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abstract Grid cells have attracted broad attention because of their highly symmetric
hexagonal firing patterns. Recently, research has shifted its focus from the global sym-
metry of grid cell activity to local distortions both in space and time, such as drifts in
orientation, local defects of the hexagonal symmetry, and the decay and reappearance
of grid patterns after changes in lighting condition. Here, we introduce a method that
allows to visualize and quantify such local distortions, by assigning both a local grid
score and a local orientation to each individual spike of a neuronal recording. The score
is inspired by a standard measure from crystallography, which has been introduced to
quantify local order in crystals. By averaging over spikes recorded within arbitrary re-
gions or time periods, we can quantify local variations in symmetry and orientation of
firing patterns in both space and time.

1 introduction

Neurons in the entorhinal cortex are often classified based on their spatial firing pat-
terns. Grid cells, in particular, have attracted a lot of attention, because of their highly
symmetric hexagonal activity (Fyhn et al., 2004; Hafting et al., 2005). To decide whether
a given cell should be classified as a grid cell or a non-grid cell (Diehl et al., 2017; Hard-
castle et al., 2017; Krupic, Burgess, and O’Keefe, 2012), researchers need a grid score: a
number that quantifies the degree of hexagonal spatial symmetry in the firing pattern
of the cell. Since the first reports of grid cells, the community has developed and refined
a standard grid score (Barry and Burgess, 2017; Langston et al., 2010; Sargolini et al.,
2006a; Wills et al., 2010), which relies on the following procedure. Spike locations are
transformed into a rate map. The peaks in the spatial autocorrelogram of this rate map
are used to obtain measures of the grid spacing and the grid orientation. The auto-
correlogram of the rate map is then cropped, rotated and correlated with its unrotated
copy. A grid score is finally obtained from the resulting correlation-vs-angle function at
selected angles (for details see Section S.3). This procedure assumes a consistent hexag-
onal pattern throughout the arena and results in a single grid score for the entire firing
pattern.
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While this grid score has many benefits, it is inherently global and ignores local prop-
erties of firing patterns. Recent studies have shown, however, that the firing patterns
of grid cells show interesting local effects, such as drifts in orientation (Stensola et al.,
2015) or local defects of the hexagonal symmetry (Krupic, Bauza, Burton, Barry, et al.,
2015; Krupic, Bauza, Burton, and O’Keefe, 2018). These results call for new methods for
quantifying the local symmetry and the local orientation of grids.

Here, we introduce a method that assigns both a grid score and an orientation to each
individual spike of a neuronal recording. This spike-based score is inspired by a standard
measure from crystallography (Halperin and Nelson, 1978), which has been introduced
to quantify local order in crystals. By averaging over spikes recorded within arbitrary
regions or time periods, we can quantify local variations in symmetry and orientation
of firing patterns in both space and time. A high spatial and temporal resolution can be
achieved by averaging over multiple cells.

To illustrate the potential of our method, we apply it to both artificially generated data
and neuronal recordings from grid cells. In the following, we first introduce the method
in detail. Comparing it to the conventional correlogram-based grid score (Langston et al.,
2010), we show that both methods perform similarly when quantifying and classifying
grid properties globally. We then illustrate the benefits of our spike-based score to
analyze and visualize local properties of spike patterns in space and time.

2 methods

The suggested grid score relies on a measure that is used to describe symmetry in crys-
tals (Halperin and Nelson, 1978). Neuronal recordings differ from crystalline arrange-
ments of atoms in several respects and therefore call for some modifications. Firstly,
crystals form a symmetric arrangement of neighboring atoms, whereas grid cells show
a symmetric arrangement not of spike locations, but of firing fields, each of which cor-
responds to many spikes. This requires a modified definition of neighborhood. Sec-
ondly, crystals consist of many atoms, which show rare deviations from a symmetric
arrangement. In contrast, grid cells show relatively few firing fields in an often highly
non-symmetric arrangement. This requires a modification to avoid false positives aris-
ing from other symmetries. In the following, we first describe the basic idea of the
score and then introduce the modifications that are necessary to adjust it to neuronal
recordings.

Python code of the method is available from our repository https://gitlab.tubit.

tu-berlin.de/simonweber/gridscore (Weber, 2018) under the GNU General Public Li-
cense v3.0. We also encourage readers to try the suggested grid score on their own data
on our website: http://gridscore.cognition.tu-berlin.de/.
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2.1 Measuring M-fold symmetry in crystals

The angular symmetry of an arrangement of N neighbors around a given atom in a
crystal can be quantified by a complex number (Halperin and Nelson, 1978):

ψ(M) :=
1

N

N∑
l=1

exp(iMφl) , (1)

where i is the imaginary unit and φl is the angle between an arbitrary reference vector
and the vector pointing from the atom in question to its l-th neighbor (Halperin and
Nelson, 1978). In the following, we will use the horizontal axis from left to right as the
reference vector (Figure 1a). M is a natural number that characterizes the symmetry of
interest. For instance, M = 6 corresponds to a hexagonal arrangement of atoms and
M = 4 to a quadratic arrangement. The computation of this score can be visualized as
an addition of vectors in the complex plane (Figure 1a).

The absolute value |ψ(M)| ranges from 0 to 1, and larger values indicate a more pro-
nounced M-fold symmetry. If the N neighboring atoms lie on the corners of a regular
M-polygon, the angle 1

M arg
(
ψ(M)

)
is the orientation of this polygon (Figure 1a). The

function arg(x) maps to values between −π and π radians, so the resulting orientation is
between −π/M and π/M. For hexagonal symmetry, this corresponds to values between
−30 and 30 degrees.

2.2 Defining the neighborhood of a spike

The ψ measure has been introduced to quantify symmetry in crystalline structures
where neighborhood is clearly defined. For example, the nearest neighbors of a reference
atom are all atoms within a distance of one lattice constant. For a given spike in a grid
pattern, however, the nearest neighbors are most likely other spikes from the same grid
field. To assess whether a given spike is part of a symmetric grid, we are hence interested
not in neighboring spikes, but in spikes in neighboring grid fields, i.e., spikes that are
roughly one grid spacing away from the spike in question. To identify these relevant
spikes, we define a neighborhood shell—a two dimensional annulus (Figure 1b). We then
center this neighborhood shell at the location of the spike in question and consider all
spikes within the shell as its neighbors. Assuming that the grid spacing does not change
drastically across the environment, we use the same shell size for all spikes.

