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Abstract 

Understanding the relationship between protein sequence and structure well enough to rationally design 
novel proteins or protein complexes is a longstanding goal in protein science. The Protein Data Bank 
(PDB) is a key resource for defining sequence-structure relationships that has supported the development 
of critical resources such as rotamer libraries and backbone torsional statistics that quantify the 
probabilities of protein sequences adopting different structures. Here, we show that well-defined, non-
contiguous structural motifs (TERMs) in the PDB can also provide rich information useful for protein-
peptide interaction prediction and design. Specifically, we show that it is possible to rapidly predict the 
binding energies of peptides to Bcl-2 family proteins as accurately as can be done with widely used 
structure-based tools, without explicit atomistic modeling. One benefit of a TERM-based approach is that 
prediction performance is less sensitive to the details of the input structure than are methods that evaluate 
energies using precise atomic coordinates. We show that protein design using TERM energies 
(dTERMen) can generate highly novel and diverse peptides to target anti-apoptotic proteins Bfl-1 and 
Mcl-1. 15 of 17 peptides designed using dTERMen bound tightly to their intended targets, and these 
peptides have just 15 - 38% sequence identity to any known native Bcl-2 family protein ligand. High-
resolution structures of four designed peptides bound to their targets provided opportunities to analyze 
strengths and limitations of this approach. Dramatic success designing peptides using dTERMen, which 
comprised going from input structure to experimental validation of high-affinity binders in approximately 
one month, provides strong motivation for further developing TERM-based approaches to design. 
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Introduction 

Protein-protein interactions (PPIs) are central to 
nearly all biological processes and contribute to 
pathology in countless human diseases [1]. 
Reagents that can disrupt PPIs are highly sought 
for basic research and for therapeutic 
development, but the size and complexity of 
many protein interfaces make them difficult to 
target. For example, large binding sites that have 
multiple, widely spaced hotspots are notoriously 
difficult to disrupt with small molecules, as are 
flat interfaces that lack pockets [2]. Antibodies 
and nanobodies can block PPIs and have the 
advantage, relative to small molecules, of 
binding to larger protein interfaces. The 
difficulty of delivering large molecules into the 
cell, coupled with the low stability of some 
antibody-derived agents in the reducing 
environment of the cytoplasm, has largely 
limited their application to extracellular targets 
or chemically permeabilized cells ex vivo [3]. 
Furthermore, there are PPI interfaces for which 
antibodies are non-ideal due to the architecture 
of the immunoglobulin domain [4]. 

Peptides provide a complementary and highly 
promising approach to targeting PPI interfaces. 
Peptide-protein interactions are ubiquitous in 
nature, where there are many examples of short 
segments binding to large, structurally complex 
protein surfaces [5–7]. Peptides can be delivered 
into cells by chemically modifying them to 
increase hydrophobicity and hide hydrogen 
bonds/negative charges [8–10], conjugating 
them to transduction domains (such as cell-
penetrating peptides) [11–13], or delivering 
them using nanoparticles [14]. Nevertheless, 
there are obstacles to developing useful peptide 
inhibitors. Peptides derived from naturally 
occurring sequences have non-optimal 
pharmacological properties, because they 
weren’t evolved for function as reagents or 
therapeutics. Furthermore, native ligands often 
have a binding affinity or specificity profile 
different from what is desired for a given 
application. Significant sequence optimization is 
typically required to minimize off-target 
binding, decrease protease sensitivity, reduce 

immunogenicity, and improve pharmacokinetics. 
Because we lack the ability to predict 
pharmacological potential a priori, an ability to 
rapidly generate numerous diverse peptide 
sequences that tightly bind/inhibit a target PPI 
would be transformative for the development of 
peptide therapeutics. 

Current approaches for discovering diverse 
peptide PPI inhibitors have limitations. State of 
the art methods rely heavily on experimental 
screening, and generating a peptide library 
requires selecting a parent sequence in advance 
(except for very short peptides). The parent is 
most often a naturally occurring ligand, around 
which only a vanishingly small fraction of the 
sequence space can be queried. Screening that 
selects for the “best” binders in a population 
does not typically provide diverse leads. 
Rational design, e.g. using computational 
models to search sequence-structure space on a 
much larger scale, can effectively guide screens 
to sequences unrelated to those represented in 
nature. However, given the essentially infinite 
space to explore and the difficulty of accurately 
predicting the best binders, the success rates of 
rational, structure-based methods have been low 
[15–19]. 

Recent methodological developments have 
shown that mining sequence-structure 
relationships from the Protein Data Bank (PDB) 
has the potential to improve the efficiency and 
efficacy of structure-based modeling and design 
[20–24]. It has long been recognized that 
proteins are composed of recurring structural 
elements [25,26]. The large number of solved 
structures now makes it possible to compile a 
finite, yet near-complete, list of the recurring 
tertiary structural motifs (here called TERMs) 
that are needed to construct any protein structure 
[27]. Recent analyses have demonstrated that 
TERMs have characteristic sequence 
preferences that can be detected by statistical 
analysis of solved structures [28]. These 
observations provide the foundation for a 
formalism that can quantify the compatibility of 
any sequence with any specified structural 
scaffold, as described by Zhou et al. [29].  
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TERM-based computational analyses have 
already demonstrated utility for challenging 
modeling tasks. For example, a statistical 
analysis of TERM sequences is remarkably 
effective at discriminating between good and 
poor structure predictions, on par with or 
exceeding leading model quality assessment 
metrics [30]. Zheng et al. also showed that 
TERM sequence statistics capture aspects of 
protein thermodynamics and can be used to 
predict stability changes upon mutation as well 
as, or better than, state-of-the-art physics-based 
or statistical methods [28]. Finally, TERM-based 
sequence-structure relationships can be applied 
to protein design. Mackenzie et al. showed that 
choosing optimal sequences for native 
backbones, based solely on statistics of 
constituent TERMs, leads to native-like 
sequences and rationalizes observed 
evolutionary variation [27]. More recently, Zhou 
et al. described and extensively benchmarked a 
TERM-based design method, called dTERMen 
(design with TERM energies), demonstrating 
that it is predictive with respect to available data 
and can generate novel sequences that fold to the 
intended structure [29]. So far, TERM-based 
methods have not been applied to predicting or 
designing protein interactions. 

dTERMen is distinct from many other 
approaches to protein design because it chooses 
sequences for a target structure based on mining 
the PDB for TERM-based sequence statistics. 
These statistics quantify sequence-structure 
compatibility in the context of ensembles of 
structurally similar TERMs, as opposed to a 
single fixed backbone. This approach implicitly 
accounts for some backbone flexibility, which is 
advantageous. However, building a scoring 
function from an ensemble of structures also 
means that design results are not always easy to 
interpret in the context of a single ground-state 
structure. For example, steric clashes that are 
apparent when a designed sequence is modeled 
in the context of a fixed backbone structure may 
or may not be destabilizing. 

In this work, we tested the ability of dTERMen 
to analyze and re-design peptide binders of the 
important anti-apoptotic proteins Bfl-1 and Mcl-
1. Along with paralogs Bcl-2, Bcl-xL, and Bcl-w, 

these proteins promote cellular survival by 
binding and sequestering pro-apoptotic proteins. 
Mcl-1 and Bfl-1 have established roles in cancer 
cell survival and the development of 
chemoresistance [31,32]. Although blocking 
Bcl-2 protein binding to pro-apoptotic partners 
is a validated clinical strategy [33,34],  there are 
no clinically approved inhibitors of Bfl-1 or 
Mcl-1 at this time. Small molecules, peptides, 
and mini-proteins have been described as 
potential inhibitor leads [8,35–38]. For 
comparison with prior design strategies that 
required extensive library screening, we tested 
the ability of dTERMen to generate peptide 
binders of Bcl-2 family proteins. Our success 
validates dTERMen as a promising and novel 
approach for rapid early stage discovery of 
diverse and high-affinity peptide ligands. 

