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Abstract: 24 

Methylmalonic acidemia (MMA) cblC type is the most frequent inborn error of 25 

intracellular cobalamin metabolism which is caused by mutations of MMACHC gene. 26 

Non-invasive test of MMA for pregnant women facilitates safe and timely prenatal 27 

diagnosis of the disease. In our study, we aimed to design and validate a 28 

haplotype-based noninvasive prenatal test (NIPT) method for cblC type of MMA. 29 

Targeted capture sequencing using customized hybridization was performed utilizing 30 

gDNA (genomic DNA) of trios including parents and an affected proband to 31 

determine parental haplotypes associated with the mutant and wild allele. The fetal 32 

haplotype was inferred later based on the high depth sequencing data of maternal 33 

plasma as well as haplotype linkage analysis. The fetal genotypes deduced by NIPT 34 

were further validated by amniocentesis. Haplotype-based NIPT was successfully 35 

performed in 21 families. The results of NIPT of 21 families were all consistent with 36 

invasive prenatal diagnosis, which was interpreted in a blinded fashion. Three fetuses 37 

were identified as compound heterozygosity of MMACHC, 9 fetuses were carriers of 38 

MMACHC variant, and 9 fetuses were normal. These results indicated that the 39 

haplotype-based NIPT for MMA through small target capture region sequencing is 40 

technically accurate and feasible. 41 

 42 
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Introduction 43 

Methylmalonic acidemia (MMA) is caused by a deficiency of methylmalonyl‑coA 44 

mutase or coenzyme adenosylcobalamin (AdoCbl). The cblC type combined with 45 

methylmalonic acidemia and homocystinuria is a kind of autosomal recessive 46 

hereditary disease and the incidence was found to be in 1 in 48,000 to 1 in 250,000 47 

worldwide (Carrillo-Carrasco et al. 2012; Wang et al. 2010). Newborn screening for 48 

MMA in Shandong province of China showed an estimated prevalence of 1 in 3920 49 

during birth (Han et al. 2016). The MMA cblC type caused by mutations in the 50 

MMACHC gene (NM_015506.2) located on chromosome 1p34.1 is the most frequent 51 

congenital error in intracellular co-amine metabolism. Prenatal diagnosis of MMA 52 

was essential due to age of onset in neonatal period and serious symptoms such as 53 

multiple system damage and lethal possibility. It can not only contribute to early 54 

medical management of infants, but also allows treatment of affected foetus as soon 55 

as possible to reduce irreversible organ damage associated with metabolic acidosis 56 

and high blood ammonia. (Huemer et al. 2005; Trefz et al. 2016). 57 

 Recently, several noninvasive prenatal test (NIPT) methods aimed to avoid 58 

miscarriage or infection risk method have been developed (Evans et al. 2002; 59 

Mujezinovic and Alfirevic 2007). Besides large-scale clinical application in fetal 60 

aneuploidies screening, NIPT for dominant single-gene disorders confined to detect 61 

paternally inherited and de novo mutations has also been introduced to clinical trials 62 

(Lo et al. 1998; Fan et al. 2008). However, NIPT for recessive single gene disorders 63 

are still at laboratory research stage. Our study group has developed a 64 

haplotype-based method of NIPT for recessive inherited single gene diseases using 65 

linkage analysis of trios’ members and has been validated in several single gene 66 

disorders (Xu et al. 2015; Meng et al. 2014; Lam et al. 2012; Ma et al. 2014; Ye et al. 67 
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2018; Chen et al. 2017). The feasibility and accuracy of this method depends on the 68 

informative SNPs used to construct the haplotype and the selection of the targeted 69 

region. NIPT of MMA based on haplotype analysis method has not been reported yet, 70 

and so this study has been designed. 71 

In our study, the NIPT of MMA can be accomplished using a 141.39 kb 72 

customized probe, including MMACHC and 1125 surrounding highly heterozygous 73 

SNPs (0.3＜minor allele frequency＜0.5) distributed within the 1 Mb on chromosome 74 

1 (Figure 1). Our study indicated that the haplotype-based NIPT for MMA through 75 

small target capture region sequencing is technically accurate and feasible, and also 76 

further highlighted the feasibility of NIPT of monogenic diseases. 77 

 78 

Materials and Methods 79 

Patient recruitment  80 

Twenty-one at-risk families including singleton pregnant woman, her husband, and 81 

proband diagnosed with MMA were enrolled at Shanghai Xin Hua Hospital with 82 

genetic counseling and informed consent. The institutional review board (IRB) of BGI 83 

and Shanghai Xinhua Hospital approved our study with approval number BGI-IRB 84 

NO. FT15195 and XHEC-C-2015-025. 85 

Ten causative mutations in four exons of MMACHC gene in probands and their 86 

parents were already identified prior to performing NIPT of MMA during pregnancy. 87 