To identify a suitable size of the shell, we use the histogram of pairwise distances
between all spike locations. For periodic firing patterns, this histogram has pronounced
peaks (Figure 1b). The first peak characterizes the size of the grid fields. The second
peak corresponds to the grid spacing `, and further peaks arise at multiples of the grid
spacing. We therefore set the inner radius of the neighborhood shell to 5

6` and the outer
radius to 7

6` (Figure 1b). To reduce the noise arising from finite numbers of spikes, we
determine the peaks from a smoothed histogram, obtained by applying a Gaussian filter
with a standard deviation of 1% of the maximal pairwise distance. The suggested shell
width of 1

3` is motivated by the typical size of grid fields, but the suggested grid score
is robust to changes of the shell width. Scaling the shell width with the grid spacing
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Figure 1: a) Illustration of the ψ measure for 6-fold symmetry. Left: A reference ‘atom’ (black
disc) with four neighbors (colored discs). Arcs show the angles, φl, to a reference
axis (dashed black line) for all neighbors l ∈ {1, 2, 3, 4}. The blueish neighbors lie on
the corners of a hexagon. The red neighbor is a defect to this hexagonal structure.
Right: Sum of four unit vectors with directions given by 6φl (colored arcs). Vectors
associated with neighbors that lie on the corners of the same hexagon (blueish colors)
point in the same direction. The vector associated with the defect (red) points in a
different direction. The length |ψ| of the resulting vector, normalized by the number
of neighbors (black arrow), quantifies how much the reference atom is embedded in
a hexagonal structure. The direction arg(ψ) of the vector—divided by 6 to reverse
the previous rotation—indicates the orientation of the hexagon. b) Detection of the
neighborhood shell. Locations of spikes of a grid cell and smoothed histogram of
the pairwise distances between all spikes. Dashed lines indicate the automatically
detected neighborhood shell. Top: Generated data. Bottom: Experimental recording
kindly provided by Stensola et al. (2015). c) Preventing false positives by discarding
other symmetries. Example |ψ(M)| and ψ̂ values for a spike (black) with few neighbors
(blue) in six different configurations. d) Same spike maps as in b, color-coded with the
spike-based grid score ψ̂k (left) and the spike-based orientation θk = 1

6 arg(ψk) (right).
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is commensurate with the experimental finding that the ratio of grid spacing and grid
field size is constant (Brun et al., 2008).

The detection of the correct neighborhood shell as the second peak of the histogram of
pairwise distances is a crucial step in the computation of the grid score. For noisy grid
patterns, the first peak of the histogram—which indicates the size of the grid fields—is
sometimes hard to detect, leading to a potential misclassification of the second peak as
the first, and consequently a wrong neighborhood shell (Figure 3f). In data sets where
this is the case (Figure 6, Figure 4a,b,c,d), we use the following remedy: We define a
rough cutoff distance that is larger than the grid field size and smaller than the grid
spacing, and use the first peak above the cutoff to determine the shell size. For the
analyzed grid patterns, taking 15% of the side length of the arena for this cutoff worked
reliably.

In the dataset with very noisy and elliptic grids (Figure 4e,f,g,h,i,j), peak detection can
fail for many cells. In this case, we exploit the fact that nearby grid cells have a similar
grid spacing (Hafting et al., 2005) and determine the neighborhood shell from less noisy
grid cells of the same population.

2.3 Comparing to other symmetries prevents false positives

A large |ψ
(6)
k | value indicates that the neighbors of the k-th spike are arranged on

the corners of a hexagon, but it does not require that all corners of the hexagon are
occupied. If, for example, the firing fields of a cell are arranged on a line, this leads
to high |ψ(6)| values although the structure does not resemble a grid (Figure 1c). This
can lead to a wrongful classification of a cell as a grid cell, i.e., to false positives. To
avoid high local grid scores without an actual 6-fold symmetry, we compute |ψ

(M)
k | for

a range of symmetries (M ∈ {2, ..., 7}) and only assign a non-zero grid score to spike k if
the hexagonal symmetry is the strongest:

ψ̂k :=

{
|ψ

(6)
k |, if |ψ(6)

k | > |ψ
(M)
k | ∀M ∈ {2, 3, 4, 5, 7}

0, otherwise .
(2)

We refer to ψ̂k as the grid score of spike k. Comparing to symmetries with M > 7 did not
have an effect on our results, so we restricted M to a maximum of 7.

A global grid score Ψ and the global grid orientation Θ for a given cell is calculated
by averaging over the respective properties of the individual spikes. A summary of the
algorithm is shown in Algorithm 1.

2.4 Tools to evaluate the spike-based grid score

In the following, we compare the suggested local grid score to a conventional correlation-
based grid score. Details on the calculation of this score, on the shuffling procedure for
grid cell classification, and on the generation of artificial spike data can be found in
Section 4.7.
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Input: Two dimensional spike locations xk, where k ∈
{
1, . . . ,Nspikes

}
// Get the central radius of the neighborhood shell

Compute the smoothed histogram of pairwise distances between all spike locations and
determine the position ` of the second peak of this histogram.

// Assign a grid score to each spike

foreach k ∈
{
1, . . . ,Nspikes

}
do

// Get the neighbors of spike k

Determine the Nk spike positions xl ∈ {1, . . . ,Nk} within an annulus centered at xk
with inner radius 5

6` and outer radius 7
6`.

// Get the angle to each neighbor

foreach l ∈ {1, . . . ,Nk} do
Compute the angle φl between the vector that points from xk to xl and a reference
axis.

end
// Get the psi values for different symmetries

ψ
(M)
k = 1

Nk

Nk∑
l=1

exp(iMφl) ∀M ∈ {2, . . . , 7}

// Compute the grid orientation of spike k

θk = 1
6 arg

(
ψ

(6)
k

)
// Compute the grid score of spike k

ψ̂k =

{
|ψ

(6)
k | if |ψ

(6)
k | > |ψ

(M)
k | ∀M ∈ {2, 3, 4, 5, 7}

0 otherwise

end
// Compute the global orientation of the entire firing pattern

Θ = 〈θk〉 , where 〈. . .〉 denotes the mean over all spikes.