Results 
Bcl-2 family proteins Bcl-2, Bcl-xL, Bcl-w, Bfl-
1 and Mcl-1 bind to Bcl-2 homology 3 (BH3) 
motifs within their interaction partners. The 
short ~23-residue BH3 motif, typically 
disordered in solution, folds into an alpha helix 
upon binding. Below, we refer to positions in 
BH3 peptides using a heptad notation, defined in 
Table S1 of native BH3 sequences, that reflects 
the periodicity of the amphipathic helix. In this 
notation, positions 2d, 3a, 3d and 4a are 
typically hydrophobic, position 3a is conserved 
as leucine in native BH3 motifs, position 3e is 
conserved as a small amino acid, and position 3f 
is conserved as aspartate.  

Benchmarking interaction prediction 
performance 

To evaluate the potential of dTERMen for 
designing peptide ligands for Bcl-2 family 
targets, we tested its performance on a variety of 
prediction tasks. We used a dataset consisting of 
4488, 4648 and 3948 measurements of BH3 
peptides binding to Bcl-xL, Mcl-1 and Bfl-1, 
respectively [39]. The peptides were 23 residues 
in length and contained between 1 and 8 
mutations made in the background of the BH3 
sequences of human pro-apoptotic proteins BIM 
or PUMA. Affinity values were obtained using 
amped SORTCERY, a high-throughput method 
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for quantifying dissociation constants of 
peptides displayed on the surface of 
Saccharomyces cerevisiae [39,40].  Using this 
assay, thousands of peptides were determined to 
have apparent cell-surface dissociation constants 
ranging from 0.1 to 320 nM, with some peptides 
classified simply as binding tighter or weaker 
than the extremes of this range.  

Using the amped SORTCERY data, we defined 
three tasks of increasing difficulty. The easiest 
task was to discriminate the tightest 20% of 
binders from the weakest 20%, for a particular 
target protein. We also defined an enrichment 
task, which involved identifying the tightest 
10% of binders and, finally, the difficult task of 
predicting quantitative affinities within a 5 
kcal/mol range in apparent binding energies. For 
these tests, we compared the performance of 
dTERMen with that of commonly used methods 
Rosetta [41,42] and FoldX [43].  

As input for the prediction calculations, we used 
experimental structures of Bcl-2 protein-peptide 
complexes. Querying the PDB and filtering for 
bound peptides of at least 20 amino acids in 
length yielded 15, 6 and 25 protein-peptide 
complexes for Bcl-xL, Bfl-1 and Mcl-1, 
respectively (Table S2). An analysis of the BH3 
peptides in these complexes revealed that they 
all adopt a similar binding mode (Table S3) 
(average pairwise Cα RMSD of 1.64 ± 0.85 Å 
for the binding interface, defined as Cα atoms of 
the peptide and surrounding protein residues; see 
Methods for details).  

We first tested whether different modeling 
approaches could discriminate high affinity 
binders from peptides that were not observed to 
bind or that bound weakly. Table 1 reports the 
average performance of each method over all 
structural templates. Binary classification of 

tight binders vs. weak binders is reported as the 
area under the receiver operating characteristic 
curve (AUC). An AUC value of 1 corresponds 
to perfect discrimination and an AUC value of 
0.5 corresponds to random guessing. 
Performance averaged for all protein targets 
shows that dTERMen (AUCavg = 0.78) has 
similar predictive power to the other scoring 
methods, Rosetta (AUCavg = 0.75) and FoldX 
(Ravg = 0.75). The small difference in results is 
driven by performance on the Bcl-xL dataset, for 
which dTERMen (AUCavg = 0.75) is better than 
Rosetta (AUCavg = 0.69) and FoldX (AUCavg = 
0.68). For the task of predicting quantitative 
binding energies, performance averaged for all 
protein targets shows that dTERMen (Ravg = 
0.37), Rosetta (Ravg = 0.34) and FoldX (Ravg = 
0.31) gave similar performance, with dTERMen 
outperforming the other methods for Bcl-xL.  

Many applications seek the tightest binding 
partners for a protein target, given that these 
may have the greatest potential as reagents or 
therapeutics. We used an enrichment test to 
evaluate methods for their ability to recognize 
high-affinity binders. Specifically, we used each 
method to rank the 4386, 4491 or 3805 
sequences that had measured affinities for Bcl-
xL, Mcl-1 or Bfl-1. We then examined the top 
10% of computationally ranked sequences to 
determine what proportion of the top 10% of 
experimental binders were captured. Overall, 
dTERMen had better enrichment performance 
than Rosetta and FoldX (31% vs. 24% and 21%) 
and performed better than the other methods on 
most problems. We tested predictions using 45 
different input structures, and dTERMen had the 
best enrichment performance for 34 of these 
cases. Notably, dTERMen had the best 
enrichment score on all of the Bfl-1 templates 
and 13 of the 15 Bcl-xL templates. 
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Table 1 - Interaction prediction performance averaged over all templates a 

 AUCb Affinity Correlationc Enrichment of the top 10% of 
binders (%)d 

Target Bcl-xL Bfl-1 Mcl-1 Meane Bcl-xL Bfl-1 Mcl-1 Mean e Bcl-xL Bfl-1 Mcl-1 Meane 

FoldX 

0.68 
± 

0.11 

(3)f 

0.75 
± 

0.06 
(2) 

0.82 
± 

0.08 
(6) 

0.75 ± 
0.06 
(14) 

0.23 
± 

0.11 
(1) 

0.34 
± 

0.07 
(2) 

0.37 
± 

0.11 
(3) 

0.31 ± 
0.06 
(9) 

20.3 
± 6.6 
(1) 

19.9 
± 4.0 
(0) 

23.4 
± 8.2 
(0) 

21.4 
± 1.8 
(1) 

Rosetta 
0.69± 
0.05 
(1) 

0.72 
± 

0.02 
(2) 

0.85 
± 

0.03 
(12) 

0.75 ± 
0.07 
(15) 

0.24 
± 

0.06 
(1) 

0.32 
± 

0.03 
(2) 

0.45 
± 

0.04 
(16) 

0.34 ± 
0.09 
(19) 

20.5 
± 3.8 
(1) 

18.96 
± 3.6 
(0) 

24.44 
± 4.4 
(13) 

24.3 
± 6.7 
(14) 

dTERMen 

0.75 
± 

0.06 
(11) 

0.73 
± 

0.03 
(2) 

0.83 
± 

0.06 
(7) 

0.78 ± 
0.04 
(20) 

0.35 
± 

0.07 
(13) 

0.32 
± 

0.04 
(2) 

0.44 
± 

0.10 
(6) 

0.37 ± 
0.05 
(21) 

29.9 
± 4.9 
(13) 

27.5 
± 1.4 
(6) 

35.2 
± 

35.1 
(12) 

30.9 
± 3.2 
(34) 

a: Average and standard deviation of the reported performance metric over all templates. 
b: Area under the ROC curve for discriminating the top 20% of binders from the bottom 20%.  
c: Pearson correlation between predicted and experimental binding energy. 
d: Percentage of top 10% of binders found in the predicted top 10% of binders. 
e: Average and standard deviation of performance over all three proteins. 
f: The number in parentheses is the number of templates for which the indicated method gave the best performance, out of the three 
methods tested. The total number of templates was 15 for Bcl-xL, 6 for Bfl-1 and 25 for Mcl-1. 
 

