background 

can substantially improve segmentation and tracking (Fig. S2D). A manual 

background can be made either by taking a separate image of the 

background alone, or by constructing one via image processing.  

 

Side by side comparison to DeepLabCut26 
Dataset Preparation - Two manually-annotated Drosophila datasets with 

default settings were used as the ground truth datasets. Within each dataset, 

200 training images were randomly selected and the training set was 

prepared according to the DeepLabCut specifications. A grayscale image was 

converted to three image channels by repeating the grayscale image channel. 

Each training set consisted of 200 three-channel images together with the 

respective annotated tip positions of the six legs. The remaining images within 

the two ground truth datasets formed the testing set. 
Training Parameters - The default training hyperparameters in DeepLabCut 

were used. A pre-trained ResNet 50 network was used as the convolutional 

layers for extracting image features. The Huber loss was adopted as the 

training loss with location refinement set to true. Training was done for 

100,000 iterations separately on each training set. 
Testing phase - The model trained on one dataset was tested on both the 

test sets. We observed that a model trained with images from dataset A will 

often mismatch the leg identities on the test images from dataset B and vice 

versa. We hence manually corrected the leg identities to improve the results 

from DeepLabCut. These leg-tip positions labelled by DeepLabCut were then 
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compared to the manually annotated dataset to generate the deviation in tip 

position in pixels.  

 

Side by side comparison to Isakov et. al.22 
The above two ground truth datasets that were used for comparison to 

DeepLabCut were used. As the TDM method was sensitive to image contrast, 

each video was manually reviewed to select a section with the longest bout of 

straight walking whose image contrast was acceptable by the method for 

successful tracking. The tracking algorithm in Isakov et al. was then used to 

generate predictions for the fly centroid and tip positions of the legs. These 

leg-tip predictions labeled by Isakov et. al.22 were then compared to the 

manually annotated dataset to generate the deviation in tip position in pixels. 

 

Gait parameters 
The following gait parameters were analysed: Body veering (Number of body 

turns normalised to the average number of strides per leg), Footprint 

regularity (Standard deviation of the anterior extreme position, normalised to 

body length), Leg domain length normalised to body length, Average ratio of 

the hind vs mid domain length of the right and left sides, Number of pixels 

overlapping between leg domains, normalised to the average number of 

strides per leg), Stride lengths of the mid and hind legs normalised to body 

length, Average ratio of the hind vs mid stride lengths of the right and left 

sides. 

 

Analysis of shaking and tremor events 
Shaking and tremor events were analyzed as described (Fig. 4B). Matlab 

scripts for detecting extrema and determining tremor frequency are provided 

at the project website. For reference, the three tremor events highlighted in 

the tremor episode in Fig. 4B occurred over a period of ~80 ms, or ~37Hz 

(Video 3; at interval ~1450–1550 ms).  

 

Data preparation and handling 
Videos were cropped so that the animal did not touch the perimeter of the 

arena during the trial. These videos were converted to TIFF format and 
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analysed with FLLIT. Individual video and tracking data that support the 

findings of this study are available from the corresponding author upon 

reasonable request.  

 

Statistical analyses 
Since several distributions did not conform to normality, we used non-

parametric methods for statistical analyses. For comparing two genotypes, we 

used the Mann-Whitney test. For comparing three or more genotypes, we 

used the Kruskal-Wallis test with Dunn’s multiple comparisons post-hoc test. 

Statistical analysis was carried out using Prism 6 (GraphPad Software). 

 

For gait signature analysis, we computed Cliff’s delta for 10 different gait 

parameters (Table 2). Cliff’s delta is a nonparametric measurement of effect 

size that reflects the likelihood that an observation from a test group is greater 

than an observation from a control group. It ranges from -1 (when all values in 

the mutant group are smaller than the control) to +1 (when all values in the 

mutant group are larger than the control). The greater the overlap between 

the two distributions, the closer to 0 Cliff’s delta will be. Unlike Cohen’s d, 

Cliff’s delta can be applied on non-normal distributions. Each mutant genotype 

was compared to the appropriate control as shown in Figure S5. Cliff’s delta 

was calculated according to the original formulation by Norman Cliff57 

using NumPy <https://www.numpy.org>. 95% confidence intervals (95CIs) 

were obtained via bootstrap methods58 with 10,000 samples, using the 

scikits.bootstrap package <https://github.com/cgevans/scikits-

bootstrap>. Forest plots were created with matplotlib <https://matplotlib.org>. 