// Compute the global grid score of the entire firing pattern

Ψ =
〈
ψ̂k

〉
Algorithm 1: Algorithm to compute spike-based grid scores ψ̂k and orientations θk and their

averages Ψ and Θ.
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3 results

To evaluate the spike-based grid score, we apply it to generated and experimentally
recorded firing patterns. We begin by contrasting the mean grid score of all spikes, Ψ
(see Algorithm 1), and the correlogram-based grid score, ρ (see Section S.3), and show
that they are similarly powerful for quantifying the symmetry of grid patterns and
classifying grid cells. We then demonstrate how the individual spike scores, ψ̂k (see
Algorithm 1), can be used to systematically analyze local distortions of gridness and
orientation in space and time.

3.1 The mean of the spike-based score characterizes global grid properties

Grid scores are typically used for two purposes: Quantifying the hexagonality, i.e., the
gridness, of the spike map and classifying a cell as a grid cell. Given that the patterns of
grid cells are rarely perfectly hexagonal, a grid score should classify a cell as a grid cell
even if the hexagonal pattern is weakly distorted. For example, a grid score needs to be
robust against small shifts of grid field locations or elliptic distortions like shearing. At
the same time, a grid score should quantify such distortions by returning lower values
for stronger distortions.

Quantifying gridness

To study the range of values for the ρ score and the Ψ score, we generate spike loca-
tions with different degrees of perturbation by randomly shifting the locations of grid
fields arranged on a perfect hexagonal grid (Figure 2a, b, see Section S.2 for details).
The less hexagonal the arrangement of firing fields, the fewer spikes have a large ψ̂k

score (Figure 2a). The Ψ score, i.e., the mean over all spikes, and the correlogram-based
ρ score, both decay with increasing noise on field locations (Figure 2c, results from 100

random realizations of spike patterns for each noise level). Ψ scores are around 0.35 for
perfect grids and decrease to zero for random field locations. ρ scores are around 1.5
for perfect grids and decrease to −0.5 for random field locations. Ψ scores close to 1 are
never reached, because many spikes at the edges of grid fields have an individual grid
score of ψ̂k = 0 (Figure 2a).

The two scores differ in how they react to small and medium perturbations of the
field locations. The median of Ψ scores decreases linearly with increasing standard
deviation of the grid field locations. In contrast, the median of ρ scores is not affected by
small perturbations but decays abruptly at medium-sized perturbations. This non-linear
decay arises because perturbations of field locations that are much smaller than the
grid spacing lead to a blurred, but almost perfectly hexagonal correlogram (Figure 2b).
Larger perturbations destroy the symmetry of the correlogram.

To study whether the two scores agree on the gridness of individual firing patterns,
we correlate their values. The resulting Pearson correlation coefficients are r = 0.87
for generated data and r = 0.62 for experimentally recorded data (Figure 2d,e; data
from Sargolini et al., 2006a,b). The lower correlation for experimental recordings results
mainly from firing patterns for which either of the two scores failed in detecting the
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Figure 2: Quantifying the global symmetry of firing patterns. a) Generated spike maps in a 1m×
1m arena. Each spike k is color-coded with its grid score ψ̂k; global Ψ score shown
above. Top: Perfect grid. Middle: Weakly perturbed grid field locations. Bottom:
Strong perturbations. See text for description of perturbations. b) Autocorrelograms
of the spike maps shown in a; ρ score shown above. c) Decay of Ψ score (top) and ρ
score (bottom) with increasing noise on grid field locations. Box plot for 100 random
realizations at each noise level. For details on the box plot see Section S.4. Noise values
for the examples shown in a are indicated with markers. d) Correlation of Ψ score with
ρ score and Pearson’s coefficient r for the generated data used in a,b,c. e) Same as d but
with experimentally recorded data from (Sargolini et al., 2006a,b). f,g) Arrangement
as in a,b, but for generated spike maps with different degrees of shearing. Top: No
shearing. Middle: Weak shearing. Bottom: Strong shearing. h) Arrangement as in c
but with increasing shearing strength on the horizontal axis. Shearing strengths for
the examples shown in f are indicated with markers.
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required shell (the neighborhood shell for the Ψ score and the annulus for the ρ score;
see also Figure 3).

Above, we distorted grid patterns by random shifts to each node of a hexagonal grid.
Experiments have shown that grid patterns are often distorted in a different way: a per-
fect hexagonal grid is sheared and thus elliptically deformed (Stensola et al., 2015). To
study the influence of elliptic distortions on Ψ scores and ρ scores, we generate a per-
fect grid and apply a horizontal shearing transformation to the locations of grid fields
(Figure 2, see Section S.2 for details). The shearing reduces the 6-fold symmetry and
leads to a smooth and subtle decay of Ψ scores with increasing shearing (Figure 2h).
In contrast, the elliptic shape of the correlogram (Figure 2g) leads to a sudden drop of
ρ scores (Figure 2h) at intermediate shearing strengths.

Classifying grid cells

When should we classify a recorded cell as a grid cell? A simple method for classi-
fication would be to call a cell a grid cell if its (ρ or Ψ) score exceeds a fixed threshold.
For the ρ score, a reasonable threshold is 0.75 (Kropff and Treves, 2008). From the rela-
tion between the two scores (Figure 2d,e), we could deduce a threshold of 0.15 for the
Ψ score. Using such a fixed threshold for classification can be misleading, though. A fir-
ing pattern with perfect hexagonal symmetry, but many “background” spikes outside of
firing fields—which might just be an artifact of the extracellular recording, rather than
a property of the cell—should be classified as a grid cell, even if its grid score is low.
For grid cell classification it is thus common to use a flexible threshold, i.e., an individual
threshold that is computed for each cell. It is determined as follows: the spike locations
are shuffled at random (see Section S.1 for details on the shuffling procedure). This
shuffling is done with 100 random initializations and results in 100 new spike maps.
The grid score is computed for each shuffled spike map. The threshold is then defined
as the 95th percentile of the grid scores obtained for the shuffled spike maps. Only if
the grid score of the actual spike map exceeds this threshold, the cell is called a grid cell.
This classification method can be used for either grid score.