 
The results in Table S2 show that predictive 
power varies significantly as a function of the 
template used for modeling. For example, FoldX 
predictions for the Bcl-xL dataset resulted in AUC 
values from 0.39 to 0.82, depending on template 
choice. In one case, multiple protein complexes in 
the asymmetric unit of one crystal structure 
(5C6H), with an average pairwise binding 
interface RMSD of 0.69 Å, gave AUC values 
from 0.65 to 0.82. It is not surprising that binding 
affinity predictions depend on the input template 
structures, particularly for dTERMen and FoldX, 
which do not perform explicit template structure 
relaxation. But there is no reliable way to know, a 
priori, which template will give the best 
agreement with experiments. One approach could 
be to choose the crystal structure that has the best 
resolution. However, we found no relationship 
between structure quality and performance for any 
of the methods (Fig. S1). A computationally 
tractable approach to template selection is to use 

the template that results in the lowest predicted 
energy for each sequence. Table 2 shows that, 
without exception, performance improved for all 
methods when the lowest energy for each 
sequence, over all templates, was used. FoldX 
performance improved the most; FoldX mean 
AUC increased from 0.75 to 0.85, the mean 
Pearson correlation for binding affinity values 
improved from 0.31 to 0.47, and mean enrichment 
of top binders increased from 21% to 29%. 
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Table 2 - Interaction prediction performance using the template that gave the lowest energya 

 AUC (%) Affinity Correlation Enrichment of the top 10% of 
binders (%) 

Target Bcl-xL Bfl-1 Mcl-1 Mean Bcl-xL Bfl-1 Mcl-1 Mean Bcl-xL Bfl-1 Mcl-1 Mean 

FoldX 0.83 0.83 0.93 0.85 ± 
0.05 0.39 0.46 0.56 0.47 ± 

0.07 27.4 27.3 32.7 29.1
± 2.5 

Rosetta 0.70 0.76 0.92 0.78 ± 
0.09 0.25 0.33 0.53 0.37 ± 

0.12 20.1 20.0 38.1 26.0
± 8.5 

dTERMen 0.77 0.74 0.89 0.80 ± 
0.06 0.38 0.33 0.50 0.41 ± 

0.07 35.3 29.2 43.3 35.6
± 5.8 

a: Notes for Table 1 apply 
 
 

We were struck by the strong dependence of 
predicted binding affinities on the choice of 
template structure and thought this might be an 
area where dTERMen could provide a modeling 
advantage, particularly for complexes for which 
only one or a few structures have been solved. 
The robustness of prediction performance to 
very small differences in input structures was 
evaluated using 294 pairs of closely related 
structures of the same protein complex that had 
binding interface Cα atom RMSD < 1 Å.  For 
each pair, we computed the correlation of 
predicted binding energies for all peptides with 
measured dissociation constants. The results are 
shown in Fig. 1. On average, dTERMen (Ravg = 
0.77) is much less sensitive to small differences 
in input template than FoldX (Ravg = 0.55). 
When run with default options, the Rosetta 
“relax” protocol is slightly more robust than 
FoldX (Rosetta Ravg = 0.60), although further 
structural sampling could, at least in theory, lead 
to a convergence of the Rosetta predictions 
made using different templates, albeit at a higher 
cost in computing time.  

 
Figure 1. Prediction robustness to small 
differences in input structures. Distribution of 
Pearson correlation coefficients (R) comparing scores 
when modeling on templates with binding mode 
RMSD within 1 Å. 294 pairs of structures and 6155 
unique amped SORTCERY sequences were used to 
generate the data. The median R value is indicated in 
red, data between the first and third quartiles (Q1-Q3) 
are within the box, the whiskers represent extensions 
of Q1 and Q3 by 1.5 times the interquartile distance 
(Q1-Q3), and outliers show points outside the 
whiskers. The larger correlation coefficients for 
dTERMen results, compared to other methods, 
indicate lower sensitivity to small structural 
differences in templates.  
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dTERMen designs 

Because dTERMen performed at least as well as 
established scoring functions in benchmarking, 
we reasoned that it might be useful for designing 
peptide binders. Given a template structure, 
dTERMen can be used to solve for the optimal 
sequence to fit on the template, or in this case to 
fit on the peptide chain in the template given a 
fixed sequence for the protein target. We chose 5 
structures as design templates: two structures of 
Bfl-1 complexes and three structures of Mcl-1 
complexes (Table S4). Templates were chosen 
to sample structural diversity, because we 
observed that designing on different templates 
provides access to different sequences (Fig. S2).  

For Bfl-1-targeted designs, we selected 
structures of Bfl-1 bound to the natural ligand 
PUMA (PDB ID 5UUL) and of Bfl-1 bound to a 
Bfl-1 selective peptide (FS2) that was identified 
in a previously reported screen (PDB ID 5UUK) 
[36]. Because the backbones of peptides PUMA 
and FS2 are shifted 1.2 Å and rotated 17° 
relative to one another in the Bfl-1 binding 
pocket, we expected to see differences in the 
optimal sequences identified by dTERMen for 
these two templates. For the Mcl-1 targeted 
designs, we used structures of Mcl-1 bound to 
the natural ligand BIM (PDB ID 2PQK) and to a 
chemically crosslinked variant of the natural 
ligand BID, called BID-MM (PDB ID 5C3F) 
[44,45]. These two binding modes are similar 
(peptide RMSD = 0.76 Å when superimposing 
the binding interface), but the Mcl-1 protein has 
differences in the binding pocket in the two 
structures (binding site RMSD = 1.13 Å). We 
also used a structure of peptide FS2 bound to 
Mcl-1. FS2 has low affinity for Mcl-1 (Kd > 3 
µM) but engages the protein in a unique binding 
pose (PDB ID 5UUM) [36].  

Peptide sequences were designed on each of the 
templates 5UUL, 5UUK, 2PQK, and 5C3F 
using dTERMen. Preliminary calculations 
showed that the designed sequences with the 
best dTERMen scores included medium sized 
hydrophobic residues at 3a and negatively 
charged residues at 3f, similar to the conserved 
leucine and aspartate residues in native BH3 
motifs. However, dTERMen-design sequences 

did not preserve native trends at position 4b. 
Specifically, the 4b position of many native BH3 
peptides is often asparagine, aspartate or 
histidine, which can serve as an N-terminal helix 
cap for helix 5 of Mcl-1 or Bfl-1. We noticed 
that dTERMen chose a variety of amino acids at 
this position (Lys, Glu, Ser, Ala, Val, Tyr, and 
Thr). To explore the reason behind this 
departure from the sequence patterns of native 
BH3 domains, we extracted the N-terminal 
helix-capping motif (i.e., N-terminus of helix 5 
and the BH3 capping fragment; see Fig. S3) 
from each template and recovered closely-
matching backbone geometries from the PDB. 
To our surprise, whereas matches made to Bcl-2 
family proteins indeed exhibited a strong 
preference for asparagine or aspartate at the 
capping position, the frequency of capping 
residues across other matches were considerably 
lower (e.g., on average, 6% and 10% for 
asparagine or aspartate, respectively, in the top 
~600 non-Bcl-2 homologous matches). It is 
therefore not surprising that the apparently 
strong capping effect in native BH3 helices was 
not recapitulated in dTERMen designs. While it 
was unclear whether a capping residue at 
position 4b would be required or not, we chose 
to fix this position to either asparagine or 
aspartate (based on the residue in the design 
template). BH3 residue 3b can also make a 
helix-capping interaction. In this case, we 
imposed the wild-type amino-acid identity in 
half of the designs (dF1-dF4, dM1-dM4), while 
allowing this position to vary in the other half 
(dF5-dF8, dM5-dM7). Two sequences were 
designed on 5UUM (one for each dTERMen 
version), without any sequence constraints. 

Table 3 shows the optimal designed peptide 
sequence (the provably best-scoring sequence, 
given the constraints) for each template 
structure. For many of the designs, re-packing 
the protein and peptide sidechains on the rigid-
backbone design template using Rosetta showed 
evidence for predicted steric clashes of varying 
severity. We used PyMol to visualize regions of 
possible over-packing, as shown in Figs. S4-S7. 
Because some backbone relaxation is expected 
when designing new protein complexes, and 
because the dTERMen scoring function 
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predicted that the designed sequences are 
compatible with structures closely related to the 
design templates, we did not filter the designs 
using any kind of clash criterion. 