Before amniocentesis, blood samples were drawn from each pregnant woman at 88 

16–20 weeks of gestation and her family members was used for NIPT of MMA. The 89 

maternal plasma should be separated as soon as possible. Amniotic fluid (AF) samples 90 

for routine prenatal diagnosis were obtained at 16–18 weeks of gestation. The data 91 

analysis of fetal DNA sample was blinded to NIPT. The AF samples of F01- F06 92 
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family were also sent to BGI to evaluate the accuracy of inferred paternal and 93 

maternal specific loci of fetus compared with the AF standard haplotype. 94 

Targeted sequencing 95 

The extraction of gDNA and maternal plasma DNA was accomplished using the 96 

commercial kits from QIAGEN. The NGS library of gDNA was constructed according 97 

to the Illumina standard protocol. The construction of cell- free DNA library as a result 98 

of its micro inputs nature was performed by the Kapa Biosysterm library preparation 99 

kit. The hybrid captures of gDNA and cf-DNA libraries were separately carried out 100 

using the same probe. The post-capture libraries were sequenced using PE 101 bp on 101 

Illumina platform (Hiseq 2500). 102 

Variation calling 103 

The raw data were aligned to the human reference sequence (Hg19, GRCh37) by 104 

BWA software (0.7.12) in the paired end mode. After removal of low-quality reads 105 

including duplicated reads and multiple aligned reads using Picard Tools, Variation 106 

calling was accomplished through GATK software. Only the variations with depth 107 

greater than 50x will be analyzed in the next step.  108 

Estimation of fetal concentration and plasma sequencing error  109 

The fetal genotype should be heterozygous state with different homozygous 110 

genotype of parents according to the Mendel’s laws. So, it could be estimated as two 111 

times of the percentage of the minor allele depth to the total depth of this allele. The 112 

sequencing error could be described as the ratio of the count of different loci reads to 113 

total count of this SNP reads when the genotypes of parents are same homozygous. 114 

NIPT for MMA 115 

Haplotypes linked with wild and mute allele were constructed using SNP 116 

information within flanking and coding region of MMACHC gene (You et al. 2014). 117 
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Hap 0 was defined as the pathogenic haplotype and Hap1 was defined as the 118 

wild-type haplotype. The fetal inheritance from father was determined using the set of 119 

SNPs that were heterozygous in father but homozygous in mother. SNPs that were 120 

heterozygous in mother but homozygous in father were used to determine fetal 121 

inheritance from mother. Hidden Markov Model (HMM) and Viterbi algorithm was 122 

used to deduce the fetal haplotypes using the target region data of plasma (Ma et al. 123 

2017).  124 

Accuracy of NIPT for MMA 125 

The Sanger sequencing and standard haplotypes of fetal gDNA obtained using 126 

amniotic fluid was further operated to validate the uniformity of NIPT result.   127 

 128 

Results 129 

Sequencing data of recruited families 130 

Sanger sequencing of MMACHC was operated to determine the variation of 131 

pathogenic mutation (Table 1). The mean depth of gDNA and cf-DNA was about 132 

147.48x (63.41x–348.05x) and 237.97x (89.67x396.23x), respectively. The coverage 133 

with more than 20x was approximately 98.14% (90.09–99.68%). The mean capture 134 

efficiency and duplicate rate was 50.19% (27.12%–75.23%) and 7.37% 135 

(4.98%–44.09%) in all the samples (Table S1).  136 

Estimation of fetal concentration and plasma sequencing error  137 

For these twenty-one pregnant women, the cff-DNA concentrations varied from 138 

4.62% to 18.96% during the second trimester (Table 2), showing significant 139 

differences between the individuals. The mean sequencing error rate of plasma was 140 

0.41% (0.02–1.18%) (Table 2). The data suggested high experimental quality for next 141 

analysis. 142 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted September 24, 2018. ; https://doi.org/10.1101/425918doi: bioRxiv preprint 

https://doi.org/10.1101/425918


5 
 

Construction of Parental haplotype  143 

The parental haplotype was constructed by the genotyping information from a 144 

trio strategy of father, mother and proband. Clean data with more than 20-fold 145 

coverage were about97.88% and about 1041 SNPs on the target region were detected. 146 