For the experimental data from Sargolini et al. (2006a), which are publicly available
(Sargolini et al., 2006b), we find that the Ψ score and the ρ score lead to the same classi-
fication for more than 78% of the cells. Out of 619 cells, 196 are classified as grid cells
by the Ψ score and 170 by the ρ score (Figure 3a). 116 cells are classified as grid cells by
both scores. Cells that are classified as grid cells by a score also tend to have a high value
of this score, although sometimes even low grid scores result in a positive classification
(Figure 3b).

For symmetric grid patterns with a small number of background spikes, the Ψ score
and the ρ score typically both classify the cell as a grid cell (Figure 3c). For non-grid cells
with irregular firing, the classification of both scores is typically negative (Figure 3d).

A disagreement between the two scores can have different reasons. If the grid pattern
has many spikes outside of grid fields, the cell might be classified as a grid cell by one or
both scores although both are low (Figure 3e). For strong activity outside of firing fields,
the detection of the correct neighborhood shell can fail, thus leading to wrongfully low
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Figure 3: Classifying grid cells with the spike-based and the correlogram-based grid score. a)
Venn diagram of 619 recordings from cells in mEC. Different colors highlight areas
with different classification results (classification by Ψ and/or ρ score positive/nega-
tive). See text for a description of the classification method. b) Correlation of Ψ and
ρ score as in Figure 2e. Markers represent the classification of the cell using the color
code and the symbols from a. c,d,e,f,g) Individual recordings in different classifica-
tion categories. The category is indicated by the blueish marker on the left, using
the scheme in a. From left to right: spike map with each spike k color-coded with
its grid score ψ̂k (global Ψ score shown above); smoothed spike density (“rate map”),
brighter values indicate higher density of spikes; autocorrelogram of the rate map (ρ
score shown above); smoothed histogram of pairwise distances of all spikes, dashed
orange lines show automatically detected neighborhood shells. See text for a detailed
description of all examples. Experimental data recorded and made publicly available
(Sargolini et al., 2006b) by Sargolini et al. (2006a).
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grid scores of all spikes (Figure 3f). In line with the observed robustness of the Ψ score
to elliptic distortions (Figure 2h), cells with elongated grid patterns may be classified as
grid cells by the Ψ score, but not by the ρ score (Figure 3g).

In summary, the Ψ score and the ρ score perform comparably in quantifying and
classifying grid cells, but the Ψ score is more robust to elliptic distortions. In the next
section, we highlight the advantages of a spike-based grid score for the analysis of local
grid properties.

3.2 The spike-based score detects local grid distortions

So far we assumed that gridness is an arena-wide property of a firing pattern. We
did not consider local defects. But recent experiments have shown that grid patterns
are often locally distorted. Such distortions have been observed in both asymmetric
(Krupic, Bauza, Burton, Barry, et al., 2015; Krupic, Bauza, Burton, and O’Keefe, 2018)
and quadratic environments (Hägglund et al., 2018; Stensola et al., 2015), and are pre-
sumably caused by boundary effects. Moreover, Wernle et al. (2018) have shown that
grid patterns recorded in two arenas separated by a wall do not form a coherent grid
(Wernle et al., 2018), but merge into a more coherent pattern when the wall is removed.

We now show that our spike-based grid score is suitable to quantify and visualize
such local properties. We first illustrate this for generated spike data and then for exper-
imental recordings.

To generate an example of a grid pattern with local defects, we first generated a
perfect grid and then added random vectors to the field locations (cf. Figure 2a, see
Section S.2 for details) only in the eastern half of the arena (Figure 4a,b). To analyze
gridness locally, we divide the arena into partitions and compute the Ψ score within
each partition, i.e., the mean over all ψ̂k scores for all spikes k within the given partition
(Figure 4c). Averaging over multiple cells highlights that the gridness decays along the
west-east axis but stays stable along the south-north axis, and this trend is already visible
for individual cells (Figure 4c,d).

We now apply the same analysis to recent experimental data. Wernle et al. (2018)
recorded grid cells from rats that explored the northern and southern half of a 2m× 2m
box (Wernle et al., 2018). The two halves were initially separated by a wall. The cells
fired in grid patterns independently in both halves of the arena (Figure 4e). Then the
authors removed the wall and let the rat explore the entire arena. At the southern and
northern boundaries, the grid fields typically stayed at the same locations as before wall
removal. Close to the former location of the wall, the grid fields moved—and sometimes
even merged—to form a more coherent grid pattern (Figure 4f). Quantifying the local
increase of coherence requires a local grid score.

We therefore use our spike-based grid score to show that the rearrangement of grid
fields after wall removal indeed leads to a local increase of gridness. Given that the firing
patterns of the grid cells are noisy and strongly elliptic, it is difficult to determine the
peaks in the histograms of pairwise spike distances (Figure 4e,f). We thus set the central
distance of the neighborhood shell manually to ` = 65cm—a value that we obtained by
visual inspection of the histograms of pairwise spike distances of all 11 recorded cells,
after wall removal. We divide the arena into three equal sized partitions. For south-
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Figure 4: Visualizing and quantifying local distortions of grid patterns. a,b) Generated spike lo-
cations with noise on grid field locations applied only on the east side of the arena (see
text for details, 2 example cells). The color of each spike location shows the ψ̂k score.
Shown above: Ψ score. c) East-west (left) and south-north (right) partitioning of the
arena. Black lines show partition boundaries. Colors of partitions indicate the Ψ score
within the partition for the examples in a (top) and b (bottom). d) Ψ score in partitions
along west-east axis (dark blue) and south-north axis (light blue). Crosses show results
for 10 randomly generated spike maps with noise on field locations applied only on
the east side. Filled circles indicate the mean over 10 realizations. e) Spike locations
of two example cells recorded in a rat that explored the northern and southern half
of a box. The two halves are separated by a wall (dashed gray line). The spikes in
each half were recorded in separate sessions. Color-coding as in a. f) Spike locations
of the two cells shown in e while the rat explored the entire arena after the separating
wall was removed. g) Grid score in south-north partitions before wall removal (left)
and after wall removal (right) for the cells in e,f. Color-coding as in c. h) Ψ scores in
the south-north partitions shown in g for 11 recorded cells. Crosses denote individual
cells, filled circles the mean across cells. Ψ scores before wall removal in dark blue, Ψ
scores after wall removal in light blue. i) Ψ scores in west-east partitions for the cells
in e,f. Arrangement as in g. j) Ψ scores in the west-east partitions shown in i. Same
recordings and arrangement as in h. Data in panels e-j kindly provided by (Wernle
et al., 2018).
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north partitioning (Figure 4g), the grid score is typically lowest in the partition that
contains the separating wall (Figure 4h). After wall removal, the grid score increases
in all partitions, but the increase is most prominent in the partition that contained the
separating wall (Figure 4h). In contrast, a west-east partitioning does not lead to a
single partition with predominantly low grid scores. Moreover, the increase after wall
removal is similar for all west-east partitions (Figure 4i,j). Our analysis thus quantifies
the qualitative observation that two initially independent grids locally rearrange to form
a more coherent grid. For less elliptic grid patterns, we assume our quantitative results
to be even more pronounced.