Fig. 2A shows sequence logos built from 1000 
sequences designed on each template, generated 
from a Monte Carlo simulation without any 
constraint on position 3b (see Methods). These 
data, and the designed sequences in Table 3, 
confirm that peptides designed on different 
templates were highly distinct, as anticipated. 
Particularly notable was the diversity observed 

at positions 3a and 3f. Although dTERMen 
overwhelmingly chose leucine at position 3a for 
peptides designed on template 5C3F, matching 
the conservation observed in native BH3 
sequences, greater sequence variation was 
observed at this site in designs based on other 
templates. For example, designs based on 
structure 5UUK included isoleucine or 
methionine more often than leucine. Position 3f 
is conserved as aspartate in the natural 
sequences, but dTERMen chose a variety of 
polar residues at this site for all templates.

 
Figure 2. dTERMen design of peptides to bind Mcl-1 and Bfl-1.  A) Sequence logos for peptides designed using 
dTERMen on each of the design templates 5UUK, 5UUL, 2PQK, 5C3F, and 5UUM. Heptad notation for the peptide 
sequences is shown above the logos. A list of the 13 BH3 motif sequences used to generate the “Natural” logo is in 
Table S1. B-C) The sequences of the Bfl-1 designs (B) and the Mcl-1 designs (C) were compared to known natural 
BH3 motifs in Table S1. D-E) The designed sequences were cloned into yeast for cell surface display, and binding 
to each protein was measured using FACS. Shown here is the median fluorescence binding signal of each peptide in 
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the presence of 1, 10, or 100 nM of the target proteins Bfl-1 (D) or Mcl-1 (E). Data for replicate and off-target 
measurements are provided in Table S7 and Fig. S8. 
 
 To evaluate the predictions made by dTERMen, 
17 out of the 18 designed peptides in Table 3 
were selected for experimental testing. Sequence 
dM8, designed on template 5C3F, was not tested 
because it was only one mutation away from 
design dM7. The sequences chosen for testing, 
like all sequences resulting from the design 
protocol, were very different from any 
previously known BH3 sequences. Fig. 2B 
summarizes the minimum number of mutations 
between the peptides we tested and any of the 13 
native BH3 sequences in Table S1 (minimal 
Hamming distance). Designed peptide binding 
to Bfl-1, Mcl-1, Bcl-xL, Bcl-w, and Bcl-2 was 
assayed by yeast-surface display. Binding data 
from yeast-surface display assays have been 
shown to correlate well with solution affinity 
measurements, and many BH3 peptides that are 
tight binders on the yeast cell surface have also 

been validated as high-affinity binders in 
solution [35,46,47]. 7 out of 8 peptides designed 
to bind Bfl-1 showed concentration-dependent 
binding that saturated at or below 10 nM Bfl-1. 
8 of 9 sequences designed to bind Mcl-1 also 
showed concentration-dependent binding, with 
apparent cell-surface dissociation constants 
estimated as < 100 nM (Figs. 2D, E). The results 
show that constraints on the helix-capping 
residues at positions 3b and 4b were not 
necessary for the designed peptides to bind their 
targets tightly. Peptides designed based on the 
5UUM template, a structure of Mcl-1 bound to 
low-affinity ligand FS2, bound approximately 
100-fold more tightly than did FS2 itself, 
supporting dTERMen as a way to improve the 
affinity of initial leads for which structures are 
available (Table S7, Fig. S8). 

 
Table 3. BH3 sequences for template structures (bold) and for peptides designed on those templates 
using dTERMen. Designs dF1-dF9 target Bfl-1 and dM1-dM10 target Mcl-1. 

Name 
Sequence 

PDB ID ---|--2---|--3---|--4--- 
efgabcdefgabcdefgabcdefg 

FS2 -QWVREIAAGLRRAADDVNAQVE- 5UUK 
dF1 -SYVDKIADVMREVAEKINSDLT-  
dF2 -SYIDKIADLIRKVAEEINSKLE-  
dF5 -SYVDKIADLMKKVAEKINSDLT-  
dF6 -SYIDKIADLIDKVVEEINSKLE-  

PUMA -QWAREIGAQLRRMADDLNAQYER 5UUL 
dF3 -SLLEKLAEELRQLADELNKKFEK  
dF4 -SLLEKLAEYLRQMADEINKKYVK  
dF7 -SLLEKLAEELAQLADELNKKFEK  
dF8 -SLLEKLAEYLAQMGDEINKKYVK  
BIM GRPEIWIAQELRRIGDEFNAYYA- 2PQK 
dM1 APKEKEVAETLRKIGEEINEALK-  
dM2 APYLEQVARTLRKIGEEINEALR-  
dM5 APKEKEVARTLIKIGEEINEALK-  
dM6 APYLEQVARTLLHIGMEINEALR-  
BID EDIIRNIARHLAXVGDXBDRSI-- 5C3F 
dM3 DKTLEEIARELAKLAEEIDKEI--  
dM4 DKTLEEIARWLARLALEIDKEI--  
dM7 DKTLEEIARELLKLALEIDKEI--  
FS2 -QWVREIAAGLRRAADDVNAQVER 5UUM 
dM9 -DIEQEIAEALKEVADELSKAIED  
dM10 -DVVLSVAETLRELADRLYEEINT   

X= position of hydrocarbon staple; B=Norleucine 
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Peptides dF6 and dM6 did not bind to their 
targets with high affinity. Peptide dF6 has a 
valine at position 3e, which is conserved as 
small (Ala or Gly) in native BH3 peptides, in 
previously reported designed peptides, and in all 
of the other dTERMen-designed peptides that 
we tested [47–49]. Structural matches identified 
by dTERMen as part of the design process 
suggested that valine could be accommodated in 
the context of helix-helix interface geometries 
highly similar to the one in 5UUK between Bfl-
1 residue 88 and BH3 position 3e. In fact, the 
second-closest match to this local interfacial 
geometry in our database (backbone RMSD of 
only 0.27 Å) harbors a valine (Fig. S9). 
Nevertheless, an all-atom model built using 
template 5UUK highlights clashes due to the 
close proximity of the Ca atom of dF6 position 
3e and the backbone of position 88 in helix 5 of 
Bfl-1 (Fig. S4A), and valine may be too large to 
be accommodated at this site. For design dM6, 
we hypothesize that substitution of arginine and 
aspartate at positions 3b and 3f of BIM with 
leucine and methionine, respectively, and 
concomitant disruption of a charged network 
between the peptide and the protein, was 
destabilizing. These features are consistent with 
dM6 not binding to any of the Bcl-2 family 
members we tested (see below). 

There is substantial interest in developing Bcl-2 
family paralog selective inhibitors [8,31,35,49]. 
To determine whether our designs cross-react 
with other anti-apoptotic family members, we 
tested binding of each peptide to Bfl-1, Mcl-1, 
Bcl-xL, Bcl-w, and Bcl-2. Interestingly, the Bfl-1 
binders that were designed on the structure of 
PUMA in complex with Bfl-1 (5UUL) bound to 
multiple Bcl-2 family members. In contrast, 
peptides designed on 5UUK, which is the 
structure of Bfl-1-specific peptide FS2 bound to 
Bfl-1, were > 100-fold selective for Bfl-1, like 
FS2 itself. The data were less clear for Mcl-1 
binders, some of which were selective (dM1, 
dM5) whereas others were not (dM2, dM3, 
dM4, dM7, dM9, dM10) (Table S7, Fig. S8).  

To determine whether the designed peptides 
maintained the binding mode of the templates 
they were designed on, we solved crystal 

structures for four of the peptides that bound 
tightly to their targets: dF1 and dF4 in complex 
with Bfl-1, and dM1 and dM7 in complex with 
Mcl-1 (Fig. 3). Statistics for data collection and 
refinement are reported in Table S5. The 
structure of dF1 in complex with Bfl-1, resolved 
to 1.58 Å, shows that this peptide binds very 
similarly to FS2 in template 5UUK (Fig. 3A). It 
is striking how similar the pocket-facing 
positions of the designed peptide dF1 and 
template peptide FS2 are, even though the 
sequence identity of these two peptides is low 
(27%) and no information about the FS2 
sequence was used in the design process (Fig. 
S10). 