Noninvasive prenatal diagnosis of fetal MMA 147 

The number of SNPs identified ranged from 854 to 1211. The number of 148 

informative SNPs which were used to predict the combination of fetal haplotype 149 

inherited from mother and father were 122 (20–323) and 113 (24–290). Parental 150 

haplotypes were successfully constructed in F01 family. 155 SNPs was used to 151 

determine that the fetus inherited wild allele from the father and none SNP supported 152 

that fetus inherited the pathogenic haplotype. 86 SNPs was used to determine that the 153 

fetus inherited wild allele from the mother and none SNP supported that fetus 154 

inherited the pathogenic haplotype. So, the fetus of F01 was normal because of the 155 

F1+M1 haplotype (Table 3and Figure 2). Based on this strategy, nine fetuses were 156 

diagnosed as carriers, nine fetuses were normal and three fetuses were affected by 157 

cblC type of MMA due to the compound heterozygous mutation of MMACHC (Table 158 

3 and Figure 2). 159 

Accuracy of NIPT for MMA 160 

The Sanger results of fetal DNA were 100% consistent with NIPT result (Table 2) 161 

and SNPs deduced using NIPT were 100% consistent with standard haplotypes of 162 

fetal gDNA in F01 to F06 (Table S2). 163 

 164 

Discussion 165 

The cumulative incidence of monogenic disease accounted for 7% of birth defects, 166 

while the chromosomal abnormalities accounted for 6%according to the March of 167 
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Dimes Global Report on Birth Defects 2006.A growing number of birth defects and 168 

diseases can be diagnosed prenatally and treated before birth in some cases. With the 169 

large-scale clinical application of NIPT for fetal aneuploidies based on massively 170 

parallel sequencing approach (Benn et al. 2012; Norton et al. 2012; Dar et al. 2014), 171 

NIPT of monogenic disease remains the next frontier. In the recent years, NIPT of 172 

monogenic disorders has been actively investigated and it has a great clinical 173 

application prospect, providing requisite prognostic data for clinical intervention. 174 

Initially, NIPT of monogenic disorders relied on the detection or exclusion of 175 

paternally inherited mutations or de novo mutations by direct detection method based 176 

on PCR. PCR-based method such as ddPCR (Lun et al. 2008), QPCR (Guissart et al. 177 

2017), PCR-RED (Chitty et al. 2015) and cSMART (Chen et al. 2016; Han et al.2017) 178 

have been reported in β thalassemia, cystic fibrosis, thanatophoric dysplasia, Wilson 179 

disease and autosomal recessive nonsyndromic hearing loss, respectively. PCR-based 180 

method involves the advantage of simple operation. However, the design of primer or 181 

probe at the mutation site that is confined only to SNP and indel remains difficult. 182 

NIPT based on PCR cannot be applied to the major mutation type with copy number 183 

variance (CNV). The sensitivity and specificity of PCR-based NIPT is affected by 184 

fetal DNA fraction and quality of sample. 185 

Maternally inherited alleles and alleles shared by both parents were detected by 186 

more sophisticated techniques such as haplotype-based strategy called indirect 187 

method. Haplotype-based strategy such as relative haplotype dosage (RHDO) (Lam et 188 

al. 2012) and proband-assisted haplotype phasing have been successfully reported in 189 

several recessive monogenic diseases. These historical data were retrospectively 190 

analyzed in our study (Table 4). Fifty-seven high risk families who had an affected 191 

child were enrolled in the clinical research to validate the accuracy and feasibility of 192 
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NIPT. All the NIPT results were consistent with invasive prenatal diagnosis. Overall, 193 

the data obtained from all the 57 families included in the test have shown sensitivity 194 

and specificity rates of 100%, with 0% failure rate. The accuracy of inferred fetal 195 

maternal alleles and paternal alleles using plasma sequencing data were almost 100% 196 

compared with the standard haplotype obtained by the AF data without considering 197 

the recombination point. Other experiments were necessary to determine the precise 198 

positioning of recombination and whether the proband or fetus involve the 199 

recombination. Ye et al. (2018) showed that when the plasma sequence depth was 200 