In summary, a spike-based grid score visually highlights local grid defects. Averaging
spike scores in arbitrary partitions and potentially over many cells enables a systematic
analysis of grid defects on a spatial scale smaller than the grid spacing.

3.3 The spike-based score detects shifts in grid orientation

Early work on grid cells has shown that the firing patterns of anatomically nearby
cells typically have a similar orientation (Hafting et al., 2005), which tends to align with
a cardinal axis of the environment (Krupic, Bauza, Burton, Barry, et al., 2015; Stensola et
al., 2015). While these findings suggest a constant grid orientation, experiments from the
same group have shown that the orientation can drift within the arena or exhibit local
distortions (Hägglund et al., 2018; Stensola et al., 2015). To quantify these experiments,
a local measure of grid orientation is needed.

In the following, we study local grid orientation using the angle θk of spike k (see Al-
gorithm 1 for the definition) on generated (see Section S.2) and recorded firing patterns
that were kindly provided by Stensola et al. (2015).

When each spike is color-coded according to its grid orientation θk, the spikes of
firing fields have the same color for a perfect hexagonal grid—except the spikes at the
edge of a grid field (Figure 5a). In contrast, the color-coding shows a sudden switch if
the orientation is changed abruptly (Figure 5b) or a color gradient if the grid orientation
drifts continuously across the arena, both in generated data (Figure 5c) and in recordings
(Figure 5d). If the drift in orientation is along the south-north axis of the box, the
gradient follows this axis (Figure 5c,d). This can be highlighted by partitioning the
arena and calculating the mean value of the orientation θk for all spikes k within each
partition (Figure 5c,d). To highlight an orientation drift recorded in multiple cells, we
average over the the orientation θk for spikes from several cells. For the recordings of
Stensola et al. (2015), this shows that the orientation increases monotonically from south
to north, but varies less systematically from west to east, for a set of 5 cells recorded in
the same rat (Figure 5e,f). Note that changes in grid orientation distort the correlogram,
which can lead to low ρ scores (Figure 5b,c), even if the grid-like structure is clearly
apparent. In contrast, the Ψ score is robust to distortions in orientation because of its
locality.

In summary, a spike-based orientation measure highlights local distortions in grid
orientation. Averaging spike-based orientations, using arbitrary spatial partitionings,
allows to further classify the distortion.
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Figure 5: Visualizing and quantifying local changes in orientation of grid patterns. a,b,c,d) From
left to right: spike locations; spike locations where each spike is color-coded with its
ψ̂k score (global Ψ score shown above); autocorrelogram of the firing pattern (ρ score
shown above); spike locations where each spike is color coded with its orientation θk
(global orientation Θ shown above); four different spatial partitionings of the arena
where black lines show partition boundaries and colors of partitions show the average
orientation within each partition (mean of θk values) using the orientation color-code.
a) Generated perfect grid pattern with orientation of 10 degrees. b) Generated grid
pattern with abrupt change in orientation. c) Generated grid pattern with drifting
orientation. d) Experimentally recorded grid pattern with drift in orientation. e) Four
further experimental examples and the average of their spike-based orientation values
in west-east and south-north partitionings. f) Orientations along west-east and south-
north in the partitions shown in e. Data kindly provided by Stensola et al. (2015).
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3.4 The spike-based score quantifies temporal fluctuations of grid patterns

Whether or not the spikes of a cell form a hexagonal spatial pattern can vary in time.
For example, the activity of grid cells loses its periodicity when the light is turned off
(Chen et al., 2016; Pérez-Escobar et al., 2016). A decay of grid-like firing patterns can
also be triggered by internal modifications, like the deactivation of hippocampal drive
to the entorhinal cortex (Bonnevie et al., 2013). In the following, we show how the spike-
based grid score can be used to study changes in grid cell activity with high temporal
resolution.

The standard procedure for computing a grid score in a given time interval is to take
the spike locations from all spikes that occurred in this interval and compute the grid
score for the resulting pattern. While this can be done with both the correlogram-based
score and the spike-based score, it introduces constraints on the temporal resolution,
because the temporal window must contain a sufficient coverage of the arena to obtain
a meaningful score.

This problem can be circumvented with a spike-based grid score, because for a given
spike map, each spike k has a grid score ψ̂k and a time tk. In other words, the grid
score ψ̂k at time tk quantifies the contribution of spike k to the grid pattern formed by
all spikes. Just like the global grid score Ψ is calculated by averaging over the individual
ψ̂k values of all spikes, a temporally local grid score can be obtained by averaging the
ψ̂k values of the spikes in an arbitrary time interval. The resulting average quantifies
how much the spikes in this interval contribute to the grid in the complete recording.

To demonstrate that the spike-based grid score can characterize temporal changes in
grid patterns, we consider generated data with a sudden transition from spatially homo-
geneous to grid cell activity (Figure 6a). Plotting the individual grid scores as a function
of spike time highlights the transition to the grid pattern, although the grid scores ψ̂k

of the individual spikes are computed using the locations of all spikes (Figure 6a,b).
The transition is emphasized by temporal smoothing (Figure 6c). Requirements for the
smoothing filter are discussed later. Note that such an analysis first of all requires that
a grid pattern can be detected in the full recording, so that a meaningful neighborhood
shell can be identified.