 
Figure 3. Comparison of the structures of 
designed complexes and their templates. X-ray 
crystal structures of (A) dF1 bound to Bfl-1, (B) dF4 
bound to Bfl-1, (C) dM1 bound to Mcl-1, and (D) 
dM7 bound to Mcl-1 (all with the peptide in purple) 
are compared to the template structures on which 
they were designed (green ribbon and gray surface). 
The N-terminal end of each peptides lies to the left in 
the figure. 

Modeling dF1 onto the FS2 backbone in structure 
5UUK indicated minor clashes, including between 
methionine at position 3a and residues in the P2 
pocket of Bfl-1 (Met 75, Phe 95, and Glu 78), 
isoleucine at position 4a with Val 44 in helix 2 of 
Bfl-1, and valine at position 3d with Val 48 and Val 
44 of helix 2 of Bfl-1 (Fig. S4C). A more substantial 
clash was anticipated between valine at position 2g 
and Leu 52 of helix 2 of Bfl-1 (Fig. S4F). The crystal 
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structure of dF1 bound to Bfl-1 shows how small 
adjustments accommodate these residues. For 
example, in the region around valine at 2g, small 
backbone adjustments are seen for Bfl-1 residues 50-
63 that make room for this residue and lead to a 
modest divergence of the N-terminus of FS2 in 
5UUK compared to dF1 in our new structure (Fig. 
3A). 

We solved the structure of dF4 bound to Bfl-1 to 
1.75 Å and found that the C-terminal end of the 
peptide adopts a different conformation than 
does PUMA BH3 bound to Bfl-1 in structure 
5UUL (Fig. 3B). In template 5UUL, the helix 
begins to unwind around position 4d, but in the 
redesigned structure the helix unwinds 3 
residues earlier. dTERMen identified relatively 
few matches for structural elements at the C-
terminus of 5UUL, which may have contributed 
to the deviation from the design template (Fig. 
S11). At the N-terminus, the sequence of dF4 is 
very different from that of PUMA; there is only 
one identical residue within the first 10 residues. 
An important change was glycine (in PUMA) to 
alanine (in dF4) at position 2e. In 5UUL, this 
site is located at a tightly packed helix-helix 
crossing. Although only glycine can fit when 
modeled on the rigid design template, TERM 
statistics indicated that alanine is common in 
very similar geometries. The solved structure 
shows how the dF4 helix shifts slightly to 
accommodate alanine, along with other 
sequence changes.  

We solved the structure of dM1 bound to Mcl-1 
to 1.95 Å and found that that it bound very 
similarly to the BIM BH3 peptide in design 
template 2PQK (Fig. 3C). However, the 
structure of dM7 bound to Mcl-1 at 2.25 Å 
resolution revealed a substantial change in the 
binding mode of the peptide (Fig. 3D, Fig. 
S12A). The helix is shifted in the groove by 3.43 
Å and rotated by 19 degrees along the helix axis, 
relative to the position of BID-MM in the design 
template structure 5C3F. A shift of the helix in 
the groove by approximately one-half helical 
turn re-positions leucine at 3a relative to what is 
observed in structures of native BH3 peptides 
bound to Bcl-2 family proteins. Furthermore, the 
canonical BH3 interaction of aspartate at 3f with 
Bfl-1 Arg 263 is replaced by a salt bridge with 

an aspartate at position 4b in the peptide (Fig. 
S12B). In Mcl-1, alpha helix 4 is rearranged 
relative to its position in the template, to 
accommodate the unusual sequence. The 
reorganization may have resulted from 
introducing two leucine residues at peptide 
positions 3b and 3f. Not only does leucine at 3f 
remove the aspartate residue at this position in 
BIM, BID and PUMA, but leucine at 3b is 
predicted to interfere with an intra-molecular 
salt bridge between Bfl-1 residues 256 and 263. 
The shift of peptide dF1 observed in the crystal 
structure restores the salt-bridge network 
between Bfl-1 and the peptide, using a different 
peptide residue, as shown in Fig. S12B. One 
complication in evaluating this structure is that 
there are close crystal-packing contacts between 
two copies of the Mcl-1:dM7 complex, near the 
C-terminal end of the binding groove, and 
involving alpha helix 4 of Mcl-1 (Fig. S13). We 
cannot rule out the possibility that crystal 
packing forces favored population of a minor 
structural species, and that the designed binding 
mode may be populated in solution. 

In summary, x-ray crystallography revealed that 
backbone positioning of two of the crystalized 
designs (dF1 and dM1) were sub-Ångstrom 
matches to their design templates, over most of 
the length of the peptide. Another peptide (dF4) 
bound in a geometry that shared high similarity 
with its template, but the remaining design 
(dM7) bound in an unexpected, dramatically 
shifted orientation.  

Discussion 
Using dTERMen, we were able to rapidly design 
high-affinity binders of Bcl-2 family proteins 
without the need for explicit modeling of 
complex structures or expensive experimental 
library screening. Previous work has shown that 
this is not a trivial task. For example, in a library 
of random peptides, nearly all fail to bind Mcl-1 
detectably [50]. Additionally, even in carefully 
designed libraries containing peptides with 
fewer than 6-8 mutations compared to natural 
BH3 domains, most sequences fail to bind Bfl-1 
and Mcl-1 [36]. In contrast, using dTERMen, we 
found that 15/17 of the designs bound with 
native-like affinity, even though the sequences 
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were 14-22 mutations away from known BH3 
binders (Fig. 2 B-C).  

Our design protocol provided access to novel 
and diverse sequences. Some of the tight binders 
we discovered using dTERMen lack the highly 
conserved leucine and aspartate residues 
common to all known, native BH3 sequences 
(Table 3, Fig. 2A). Not only do our results 
suggest that these residues are not necessary for 
binding, but they show that dTERMen is a 
useful tool for discovering binders that cannot be 
predicted based on conserved sequence features. 
Designing on different structural templates gave 
rise to different solutions, as illustrated in Fig. 
2A. This may seem to be at odds with our 
finding that dTERMen is robust to small 
differences in input structure (Fig. 1), but we 
deliberately chose design templates to sample 
different peptide docking geometries. We 
expected these templates to match with different 
TERMs from the PDB, and thus to generate 
different sequence predictions. Templates 5UUL 
and 2PQK are structures of complexes with 
native, tight BH3 peptide binders (reported 
dissociation constants of ~1 nM) [36,44]. Other 
templates we tested, 5C3F and 5UUM, featured 
peptides that bound their targets more than 3 
orders of magnitude more weakly [36,45]. It is 
notable that template structures for both high-
affinity and low-affinity peptide complexes led 
to novel, high-affinity peptide binders when 
used as input to dTERMen. Designing on other 
solved structures could provide access to even 
greater diversity (Fig. S2). Going beyond solved 
structures, it may be possible to perform 
dTERMen design on predicted structures with 
binding modes that have not been previously 
observed.  

A set of designs with diverse sequences is more 
valuable that a single design optimized for 
affinity because it provides opportunities to 
optimize pharmacological properties not related 
to binding. Our designed peptides have formal 
net charges ranging from -7 to +1, predicted 
helical content ranging from 0.7 to 69.7% and 
predicted hydrophobicity of 0.03 to 0.48 (Table 
S5). These properties could affect whether these 
peptides are disruptive to membranes and how 
readily they can be delivered to cells. Several 

studies have shown that the cell permeability of 
stapled helical peptides depends on peptide 
properties including charge and hydrophobicity 
[8,10]. Different sequences will also have 
different cross-reactivity, immunogenicity, and 
protease sensitivity, so having many options to 
choose from increases the chances of developing 
useful reagents and lead therapeutics. 
Interestingly, design using dTERMen is 
compatible with imposing constraints on peptide 
properties such as net charge, so if the desired 
physical characteristics of a peptide inhibitor are 
known, they can be used to direct the search into 
promising sequence spaces. 