200X, the accuracy of fetal inherited maternal haplotype was above 99% and when 201 

the fetal fraction was between 5% and 10%, the mean number of SNP was about 20 to 202 

reach 99% detection accuracy. Previous data showed that the haplotype-based NIPT 203 

can be applied to genes with highly homologous sequences like CYP21A2 and SMN1, 204 

which is almost impossible to be detected by directly sequencing the pathogenic 205 

mutations. 206 

MMA is one of the most common disorders of congenital organic acid metabolism. 207 

Early prenatal treatment may have an impact on the long-term complications 208 

associated with cblC disease. Prior studies have evaluated the effects of prenatal 209 

HOCbl administration and the results showed a decrease in the maternal metabolites 210 

(Huemer et al. 2005). Although the haplotype-based strategy was successfully 211 

implemented in several autosomal recessive disorders, this has not been applied in 212 

MMA till now. The feasibility and accuracy of this method depends on the 213 

informative SNPs used to construct the haplotype and the selection of the targeted 214 

region, and hence investigation of technical feasibility is necessary for each target 215 

disease. Our study initially demonstrated the feasibility of haplotype-based NIPT for 216 

MMACHC. In our study, the fetal genotype of 21 families was successfully 217 
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determined using haplotype-assisted NIPT. The result of this study was consistent 218 

with the findings of invasive method. Based on these data, the feasibility and accuracy 219 

of NIPT of MMA using haplotype strategy has been demonstrated. The sensitivity 220 

and specificity rates were both 100%, with 0% failure rate. The accuracy of the fetal 221 

alleles inherited from parents deduced by haplotype strategy were almost 100% 222 

compared with the standard haplotype obtained by the AF data in families from F01 223 

to F06 (Table S2). The other family results showed that the haplotype-based NIPT 224 

method allowed 100% concordance with the invasive diagnostic approach. 225 

In most of the reported cases, the targeted region is always relatively large, and the 226 

sequencing cost remained exorbitant, hampering the clinical utility of this technology. 227 

In this research, we have demonstrated the feasibility of NIPT of MMA by 228 

sequencing a much smaller region. This method requires trio members of the family 229 

for constructing the parental haplotype linked to the mutation allele. The sensitivity 230 

and specificity of this method have been reported to be 100% validated by the 231 

invasive result, which is the greatest advantage of haplotype-based strategy NIPT. A 232 

fatal flaw of the haplotype-based strategy is that the feasibility is highly depend on the 233 

availability of proband sample. 234 

Linked reads method like 10xGenomics to specify the individual haplotype 235 

directly without proband has been recently reported by Dennis Lo in NIPT of 236 

monogenic diseases (Hui et al. 2017), but the technology has several limitations. The 237 

most important restrictive factor for clinical application was the detection success 238 

ratio. In this article, 12 of 13cases were successfully detected and the failed cases 239 

were unable to determine the fetal genotype due to insufficient number of informative 240 

SNPs. In our research, we used the coding region and highly heterozygous SNPs with 241 

1M flanking sequence of MMACHC gene to construct the haplotype, and the number 242 
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of informative SNPs were sufficient to build the fetal haplotype based on HMM 243 

model. Another limitation was that the phasing block size using 10x Genomics linked 244 

reads. The block size was affected by the integrity of input DNA and rigorous 245 

experimental operation. The phasing block stridden across the target gene and 246 

sufficient SNPs surrounding this region coexisted to ensure the success rate. In 247 

summary, 10x Genomics linked the reads have solved the problem of not relying on 248 

the precursor, but the success rate, high cost and complex operation restricted its 249 

clinical application. Further study is needed to develop cost-effective and simplified 250 

technology for NIPT of monogenic disease.  251 

In conclusion, we demonstrated the feasibility of haplotype-based NIPT of MMA 252 

by sequencing a much smaller region. The sequencing depth of plasma and the 253 

number of informative SNPs were 200x and 20x, respectively. The proposition 254 

couples who have been diagnosed as monogenic carriers and have an affected child, 255 

our method is applicable to assess the repregnant fetal genotype to clinical 256 

intervention. We here provided the evidence that the same approach can be applied to 257 

other autosomal-recessive disorders, and the overall sensitivity and specificity was 258 

100% on 78 patients tested from the previous and our study. 259 
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Figures Legends 368 

Figure 1 Target region of MMACHC gene and SNPs used for haplotyping. 369 

Custom NimbleGen probes within the 141.39 kb region was designed including the 370 