We now use this method to analyze spike patterns from cells in mice that forage in
an arena in alternating trials of darkness and light (Pérez-Escobar et al., 2016). For the
recorded grid cells (Figure 6d), the filtered time evolution of grid scores ψ̂k is strongly
correlated with darkness and light—grid scores tend to be higher in light trials (Fig-
ure 6e). The Pearson correlation coefficient between lighting condition and the smoothed
grid scores (r = 0.57 and r = 0.53 for single cells and r = 0.69 for the average over
smoothed grid scores of two cells) indicate that only few simultaneously recorded cells
are necessary to reach confident conclusions about temporal variations in the quality of
grid patterns or contextual influences on grid cell activity.

But how quickly does the grid pattern decay when the light is turned off? How
rapidly does it reappear when the light is turned on again? Pérez-Escobar et al. (2016)
answered these questions with a temporal resolution of 10 seconds using map similarity
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Figure 6: Quantifying temporal disruptions of grid patterns. a) Generated spike locations with
2000 spikes (left). Each spike k is color-coded with its grid score ψ̂k. The first 1000

spikes are drawn from a spatially uniform distribution (top right) and the last 1000

spikes are drawn from a perfect grid (bottom right), at a constant rate of 1 spike per
second. b) ψ̂k scores in a as a function of spike time. Note that the score of many
spikes is 0. c) The scores from b, filtered with a 100 second time window (dotted
lines indicate window size). d) Two experimentally recorded spike maps, color coded
with ψ̂k scores. The recordings are 52 minutes in total and contain 13 trials in light
(with an illuminated cue card) and 13 trials in darkness, each of 2 minutes duration.
e) The ψ̂k scores as a function of time, filtered with a 1 minute window. From top to
bottom: First cell from d; second cell from d; mean over both cells. Shadings indicate
light trials. Pearson’s correlation coefficients, r, between lighting condition and filtered
grid scores are shown for each scenario. f) Spike maps for cell 1 and cell 2, separated
into spikes fired during light trials and spikes fired during dark trials. g) Temporal
evolution of grid scores after changes in lighting condition. Each 2 minute trial was
separated into 12× 10 second blocks. Each point shows the mean ψ̂k score of all spikes
in a time block in light trials (light blue) and dark trials (dark blue), averaged over 73

grid cells. Grid scores are calculated in reference to all spikes during light trials (see
text for details).
Experimental data recorded and made publicly available by Pérez-Escobar et al. (2016).
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Figure 7: A spike-based grid score for other symmetries. a) Adaptation of the ψ̂k score to 4-fold
symmetry. Shown above: average over all spikes. b) Adaptation of the ψ̂k score to
2-fold symmetry. Shown above: average over all spikes. See text for details.

(Pérez-Escobar et al., 2016) (see below for a discussion of map similarity). We now show
that we can reach the same temporal resolution using the spike-based grid score.

To this end, we create a reference spike map for each recorded grid cell in the data by
Pérez-Escobar et al. (2016), which comprises the locations of all spikes that were fired
during light trials. Note that these subsets of spikes show a much clearer grid pattern
than that of spikes during darkness (Figure 6f). We then quantify how well the spikes
of a given cell fit into the grid pattern of the cell’s reference spike map, by adding every
spike k individually to the reference spike map and computing its ψ̂k score as usual.

We then average the ψ̂k score of spikes that occur at similar times during light/dark
trials. To this end, we divide each 2 minute trial into 12 × 10 second blocks. This
division is done separately for light and dark trials. We then average the grid scores ψ̂k

over all spikes and over 73 recorded grid cells within each 10 second block. Plotting this
average as a function of time shows that grids decay within 30 seconds after the light is
turned off (Figure 6g). Grids need a similar time to reappear after the light is turned on
(Figure 6g).

In summary, the spike-based grid score readily contains temporal information which
can be used to study distortions of the grid pattern in time. The time evolution of
the grid score can be correlated with any other time varying variable to unravel its
influence on the grid pattern, e.g., light conditions, running speed, concentration of
neuromodulators.

4 discussion

In summary, we have developed a method to quantify the embedding of each spike of
a cell into a hexagonal neighborhood of spikes. The method yields both a local grid score
and a local grid orientation. It is based on the ψ(M) measure for M-fold symmetry used
in solid state physics (Halperin and Nelson, 1978) and adapted to the analysis of spike
locations. It requires only few and robust steps to assign a grid score to each spike. We
have shown that the global average of this spike-based score is as adequate as existing
correlogram-based methods to quantify and classify grid cells. Its key advantage is that
it simplifies local analyses both in space (‘Where are good spikes?’) and in time (‘When
are good spikes?’). The method allows a new visualization of grid cell data, showing all
spike locations together with information on local grid quality and local orientation.
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4.1 Averaging over multiple cells increases spatial or temporal resolution

We have shown spatially local grid scores in sub-partitions of the arena and temporally
local grid scores in time intervals. The resulting values can be misleading if the spatial
subinterval is too small or if the temporal subinterval is too short. For example, if we
study the local grid score of a single cell in a partition that does not contain a grid field
of that cell, the mean over all spike scores in that partition will be very low, suggesting
a local defect. Such sampling biases could be mitigated by making the partition larger
(or the interval longer, for temporal analyses), at the cost of resolution. A reduction of
sampling biases without a loss of resolution can be obtained by averaging over multiple
cells. It would be beneficial if these cells have different spatial phases, because this
ensures the presence of a grid field in each partition and thus reduces sampling biases.
Averaging over many cells thus enables a higher spatial resolution than the grid spacing
and a higher temporal resolution than the time the rat needs to sample a sufficient
number of grid fields in a single cell.