The dTERMen scoring potential is based on 
sequence statistics for structural elements 
observed repeatedly in nature. There is no 
formal relationship between these statistics and 
protein stability or affinity, so the scoring may 
reflect any number of evolutionary pressures 
including stability, specificity, folding kinetics, 
solubility, or other factors. We interpret the 
success of dTERMen as evidence that whatever 
evolutionary forces may be contributing to the 
statistics, there must be a substantial 
contribution from the free energy of the 
sequence adopting the evaluated structure. The 
fact that we designed helix-helix interactions in 
this project, which are common in the PDB, may 
be part of the reason dTERMen designs 
performed so well. Because more structures are 
deposited in the PDB every day, we expect the 
range of accessible design targets to increase 
over time [28].  

One attractive feature of dTERMen is that it 
doesn’t require explicit structural modeling or 
minimization; the design optimization is 
performed in sequence space. Although the PDB 
structure-mining that is required to build the 
scoring function can be somewhat time 
consuming (e.g. it takes 7 to 12 CPU hours to 
generate scoring functions for the structures we 
analyzed here), once such a function is derived, 
it is possible to perform design, or to evaluate 
millions of sequences, in seconds. Another 
advantage of dTERMen is that there is a 
structural “fuzziness” built in, because the 
sequence statistics used for modeling are derived 
from close, but not exact, matches of TERMs. 
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This makes the method more robust than FoldX 
to small variations in input structure, as shown 
in our benchmark testing, and also accounts for 
some amount of backbone relaxation. In this 
work, we observed multiple examples where a 
mutation was accommodated that would not 
have been designed if modeling was performed 
on a rigid scaffold (Figs. S4-S7). On the other 
hand, dTERMen design failures may result from 
over-packing the protein-peptide interface 
beyond what can be accommodated by small 
structural rearrangements. This may be what 
happened for dF4, the structure of which 
diverged from the design template structure at 
the C-terminal end of the peptide, and for dF6, 
which did not bind tightly to Bfl-1. Future 
design studies will help calibrate the methods so 
that diverse sequences can be obtained with 
reliably high success rates. Combining 
dTERMen with a post-analysis procedure that 
includes all-atom modeling with aggressive 
conformational search, using peptide redocking 
[51] or MD simulation [52], could be one way to 
recognize sequences or mutations that can or 
cannot be accommodated. Although this would 
increase the computational costs, such a 
secondary evaluation could be performed for a 
modest number of promising candidates designs. 

One unexpected result from this work is that the 
specificity profiles of the designs were template 
dependent. This is particularly striking in the 
case of design on the FS2 template. Although no 
off targets were considered during design, the 
peptides designed using the FS2 structure were 
highly Bfl-1 selective. In fact, these peptides 
provide outstanding leads for development as 
Bfl-1 targeting agents. The specificity of 
peptides dF1, dF2 and dF5 may be a result of the 
unique way FS2 engages Bfl-1. FS2 adopts a 
non-canonical binding mode that has not been 
observed for natural BH3 ligands [36]. It may be 
that the interactions with Bfl-1 that support the 
FS2 binding mode are under less evolutionary 
pressure to mirror those required for BH3 
binding in the other family members, and are 
thus more likely to be unique (Fig. S14). This is 
consistent with the idea that a peptide that makes 
contacts outside of the conserved binding cleft 

can use these contacts to achieve intra-family 
specificity [37,53].  

This proof-of-principle study makes us 
enthusiastic about the potential of dTERMen for 
designing peptide binders and inhibitors. The 
ease of use, fast run times, and very high success 
rates on a difficult problem provide compelling 
evidence of the promise of this approach. Future 
applications could exploit dTERMen scoring 
speed by screening proteomes to predict 
candidate binding partners, or could leverage the 
robustness of dTERMen to scaffold variation by 
designing on low resolution structures. There are 
ample opportunities to improve dTERMen 
further, for example by combining this 
sequence-based design approach with all-atom 
modeling to better assess what mutations can be 
accommodated by structural relaxation. We look 
forward to tackling increasingly difficult 
problems and moving the use of TERM statistics 
into the mainstream of modern protein design. 

Methods 
dTERMen design scoring function 

A full description of the dTERMen procedure, 
along with extensive validation and 
benchmarking, is given in Zhou et al. [29]. For 
completeness, we briefly outline the method 
here, at a high level. Given a target protein 
structure, D, for which an appropriate amino-
acid sequence is needed, dTERMen begins by 
defining effective self energies for each amino 
acid at each position of D and effective pair 
interaction energies between amino acids at 
pairs of positions. We collectively refer to these 
as energy parameters (EPs) and their values in 
our procedure are deduced from statistics of 
structural matches to appropriately defined 
TERMs that make up D. The matches are 
obtained by searching a structural database. In 
this work, the database was a subset of the PDB 
containing 14,546 chains from X-ray structures 
with resolution better than 2.6 Å, pruned for 
redundancy at 30% sequence identity. 
Importantly, this means there was no quaternary 
structural information present in the database, 
and all insights on how to design domain-
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peptide interfaces were derived from intra-chain 
examples. 

The fundamental idea behind our procedure is to 
define TERMs from D in a way that is targeted 
at isolating individual EP contributions. For 
example, to capture the pairwise dependence 
between amino-acid identities at positions i and j 
(i.e., the pair EP), we define a TERM that 
consists of residues i, j, and their surrounding 
backbone fragments (e.g., ± 2 residues around 
each residue). By obtaining a sufficiently large 
list of closest matches to the generated motif 
(pruned for redundancy), one can analyze the 
co-dependence between identities at i and j. One 
complicating factor is that identities at the two 
positions are also biased by the specific 
environments from which the matches originate. 
And, in some cases, this bias could affect the 
apparent co-dependence. E.g., if the two 
positions are usually either both buried or both 
exposed within matches, it may appear that there 
is a direct favorable interaction between amino 
acids of similar hydrophobicity at i and j. Such 
effects are corrected for in dTERMen by 
computing EPs as log-odds ratios between 
observed and expected numbers of observations 
(e.g., observations of amino-acid pairs in this 
case), where the expectation is calculated by 
accounting for the effect of the environment in 
the structures from which matches originate. 
Self-EP contributions arising from interactions 
between a residue and nearby backbone 
fragments are computed similarly. These include 
interactions with both the local sequence-
contiguous backbone (the own-backbone 
energy) and backbone fragments proximal in 3D 
(the near-backbone energy). These contributions 
augment pre-tabulated amino-acid self-energies 
associated with different backbone φ/ᴪ and ω 
dihedral angles and burial states to form the final 
EP contributions. 

The above computed contributions are compiled 
into an energy table of one- and two-body 
contributions, after which Integer Linear 
Programing (ILP) is used to identify the 
sequence with the most optimal score [54,55]. 
Note that all energies are defined on the 
sequence level, such that optimization can 
proceed directly in sequence space, without the 

need to build explicit atomic structures. And yet, 
because each EP contribution arises from an 
ensemble of TERM matches, a certain amount 
of implicit backbone flexibility is built into the 
scoring function.  

dTERMen sequence design protocol 

When the design problem pre-specifies some of 
the residues in the target structure D, as is the 
case in the present application, the calculations 
remain the same but some re-shuffling between 
pair and self EPs takes place. For example, when 
position i in an interacting pair i-j is fixed, the 
TERM-derived effective pair EP between the 
two is added to the self-energy of position j in 
the final table. Because in the present case the 
sequence of the entire domain was always fixed, 
the only pairwise contributions in the final table 
were those between pairs of peptide positions. 

The two versions of dTERMen used here differ 
in how TERMs for computing the near-
backbone energy for residue i are defined (see 
Zhou et al. for full details [29]). The ideal 
TERM for this purpose would include the 
residue i, its local backbone fragment, all 
residues with the potential to interact with i 
(through either side-chain or backbone--i.e., 
influencing residues), and their respective local 
backbone fragments. If such a TERM has a 
sufficient number of close structural matches in 
the database, then this definition works well and 
the two dTERMen versions will both pick this 
motif (producing the same result). Because near-
backbone TERMs can have many segments 
(e.g., three potential interacting positions would 
give rise to a four-segment TERM), they may 
not always be represented well enough in the 
database to derive confident sequence statistics 
on the amino-acid preferences at i. In this case, 
one is forced to consider the effect of the local 
backbone geometry on position i as an aggregate 
of effects from sub-motifs, and the two versions 
deal with this differently. Version 35 attempts to 
identify large sub-motifs, each consisting of i 
and as many of the influencing residues as 
possible (along with local backbones), such that 
sub-motifs do not overlap and together cover all 
influencing residues. This takes a considerable 
amount of database searching, as many trial sub-
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motifs have to be queried. Version 34 speeds 
this process up, at the cost of some detail, by 
considering just one sub-motif that includes the 
most “important” influencing residues (assessed 
via our geometric measure of contact degree 
[30]), on the assumption that this motif 
dominates sequence statistics. 