 

Body size measurement 
Three still images from the video of each fly (first, middle and last frame) were 

used for measurement. Using Microsoft Paint, each image frame was 

magnified to 800%, and the anterior-most pixel of the head and posterior-most 

pixel of the abdomen at the midline were labelled. The labelled images were 

then opened in imageJ, and the scale was input accordingly (Distance in 

pixels: 512, Known distance: varies, Unit of length: mm). A line was drawn 

between the labelled head and abdomen tip pixels to obtain the body length. 
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The length determined in each of the three images was then averaged to 

obtain the average body size.  

 

Single fly climbing assays 
Climbing experiments were carried out between 3 and 6 pm to minimize 

circadian differences. Single flies were transferred to 14ml falcon tubes 

(Falcon #352059), with cut ends sealed with transparent plastic, and allowed 

to acclimate undisturbed for 15–30 min before testing. Flies were lightly 

tapped down to the bottom of the tube, and the climbing height attained in 30 

s was measured. Tubes were then placed horizontally and retested 10–15 

mins later. The average of the 2 technical replicates for each vial was 

recorded, and the height climbed for each fly was plotted as a single point.  

 

FLLIT software 
The most recent version of FLLIT can be downloaded from 

https://github.com/BII-wushuang/FLLIT.  

 

User workflow 
Users first select a data folder of image frames for analysis. They have an 

option to load a background, which is only necessary if the subject moves 

slowly or not at all through a portion of the video, as this hampers automated 

background subtraction. Training then automatically occurs on a subset of the 

dataset before segmentation is carried out. The confidence threshold for 

classification can also be selected. Default settings are pre-loaded. 

Segmentation then proceeds without the need for further input. After 

segmentation, tracking begins. Leg claw positions are highlighted and labelled 

during tracking. Errors in leg identity assignment may occasionally occur 

when legs come in close proximity to each other, cross over, or when a leg 

emerges after a prolonged period of time being hidden. As leg claw positions 

are tracked across adjacent frames, correcting a mis-labelled leg identity at 

the earliest point following the wrongful assignment is usually sufficient to 

correct leg identity in subsequent frames. The user can perform error 

correction either during tracking, or after tracking is completed. Tracking can 

then be resumed from the point of correction.  
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Figure 1. FLLIT system setup and overview of computational workflow. A. Camera and 

arena setup used for video capture. B. Segmentation and tracking procedure. i) Training 

samples are automatically generated by identifying high confidence leg pixels (px) located at 

the intersection between skeletonisation and edge morphological operations. ii) Training sets 

are learned and grown by iterative supervised segmentation to derive a classifier. iii) 

Segmentation of novel images is carried out using the trained classifier. iv) Tracking occurs 

by matching leg claw positions across adjacent frames. v) Results are given as positions of 

leg claws in each frame. 
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Figure 2. Ground truth demonstrates the accuracy of FLLIT (Feature Learning-based 
LImb segmentation and Tracking) segmentation and tracking results. A. Representative 

images of wild-type Drosophila legs taken using the default settings, and the manual leg-tip 

positions identified by two different human users. Blue and green insets are 10 pixels wide 

and show the respective boxed regions in the top image. Red and yellow dots represent the 

pixels identified as tip pixels by the two users, within the respective blue and green boxes. B. 

Frequency distribution of the deviation (in pixels) between leg-tip positions annotated by the 

two users (n = 54 frames, 324 leg tips, from two videos). Discrepancies can occur in both the 

X and Y directions, and are represented as the Euclidean distance between the two pixels. C. 

Number of corrections required for misidentified legs, normalised to per 1,000 frames (Mean 

= 1.7 corrections; n = 29 videos, 15,166 frames). Plotted as a frequency distribution and a 

scatter plot (inset). D. Percentage of missing data in wild-type Drosophila after tracking (n= 29 

videos, 15,166 frames). E. Frequency distribution of the deviation (in pixels) between 

computationally and manually derived leg tip positions (n= 106 frames, 636 leg tips from two 

videos). F. Segmentation F0.5, precision and recall scores for each video, using only 

morphological parameters alone, or after learning and application of a FLLIT leg classifier. (n 

= 8 videos, 2-3 images per video). Bars represent the means and standard deviations. 

 

See also Video 1. 
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Figure 3. Gait signatures of Drosophila models of neurodegeneration reveal properties 

of underlying circuit dysfunctions. A. Climbing performance (highest height climbed in 30 

s) of flies analysed. Data points are coloured as in Figure S5. B. Representative FLLIT-

derived walking leg traces of the respective genotypes. C. Cliff’s delta indices of effect sizes 

(filled circles) of gait parameters with 95% confidence intervals (horizontal lines), with 

respective P values. Positive Cliff’s delta indicates an increase in mutant flies compared to 

respective controls, whilst negative Cliff’s delta indicates a decrease. Detailed statistics are 

given in Supplementary Table 1. Raw values are plotted in Figure S5. The following gait 

parameters were analysed: Body veering (Number of body turns normalised to the average 

number of strides per leg), Footprint regularity (Standard deviations of the anterior extreme 

position, normalised to body length), Leg domain lengths (normalised to body length), 