4.2 Comparison with correlogram-based method in spatial subregions

The correlogram-based ρ score can be made more local by computing it in spatial
subregions within the arena. A window can also be used to compute the sliding average
of the ρ score in the entire arena (Hägglund et al., 2018), resulting in a spatial map of
local grid scores. Selecting the size of the window is subject to a trade-off: while a small
window is necessary for a high spatial resolution, the ρ score will fail to detect a grid
if the window is too small—e.g., smaller then the grid spacing. In contrast, the spike-
based score can be computed in arbitrary spatial partitionings (Figure 5) by averaging
over the spikes in each partition. The side length of a partition can even be smaller
than the grid spacing, in particular if multiple cells are used to compute the score in
each partition (see above). The flexibility to use partitionings of an arbitrary shape, e.g.,
trapezoidal or triangular, can be important to study grid cells in environments with
complex geometries (Krupic, Bauza, Burton, Barry, et al., 2015; Krupic, Bauza, Burton,
and O’Keefe, 2018).

4.3 Comparison with map similarity for the study of time evolution

We have shown that a spike-based grid score enables a straightforward analysis of the
temporal stability of grid patterns and illustrated this on recorded data from mice forag-
ing through an arena in light and darkness (Pérez-Escobar et al., 2016). In our analysis
of the decay and reappearance of grid cell activity (Figure 6), we reproduced the results
shown in Pérez-Escobar et al. (2016), where the authors used map similarity for their
analysis. In the map similarity measure, a rate map is correlated with a reference map.
As a reference map, the authors used recordings during times of light. In each 10 second
block, they collected all spike locations from that block in all trials (separating dark and
light trials) and used these spike locations to create a rate map. If the correlation of the
resulting rate map with the reference map is high, the pattern is similar, indicating that
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the grid has not decayed yet, and vice versa. For grid patterns without defects in field
locations and with similar firing rates for different grid fields, map similarity and our
measure should lead to similar results. However, our measure focuses on how much
a spike is part of the grid of the reference map. In contrast, map similarity only quan-
tifies how much spikes are part of the rate pattern of the reference map, irrespective of
whether it forms a grid. If for example, the reference map has a firing field that does
not belong to the hexagonal pattern, spikes that are located in this firing field will lead
to low values in our measure. In contrast, map similarity assigns high values to activity
within any firing field of the reference map, be it a grid field or a defect.

4.4 Detecting grids with elliptic distortions

We have shown that the spike-based Ψ score is more robust to elliptic deformations
of grid patterns than the correlogram-based ρ score (Figure 2h). This robustness can be
crucial for the detection of grid cells, because many grid patterns are of elliptic shape.
Quantifying the local improvement of a grid pattern in the scenario where two grids
coalesce in a contiguous environment (Figure 4) was only possible because grid patterns
could be detected, even though they were strongly elliptic.

A correlogram-based grid score can also be used with elliptic grid patterns, but re-
quires an explicit compensation of the ellipticity. To this end, the ellipticity is detected
and removed from the correlogram before the grid score is computed, by compressing
the correlogram along the principal axis of the elliptic distortion (Brandon et al., 2011).
In principle, we could apply such a transformation to all spike locations and then com-
pute the spike-based grid scores. We have shown, however, that such an additional step
is not necessary as long as the ellipticity is not too strong.

4.5 Non-constant grid spacing

If a firing pattern is grid-like, but with different grid spacings in different parts of the
arena, we cannot compute the neighborhood shell from all pairwise distances. Instead,
the neighborhood would need to be determined individually for each spike, using the
histogram of pairwise distances only between a given spike and all other spikes. Since
we are not aware of local distortions to the grid spacing, we did not consider this.

4.6 Non-isotropic assignment of grid scores to spikes in boundary grid fields

For grid fields with six neighboring fields, spikes in the center of the field receive
the highest grid score and grid scores decay isotropically in all direction. In contrast,
in grid fields at the boundaries, spikes with high ψ̂k form a curved stripe (Figure S1a).
The reason is the following: Being in the boundary grid field, moving towards the
central neighbors perturbs the 6-fold symmetry stronger than moving tangentially to it
(Figure S1b,c,d). Such a directional dependence is not present in grid fields that have
neighboring grid fields on all sides.
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4.7 The spike-based grid score for other symmetries

We focused on hexagonal patterns, i.e., grids of 6-fold symmetry. Experiments sug-
gest that there are also band-like firing patterns, i.e., 2-fold symmetry (Krupic, Burgess,
and O’Keefe, 2012)—though their existence has been questioned (Krupic, Burgess, and
O’Keefe, 2015; Navratilova et al., 2016). Moreover, boundary effects in arenas of com-
plex shape could cause grid deformations that result in other symmetries. The suggested
spike-based grid score can be readily applied to any M-fold symmetry. For example, to
study quadratic symmetry, we would replace M = 6 by M = 4 and compare to the re-
maining symmetries, now including 6 (see Algorithm 1). Depending on the symmetry,
the radius of the neighborhood shell needs to be chosen differently. For example, for
quadratic symmetry, results are improved if the neighborhood shell is set to 2/3` instead
of `, to only incorporate the four nearest neighboring fields (Figure 7d). For band-like
symmetry, the shell radius should be `/2, so that the next band is not included in the
shell (Figure 7e).

As the experiments on spatially tuned cells become more complex, new properties
will be unveiled. A spike-based grid score could be used as a single unifying method to
classify grid cells and to analyze their local and temporal characteristics. The presented
method could further be useful for the analysis of grid patterns in other modalities
(Aronov et al., 2017; Constantinescu et al., 2016) or in other contexts, e.g., in the anatom-
ical arrangement of grid cells (Ray et al., 2014) or retinal ganglion cells (Jang and Paik,
2017).
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supporting information