Structural model generation 

We used pyRosetta [56] (Linux release r53335) 
to generate structural models for dTERMen-
designed sequences emergent from ILP 
optimization. This was done by performing 
fixed-backbone side-chain repacking of all 
residues in the domain-peptide complex (peptide 
residues taken from the dTERMen-optimized 
sequence) using the talaris2013 forcefield [56] 
and default parameters in pyRosetta via 
“standard_packer_task” and 
“PackRotamersMover” objects. For residues 
where there was evidence of crowding, all 
backbone-dependent rotamers of a residue of 
interest were manually inspected using PyMol. 
Figs. S4-S7 were made by choosing the least 
clashing rotamer. 

Sequence logo generation 

In addition to obtaining the dTERMen-optimal 
sequence for each template by ILP, we also 
performed Monte Carlo (MC) sampling to 
generate an ensemble of well-scoring sequences 
as a way of better characterizing the predicted 
favorable sequence space (see Fig. 2A). To this 
end, we ran 1000 independent MC trajectories 
for each template starting with a random 
sequence. Each trajectory involved 100,000 
iterations, at each of which a random mutation 
was evaluated for acceptance according to the 
Metropolis criterion. The sampling was 
performed at constant temperature with kT equal 
to 1 (this was also the temperature used to derive 
dTERMen statistical energies). The final 
accepted sequence from each of the 1000 
trajectories was used to build an MSA for each 
template and to generate the logos in Fig. 2A 
using WebLogo [57]. No constraint was 
imposed at position 3b. 

Designed-peptides property prediction 

Predicted helical content for designed peptides 
was obtained from the AGADIR web server 
[58]. Predicted net charges and hydrophobicity 
were obtained using the HelixQuest server [59]. 

Analysis of similarity of peptide interactions 
with Bcl-2 family paralogs 

The Bfl-1 sequence was aligned with the 
sequences of Bcl-xL, Mcl-1, Bcl-2, and Bcl-w 
using ClustalW [60]. Each residue in Bfl-1 was 
scored for sequence similarity to the 
corresponding residue in each of the other 
proteins using the Blosum62 matrix [61]. 
Substitutions with scores ≥ 0 were considered 
similar. To display amino-acid conservation at 
each position on the Bfl-1 structure, as shown in 
Fig. S14, each residue was colored by the 
number of proteins with amino acids similar to 
the one in Bfl-1 at that position.  

Automatic download and annotation of Bcl-2 
protein-peptide complex structures 

Uniprot sequences for human Bcl-xL, Bfl-1 and 
Mcl-1 were retrieved from Uniprot [62] and 
blasted against the PDB database [63] (7 Nov 
2017). Matched structures were downloaded and 
standardised by transforming selenomethionine 
to methionine and removing hydrogens and 
atoms designated as HETATOM. Sequences 
were aligned and renumbered based on their 
corresponding Uniprot template sequence using 
Needle [64]. Regions that were not matched or 
that were poorly aligned with the Uniprot 
sequence were removed from the structure. 
Chains of length 20-39 residues with more than 
30% of their Voronoi surface in contact with the 
Bcl-2 proteins were identified as interacting 
peptide [65]. Unless specified, peptides 
containing non-natural amino acids were 
removed from the dataset. Only the first model 
in deposited NMR ensembles was retained. If a 
structure included multiple complexes in the 
asymmetric unit, these were split into new files 
and analyzed separately.  
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Alignment on the binding site and method for 
comparing peptide binding geometry 

For every complex, residues within 8 Å of any 
peptide atom were considered part of the binding 
interface and all complexes were structurally 
aligned using only their binding interface Ca 
atoms, using 3DCOMB [66]. To automatically 
define a common reference residue for all bound 
peptides, we used a graph-based procedure. 
Each peptide Ca in the set of superimposed 
binding interfaces was represented as a node, 
and an edge was created if the distance between 
2 nodes was below a threshold. The distance 
threshold was initially set at 2 Å and gradually 
increased by 0.1 Å until the largest clique in the 
graph included one residue from each complex. 
This clique represented a set of Cα atoms - one 
in each structure - all within a distance 
threshold. Residues in this largest clique were 
arbitrarily given peptide residue number 100; 
this reference residue corresponds to residue 95 
in structure 3FDL. Using this registry, peptides 
were trimmed to generate a 20-residue long 
segment chosen by structural inspection to 
include positions that make extensive contacts 
with the protein and that are unlikely to be 
influenced by crystal contacts in the templates 
used for modeling. This region corresponds to 
peptide positions 86 to 105 in structure 3FDL. 
Structures without a complete 20-mer peptide 
were not used. Binding interfaces were redefined 
using trimmed peptides, by taking all peptide 
atoms plus protein residues within 8 Å of any 
peptide atom. 

Scoring protein-peptide interactions 

Structural scoring functions dTERMen 
(described above), FoldX4.0 and Rosetta were 
tested for their ability to predict peptide-protein 
binding affinity using binding data obtained 
using the SORTCERY protocol [40–43]. 
Scoring was based on trimmed-peptides 
structures. Each structure was used as a template 
input for dTERMen, leading to a scoring 
function for that template, i.e. a function that can 
score any peptide binding to the target protein in 
the template-structure binding mode. FoldX4.0 
was used to predict binding affinity by first 
using FoldX4.0’s “repair” function. Then, for 

each peptide in the SORTCERY dataset, the 
repaired template was transformed using the 
“mutate” function to generate the sequence of 
the peptide query and scored using the 
“complex” function. For Rosetta scoring, 
complex structures generated by FoldX were 
relaxed with Rosetta (Nov 2017 version 
rosetta_bin_linux_2017.08.59291, “relax” 
command) using Talaris2014 or BetaNov force 
fields [42]. The default parameters of 5 
minimization cycles consisting of 4 rounds of 
repacking were used for the relaxation protocol. 
Relaxed structures were run through the Rosetta 
InterfaceAnalyzer module, and the 
“dG_separated” values were used as the 
predicted binding energy. This score describes 
the difference in Rosetta energy of interface 
residues between the complex structure and 
corresponding separated chains. For the sake of 
simplicity in the reporting of benchmarking 
results, only the latest scoring function of 
Rosetta (BetaNov) and dTERMen (35) are 
discussed. dTERMen scoring function 34 and 
Rosetta Talaris2014 force field yield similar 
benchmark performance as these newer versions 
and values can be found Table S2. 

Interaction prediction benchmark  

The predictive power of the different structural 
scoring functions and protocols was assessed by 
three metrics. First, each method’s ability to 
discriminate the top 20% tightest-binding 
peptides from the 20% weakest binders was 
assessed by calculating Area Under the Curve 
(AUC) of the Receiver operating characteristic 
(ROC) curve. Next, precision was evaluated by 
calculating the correlation between the binding 
energy determined by SORTCERY, in kcal/mol, 
and each method’s predicted binding energy (in 
arbitrary units). Finally, we computed the 
percentage of the top 10% of binders from 
SORTCERY experiments that were found in the 
top 10% of predicted binders. Multiple templates 
were tested for each protein, and predictive 
power was evaluated for each template 
individually. The average performance and 
standard deviation of performance over all 
templates was computed and represents the 
expected value if a random template is chosen. 
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We also report prediction performance using the 
template that gave the lowest energy for each 
sequence.  