MMACHC gene coding region and 1125 surrounding highly heterozygous SNPs 371 

distributed within 1 Mb region. 372 

Figure 2 Fetal Haplotype Prediction. 373 

X-axis represents the locus on target region; Y-axis represents the logarithm of the 374 

ratios of different fetal haplotype combinations. The black lines above zero (cyan 375 

lines) indicate that the fetus inherited the pathogenic haplotype (Hap0), and the black 376 

lines below zero indicate that the fetus inherited the normal haplotype (Hap1). Two 377 

purple vertical lines represent the region of the MMACHC gene. Left chart and right 378 

chart represents the results of fetal- inherited paternal haplotype and maternal 379 

haplotype, respectively. 380 
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Table 1. Molecular Diagnosis Results in 21 Families. 

 

Abbreviations: Na, normal; GWb, gestational weeks. 

 

 

Family Gene 

Mutation Type 

GWb Father Mother Proband 

F01 MMACH

C 

c.609G>A/N c.658_660delAAG/Na c.609G>A/c.658_660delAAG 17 

F02 MMACH

C 

c.609G>A/N c.567dupT/N c.567dupT/c.609G>A 18 

F03 MMACH

C 

c.441TG[2]/N c.609G>A/N c.609G>A/c.441TG[2] 17 

F04 MMACH

C 

c.609G>A/N c.80A>G/N c.80A>G/c.609G>A 17 

F05 MMACH

C 

c.441TG[2]/N c.609G>A/N c.441TG[2]/c.609G>A 17 

F06 MMACH

C 

c.609G>A/N c.80A>G/N c.80A>G/c.609G>A 18 

F07  MMACH

C 

c.609G>A/N c.609G>A/N c.609G>A/ c.609G>A 18 

F08 MMACH

C 

c.609G>A/N c.217C＞T/N c.217C＞T/c.609G＞A 17 

F09 MMACH

C 

c.609G>A/N c.315 C＞G/N c.609G>A/c.315 C＞G 16 

F10  MMACH

C 

c.609G>A/N c.609G>A/N c.609G>A/ c.609G>A 18 

F11 MMACH

C 

c.658_660delAAG/N c.609G>A/N c.609G>A/c.658_660delAA G 17 

F12  MMACH

C 

c.609G>A/N c.609G>A/N c.609G>A/ c.609G>A 18 

F13 MMACH

C 

c.609G>A/N c.80A>G/N c.609G>A/c.80A>G 17 

F14 MMACH

C 

c.658_660delAAG/N c.609G>A/N c.609G>A/ c.658_660delAAG 17 

F15 MMACH

C 

c.609G>A/N c.609G>A/N c.609G>A/ c.609G>A 19 

F16 MMACH

C 

c.609G>A/N c.656_658delAGA/N c.656_658delAGA/c.609G>A 18 

F17 MMACH

C 

c.658_660delAAG/N c.609G>A/N c.609G>A/c.658_660delAAG 16 

F18 MMACH

C 

c.445_446delTG/N c.609G>A/N c.609G>A/c.445_446delTG 17 

F19 MMACH

C 

c.394C>T/N c.656_658delAGA/N c.394C>T/c.656_658delAGA 17 

F20 MMACH

C 

c.609G>A /N c.609G>A /N c.609G>A/ c.609G>A 17+5 

F21 MMACH

C 

c.445_446delTG/N c.482G>A/N c.482G>A/c.445_446delTG 17 
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Table 2. Statistics of Error Rate and Fetal DNA Fraction. 

Pedigree Type 1SNPa Type 2 SNPb Error Rate Fetal DNA fraction 

01 86 5 0.0200% 7.64% 

F02 104 463 1.1788% 11.45% 

F03 79 430 0.1936% 16.23% 

F04 107 215 0.2437% 9.07% 

F05 85 14 0.3360% 7.66% 

F06 99 43 1.0153% 18.96% 

F07 125 1 0.1631% 14.89% 

F08 66 421 0.7156% 10.93% 

F09 80 23 0.0941% 4.62% 

F10 110 61 0.4655% 11.41% 

F11 115 4 0.2434% 17.84% 

F12 82 149 0.3810% 6.85% 

F13 329 39 0.2170% 11.70% 

F14 64 24 0.4847% 9.86% 

F15 66 7 0.5687% 11.66% 

F16 70 165 0.3680% 10.77% 

F17 71 441 0.2319% 13.03% 

F18 49 166 0.8472% 10.52% 

F19 238 141 0.2406% 5.90% 

F20 66 23 0.3877% 5.85% 

F21 143 8 0.2170% 8.20% 

SNPsa that were homozygous with the same type of parents but different bases in the 

plasma, which were used to calculate the sequencing error rate of plasma; SNPsb that 

were homozygous in both parents but different types, which were used to calculate 

fetal DNA fractions. 
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Table 3. The NIPT Results of 21 Studied Families. 