Average ratio of the hind vs mid domain length of the right and left sides, Domain overlap 

(number of pixels overlapping between leg domains, normalised to the average number of 

strides per leg), Stride lengths of the mid and hind legs (normalised to body length), Average 

ratio of the hind vs mid stride lengths of the right and left sides.  *P < 0.05, **P < 0.01, ***P < 

0.001, ****P < 0.0001. Genotypes examined: Elav-Gal4>SCA3-flQ27 (n = 10), Elav-

Gal4>SCA3-flQ84 (n = 10), Elav-Gal4>+ (n = 9), Elav-Gal4>SCNA (n = 9), yw (n = 11), park1 

(n = 10), mir-263aKO (n = 11), ple-Gal4>SCA3-flQ27 (n = 14), ple-Gal4>SCA3-flQ84 (n = 15). 

P values were calculated using a non-parametric Mann-Whitney test except for park1 and mir-

263aKO which shared the same control (yw), hence, P was calculated using a non-parametric 

Kruskal-Wallis test with Dunn’s multiple comparisons post-hoc test (See Fig. S5).  

 

See also Videos 2 - 6. 
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Figure 4. Detection and characterisation of high frequency leg tremors in Drosophila 

mutants show that at least two circuits underlie tremor. A. Representative leg traces of 

freely walking control (yw) and Hk2 mutant Drosophila. Red indicates the displacement traces 

in the X direction, and blue indicates the displacement traces in the Y direction. Stars indicate 

the shaking events at least 3 pixels in size: black and red stars mark all shaking events, 

whereas red stars mark only tremor events occurring in three consecutive peaks or valleys 

(shown in B). B. Schematic of a representative trace showing the parameters used to 

determine shaking and tremor events. C. Number of shaking events in control (n = 11), Hk2 (n 

= 17) and Sh5 (n = 21) Drosophila. D. Number of tremor events in control, Hk2 and Sh5 

Drosophila. E. Distribution of the time interval durations between tremor peaks or valleys in 

Hk2 flies. A significant proportion of events showed an interval duration of 20-30 ms (P <0.01; 

P value was determined by running a non-parametric permutation test with 100,000 

iterations), reflecting a tremor frequency of ~33-50Hz. F. Top: Number of tremors per second 

in the fore, mid and hind legs of each Hk2 fly that exhibited tremors (n = 17, of which 10 flies 

showed a total of 140 tremors/s). Bottom: Percentage of all tremors accounted for by either 

the fore, mid or hind legs in each Hk2 fly that exhibited tremors. G. Number of tremors per 

second exhibited by each of the genotypes examined: Elav-Gal4>SCA3-flQ27 (n = 10), Elav-
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Gal4>SCA3-flQ84 (n = 10), Elav-Gal4>+ (n = 9), Elav-Gal4>SCNA (n = 9), yw (n = 11), park1 

(n = 10), mir-263aKO (n = 11),  ple-Gal4>SCA3-flQ27 (n = 14), ple-Gal4>SCA3-flQ84 (n = 15). 

H. Distribution of the time interval durations between tremor peaks or valleys in Elav-

Gal4>SCA3-flQ84 flies. A significant proportion of events showed an interval duration of 20-

30 ms (P <0.0001; P value was determined by running a non-parametric permutation test with 

100,000 iterations), reflecting a tremor frequency of ~33-50Hz.  I. Top: Number of tremors per 

second in the fore, mid and hind legs of each Elav-Gal4>SCA3-flQ84 fly that exhibited 

tremors when (i) Walking upright (n = 10, of which 8 flies showed a total of 104 tremors/s), or 

(ii) Walking inverted (n = 15, of which 7 flies showed a total of 85 tremors/s). Bottom: 

Percentage of all tremors accounted for by either the fore, mid or hind legs in each Elav-

Gal4>SCA3-flQ84 fly that exhibited tremors when (i) Walking upright (n = 10), or (ii) Walking 

inverted (n = 15). *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001.  All data were analysed 

using a non-parametric Kruskal-Wallis test with Dunn’s multiple comparisons post-hoc test 

unless otherwise stated above. Bars represent the means and standard deviations. 

 

See also Videos 7 and 8. 
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Table 1. Movement and gait data automatically computed by FLLIT include raw body and 

leg claw position data, as well as 23 leg movement parameters, 5 plots and a tracked video.	  
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Table 2. Gait features of Parkinson’s Disease and Spinocerebellar ataxia and 

corresponding gait parameters computed by FLLIT.	  
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