s.1 Shuffling spike locations for grid cell classification

When classifying grid cells, we use standard shuffling procedures that have been
established for conventional correlation-based grid scores (Langston et al., 2010; Wills et
al., 2010). To this end, shuffled spike locations are generated from the rat trajectory and
the actual spike locations: The times of all spikes are shifted consistently by a temporal
offset. This temporal offset is drawn randomly from the interval [20 seconds, time of last
spike – 20 seconds] for 100 different shufflings. If, after shuffling, a spike time exceeds
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Figure S1: Explanation of non-isotropic assignment of grid scores to spikes in boundary grid
fields. a) Generated spike locations with few firing fields. The color of each spike k
indicates the ψ̂k score. Fields at the boundaries have only three neighboring fields.
This leads to a stripe-like assignment of ψ̂k scores. b) Schematic of a perfect grid
cell. Dots on the hexagon mark the centers of grid fields. Shaded regions show
the grid field size. The dark blue dot in the upper right marks a reference spike in
the center of a grid field. The dark blue circle around it indicates the neighborhood
shell—much thinner than actual, for easier visualization. Connecting the reference
spike to the center of the cross section of the neighborhood shell and the neighboring
grid fields forms angles of 60 degrees. c) Same arrangement as in b but now the ref-
erence spike is not in the center of the grid field, but shifted along the gray circle that
circumscribes the hexagon (direction indicated by arrow). Connecting the reference
spike to the center of the cross section of the neighborhood shell and the neighboring
grid fields still forms angles of roughly 60 degrees. Consequently, spikes along this
direction have high ψ̂k scores. d) Same arrangement as in b,c but now the reference
spike is shifted orthogonally to the circle that circumscribes the hexagon. Connect-
ing the reference spike to the center of the cross section of the neighborhood shell
and the neighboring grid fields does not form angles of 60 degrees. Consequently,
spikes along this direction have low ψ̂k scores. For central grid fields, this effect is
compensated by grid fields on opposite sides.

the time of the last spike in the original recording, its time is periodically wrapped to the
beginning. The shuffled location of each spike is given by the position of the rat at the
shifted time of the spike. This shuffling procedure assigns a new location to each spike
while maintaining the temporal structure. We classify a cell as a grid cell according to
the Ψ score if the Ψ score of the original recording exceeds the 95th percentile of all
Ψ scores computed for the 100 shufflings.

Correspondingly, to classify a cell as a grid cell according to the ρ score, we use the
same procedure but with the ρ score instead of the Ψ score. Note that, recently, it was
suggested to use a different shuffling procedure that corresponds to randomly relocating
the grid fields (Barry and Burgess, 2017).

s.2 Generating artificial spike locations

To generate artificial grid patterns, we draw spikes from a probability distribution that
is comprised of two-dimensional Gaussians whose centers lie on a—possibly perturbed—
hexagonal grid. The center location of each Gaussian is the location of a grid field. For
all generated data, we use an arena size of 1m× 1m. To comply with the experimental
observation that the size of grid fields scales with the grid spacing (Brun et al., 2008), we
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use a constant ratio of the width of the Gaussians and the grid spacing before adding
perturbations:

grid spacing / standard deviation of Gaussian = 7 .

To assess the robustness of the grid score, we study several perturbations of hexagonal
firing patterns. To this end, we first generate grid field locations on a perfect hexagonal
grid. To avoid edge effects, this grid is generated on a much larger area that contains
a perfect hexagonal arrangement of 271 (i.e., side length 10) grid fields, and the actual
arena size (1m× 1m) is cut out in the center after the perturbations are applied.

In the scenario of random perturbations (Figure 2a), we add a different random vector
to each grid field location. Each such two dimensional vector is drawn from a two
dimensional normal distribution. The standard deviation of this distribution dictates
the noise on the field locations (Figure 2c).

In the scenario of shearing, we apply a horizontal shearing transformation to each
field location of the perfect lattice, by multiplying the two dimensional location of each
firing field with the matrix (

1 s

0 1

)
,

where s is the strength of the shearing (Figure 2h).
In the scenario of a drift in orientation along the south-north axis, we rotate the loca-

tion of the i-th grid field (xi,yi)T via(
x′i
y′i

)
=

(
cos(φi) − sin(φi)

sin(φi) cos(φi)

)(
xi

yi

)
,

where (x′i,y
′
i)

T denotes the location of the grid field after rotation and φi increases along
the south-north axis in the following way:

φi = d (2(yi − ymin)/(ymax − ymin) − 1) ,

where ymin and ymax are the y-locations of the southernmost and northernmost grid
fields, respectively. The factor d determines the strength of the drift. We use d = π/3, in
the example shown in Figure 5c.

Finally, in the scenario of a sudden change in orientation (Figure 5b), we extracted the
field locations from simulations by Rosay et al. (2018).

s.3 The correlogram-based grid score

To compute the correlogram-based grid score, we use the method suggested by Langston
et al. (2010). To this end, we first calculate a "rate map" by summing over Gaussian ker-
nels with a width of 5% of the arena side length, centered at the locations of the spikes.
We then determine the spatial autocorrelogram, i.e., the Pearson correlation coefficients
for all spatial shifts of the rate map against itself. From this correlogram, we crop
out an annulus that contains the six fields that are arranged around the central peak.
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To get the inner radius of this annulus, we clip all values in the correlogram that are
smaller than 0.1 to 0. We obtain the resulting clusters of values that are larger than
0.1 using scipy.ndimage.measurements.label from the SciPy package for Python with
a quadratic filter structure, ((1, 1, 1), (1, 1, 1), (1, 1, 1)), for a correlogram with 201× 201
pixels. We use the distance from the center to the outermost pixel of the innermost
cluster as the inner radius of the annulus. We obtain the outer radius of the annulus by
trying 50 values, linearly increasing from the inner radius to a corner of the arena. With
each of the resulting 50 annuli, we crop the correlogram, rotate it and correlate it with
an unrotated copy of the correlogram. We determine the correlation coefficient for 30,
60, 90, 120 and 150 degrees. We define the grid score as the minimum of the correlation
values at 60 and 120 degrees minus the maximum of the correlation values at 30, 90 and
150 degrees. After trying all 50 annuli, we take the highest resulting grid score as the
grid score of the cell. A hexagonal symmetry thus leads to positive values whereas a
quadratic symmetry leads to negative values. Since the correlogram-based score uses
Pearson correlation values that are typically expressed with the Greek letter ρ, we refer
to it as the ρ score. Note that the match of the grid score symbols with the first names
of the authors that introduced them (ρ-samund and Ψ-mon) is coincidental.

s.4 Box plot settings

In all shown box plots, each box extends from the first to the third quartile, with a
dark blue line at the median. The lower whisker reaches from the lowest data point still
within 1.5 IQR of the lower quartile, and the upper whisker reaches to the highest data
point still within 1.5 IQR of the upper quartile, where IQR is the inter quartile range
between the third and first quartile.
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