aSNPs for F/M represent the number of SNP supporting the inheritance of fetal haplotype from parents. F0/M0, fetal-inherited mutant haplotype; F1/M1, 

fetal-inherited normal haplotype; bConsistency represents the comparison of NIPT results with invasive testing results; C Y, yes; N, normal.

Family Gene SNPs For F0a SNPs For F1a SNPs For M0a SNPs For M1a 

Fetal 

Haplotype Fetal Genotype 

NIPT 

Results Invasive Test Results Consistencyb 

F01 MMACHC 0 155 0 86 F1+M1 N Normal N Yc 

F02 MMACHC 37 0 0 86 F0+M1 c.609G>A/N Carrier c.609G>A/N Y 

F03 MMACHC 0 60 73 0 F1+M0 c.609G>A/N Carrier c.609G>A/N Y 

F04 MMACHC 0 42 94 0 F1+M0 c.80A>G/N Carrier c.80A>G/N Y 

F05 MMACHC 109 0 122 0 F0+M0 c.441TG[2]/c.609G>A affected c.441TG[2]/c.609G>A Y 

F06 MMACHC 0 325 20 0 F1+M0 c.80A>G/N Carrier c.80A>G/N Y 

F07 MMACHC 0 140 0 91 F1+M1 N Normal N Y 

F08 MMACHC 129 0 42 0 F0+M0 c.217C＞T/c.609G＞A affected c.217C＞T/c.609G＞A Y 

F09 MMACHC 0 160 77 0 F1+M0 c.315 C＞G/N Carrier c.315 C＞G/N Y 

F10 MMACHC 0 24 0 273 F1+M1 N Normal N Y 

F11 MMACHC 0 81 0 149 F1+M1 N Normal N Y 

F12 MMACHC 0 43 203 0 F1+M0 c.609G>A/N Carrier c.609G>A/N Y 

F13 MMACHC 0 26 0 117 F1+M1 N Normal N Y 

F14 MMACHC 220 0 96 0 F0+M0 c.609G>A/c.658-660delAAG affected c.609G>A/c.658-660delAAG Y 

F15 MMACHC 0 27 86 0 F1+M0 c.609G>A/N Carrier c.609G>A/N Y 

F16 MMACHC 290 0 0 111 F0+M1 c.609G>A/N Carrier c.609G>A/N Y 

F17 MMACHC 0 109 0 84 F1+M1 N Normal N Y 

F18 MMACHC 0 54 0 323 F1+M1 N Normal N Y 

F19 MMACHC 108 0 0 128 F0+M1 c.394C>T/N Carrier c.394C>T/N Y 
F20 MMACHC 0 27 0 230 F1+M1 N Normal N Y 

F21 MMACHC 0 274 0 73 F1+M1 N Normal N Y 
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Table 4. Studies Reporting on NIPT of Monogenic Disease. 

Author Method Disease Case No. NIPT Results Consistency 
Accuracy of 

maternal alleles 

Accuracy of 

paternal alleles 

Dennis Lo RHDO β-thalassemia 2 2 Carriers Y - - 

Dennis Lo RHDO CAH 14 5 Carriers+2 Normal+7 affected Y - - 

Yanqin You PAHP MSUD 1 affected Y - - 

Zhengfeng Xu PAHP CAH 1 Carriers Y 96.41% 97.81% 

Meng Meng PAHP GJB2 1 Carriers Y - - 

Yan Xu PAHP DMD 8 1 Carriers+2 Normal+5 affected Y 99.98% - 

Min Chen PAHP SMA 5 2 Carriers+2 Normal+1 affected Y - - 

Zhengfeng Xu PAHP CAH 12 6 Carriers+6 affected Y 100% 100% 

Xuefan Gu PAHP PKU 13 4 Carriers+4 Normal+5 affected Y 100% 100% 

Total - - 57 22 Carriers+10 Normal+25 affected Y   

RHDO, relative haplotype dosage; PAHP, proband assisted haplotype phasing; consistency means whether the NIPT result was consistent with the invasive 

prenatal testing, Y represents yes. 
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