Protein and peptide purification 

Myc-tagged human Mcl-1 (residues 172-327), 
Bfl-1 (residues 1-151), Bcl-2 (residues 1-217), 
Bcl-w (residues 1-164), and Bcl-xL (residues 1-
209) were used for binding assays. Untagged 
Bfl-1 (residues 1-151) and Mcl-1 (residues 172-
327) were used for crystallography. The proteins 
used in this study were purified as previously 
described [47] and frozen at -80 °C. The 
peptides used for crystallography were 
synthesized at the MIT biopolymers facility with 
N-terminal acetylation and C-terminal amidation 
and were purified by HPLC on a C-18 column 
with a linear gradient of acetonitrile and water. 
Purified peptides were lyophilized and 
resuspended in DMSO. Peptide masses were 
confirmed by MALDI-TOF mass spectrometric 
analysis.  

Yeast clones 

EBY100 yeast cells were transformed using the 
Frozen-EZ Yeast Transformation II Kit (Zymo 
Research) according to the manufacturer’s 
protocol. For a plasmid backbone, we used the 
PUMA PCT plasmid [36] and digested it with 
XhoI (NEB)  and NheI-HF (NEB) according to 
the manufacturer's protocol. The inserts were 
constructed by PCR using primers that encoded 
the peptide sequence flanked with at least 40 bp 
of the plasmid sequence on either side of the 
insertion site to facilitate homologous 
recombination. The inserts and plasmid 
backbones were mixed at a 5 to 1 ratio for 
transformation. The transformation mixture was 
spread onto SD + CAA plates (5 g/L casamino 
acids, 1.7 g/L yeast nitrogen base, 5 g/L 
ammonium sulfate, 10.2 g/L Na2HPO4-7H2O 
and 8.6 g/L NaH2PO4-H2O, 2% glucose, 15-18 
g/L agar, 182 g/L sorbitol) and grown at 30 °C 
for 2 to 3 days. To confirm each strain, colony 
PCR followed by sequencing was performed on 
single colonies. Sequence verified colonies were 
grown overnight in SD + CAA (5 g/L casamino 
acids, 1.7 g/L yeast nitrogen base, 5 g/L 
ammonium sulfate, 10.2 g/L Na2HPO4-7H2O 

and 8.6 g/L NaH2PO4-H2O, 2% glucose).  The 
saturated overnight cultures were diluted with 
40% glycerol to a final glycerol concentration of 
15% and stored at -80 °C. 

Yeast growth and FACS analysis 

A small amount of frozen culture was scraped 
from the top of frozen culture stocks to inoculate 
SD + CAA. After passaging overnight at 30 °C, 
cultures were diluted to an OD600 of 0.005-0.01 
in SD + CAA and grown to an OD600 of 0.1–
0.6. Cell cultures were then diluted 25-fold with 
SG + CAA (5 g/L casamino acids, 1.7 g/L yeast 
nitrogen base, 5.0 g/L ammonium sulfate, 10.2 
g/L Na2HPO4-7H2O and 8.6 g/L NaH2PO4-H2O, 
2% galactose) to induce peptide expression and 
grown for 20-24 hr at 30 °C. To measure 
binding to surface-displayed peptides, cells were 
filtered with a 96-well plate filter (105-106 
cells/well), washed twice with 150 µL BSS (50 
mM Tris pH 8, 100 mM NaCl, 1 mg/ml BSA), 
and resuspended in BSS with least 10-fold molar 
excess target protein and incubated in the filter 
plate for 2 h at room temperature with gentle 
shaking for equilibration. Binding of the designs 
to the five Bcl-2 family proteins was measured 
at 1000 nM, 100 nM, 10 nM, and 1 nM target 
protein. To detect cell surface expression and 
binding of target protein, cell suspensions were 
filtered, washed twice in chilled BSS, 
resuspended in a 35 µL of 1:100 dilution of 
primary antibodies (mouse anti-HA, Roche, 
RRID:AB_514505 and rabbit anti-c-myc 
antibodies, Sigma, RRID:AB_439680) in BSS 
and with gentle shaking for 15 min at 4 °C. Cells 
were then filtered, washed twice in 150 µL 
chilled BSS, resuspended in 35 µL of a solution 
of secondary antibodies in BSS (1:40 dilution of 
APC rat anti-mouse, BD, RRID:AB_398465 and 
1:100 dilution of PE goat anti-rabbit, Sigma, 
RRID:AB_261257) and incubated with gentle 
shaking in the dark for 15 min at 4 °C. Cells 
were filtered and washed twice more in 150 µL 
chilled BSS to remove unbound antibodies. 
Labeled cells were resuspended in BSS and 
analysed using a BD FACSCanto with 
FACSDiva software. The median binding 
signals of expression-positive cells are shown in 
Fig. 2D and E, Table S7, and Fig. S8. 
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Crystallography 

Crystals of Bfl-1 in complex with the designed 
peptides were grown in hanging drops. To set 
the drops, untagged Bfl-1 (8 mg/mL in 20 mM 
Tris, 150 mM NaCl, 1% glycerol, 1 mM DTT, 
pH 8.0) was mixed in equal molar ratio with the 
designed peptides. 1.5 µL of the Bfl-1/peptide 
mixture was pipetted onto a glass coverslip and 
mixed with with 1.5 µL of well solution (1.8 - 
2.0 M NH4SO4, 50 mM MES pH 6.5). To 
cryoprotect the crystals, they were transferred 
into a solution of 2.0 M LiSO4 with 10% 
glycerol. Crystals were flash frozen in liquid 
nitrogen. Diffraction data were collected at the 
Advanced Photon Source at the Argonne 
National Laboratory, NE-CAT beamline 24-ID-
C. The datasets were refined to 1.59 Å and 1.75 
Å and scaled using HKL2000 [67]. Phenix was 
used to phase with the Bfl-1 chain from PDB id 
5UUK [36,68]. The peptides were modeled into 
the difference densities using Coot [69]. Iterative 
rounds of refinement and model building were 
performed using Phenix and Coot [68,69]. 

Crystals of Mc1-1 in complex with the designed 
peptides were grown in hanging drops. To set 
the drops, TCEP (100 mM) and ZnSO4 (50 mM) 
was added at 10% volume to untagged Mcl-1 
(8.5 mg/mL in 20 mM Tris, 150 mM NaCl, 1% 
glycerol, 1 mM DTT, pH 8.0) before adding 
equal molar amounts of the designed peptides. 
To grow crystals of Mcl-1 in complex with dF1, 
1.5 µL of the peptide protein mixture was mixed 
with 1.5 µL of well solution (25% PEG 3350, 50 
mM BIS-Tris pH 8.5, 50 mM NH4CH3CO2). 
Crystals were cryoprotected by adding 3 µL of a 
solution of 37.5% glucose in 25% PEG 3350, 50 
mM BIS-Tris pH 8.5, 50 mM NH4CH3CO2 
directly to the drop 0.5 uL at a time. To grow 
crystals of Mcl-1 in complex with dF7, 2.5 µL 
of the peptide protein mixture was mixed with 
0.5 µL of well solution (1.4 M sodium citrate pH 
6.5, 0.1 M HEPES pH 7.5). For cryoprotection, 
crystals were transferred to 1.6 M sodium citrate 
pH 6.5, 0.1 M HEPES pH 7.5. Crystals were 
flash frozen in liquid nitrogen. Diffraction data 
were collected at the MIT x-ray core facility. 
The datasets were refined to 1.95 Å and 2.25 Å 
and scaled using HKL2000 [67]. Phenix was 

used to phase with the Mcl-1 chain from PDB 
ID 3PK1 [68,70]. The peptides were modeled 
into the difference densities using Coot [69]. 
Iterative rounds of refinement and model 
building were performed using Phenix and Coot 
[68,69]. 

Availability of scripts and data 

For information about how to use dTERMen see 
grigoryanlab.org/dtermen. Scripts used for the 
prediction benchmark, protein structure files, 
predicted energy values, and experimental data 
can be downloaded from a GitHub repository: 

https://github.com/KeatingLab/dTERMen_desig
n under the MIT License. 
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