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Abstract 32 

Effects of parental environment on offspring traits have been well known for decades. Interest in 33 

this transgenerational form of phenotypic plasticity has recently surged due to advances in our 34 

understanding of its mechanistic basis. Theoretical research has simultaneously advanced by 35 

predicting the environmental conditions that should favor the adaptive evolution of transgenerational 36 

plasticity. Yet whether such conditions actually exist in nature remains largely unexplored. Here, 37 

using long-term climate data, we modeled optimal levels of transgenerational plasticity for an 38 

organism with a one-year life cycle at a spatial resolution of 4km2 across the continental US. Both 39 

annual temperature and precipitation levels were often autocorrelated, but the strength and direction 40 

of these autocorrelations varied considerably across the continental US and even among nearby sites. 41 

When present, such environmental autocorrelations render offspring environments statistically 42 

predictable based on the parental environment, a key condition for the adaptive evolution of 43 

transgenerational plasticity. Results of our optimality models were consistent with this prediction: 44 

high levels of transgenerational plasticity were favored at sites with strong environmental 45 

autocorrelations, and little-to-no transgenerational plasticity was favored at sites with weak or non-46 

existent autocorrelations. These results are among the first to show that natural patterns of 47 

environmental variation favor the evolution of adaptive transgenerational plasticity. Furthermore, 48 

these findings suggest that transgenerational plasticity is highly variable in nature, depending on site-49 

specific patterns of environmental variation.  50 
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Introduction 63 

Natural selection can produce adaptation only if the selective environment is reliably 64 

encountered over generations, or in other words, if selective environments are statistically 65 

predictable. Early models of evolution envisioned fitness landscapes that were static, such that 66 

populations adapt over the course of generations to one or another environment (Fisher 1930). 67 

While this form of adaptation optimizes phenotypes in homogenous environments, the more realistic 68 

scenario of environmental heterogeneity in both space and time limits the adaptive value of such 69 

constitutive genetic expression (Sultan 2015. In variable environments, the capacity to modify 70 

phenotypes in response to predictive environmental cues allows organisms to match their traits to 71 

the specific patch of habitat in which they find themselves, a phenomenon termed adaptive within-72 

generation plasticity (Ghalambor et al. 2007; Nicotra et al. 2010). Investigating the predictability of 73 

environmental cues in nature is therefore a major research goal in ecology and evolution.   74 

Over the last three decades, it has become clear that effects of parental environments on 75 

offspring phenotypes (i.e., transgenerational plasticity) are remarkably common (reviewed by (Mousseau 76 

and Fox 1998; Uller 2008; Bonduriansky and Day 2009; Holeski et al. 2012; Conrath et al. 2015; 77 

Sultan 2015). For instance, when Mimulus guttatus plants experience herbivory, their offspring increase 78 

production of defensive leaf trichomes (Holeski 2007; Colicchio et al. 2015; Colicchio 2017). 79 

Similarly, when the aquatic crustacean Daphnia cuculatta senses predator cues, it produces offspring 80 

with a defensive ‘helmet’ that protects against predation by midge larvae and cladocerans (Agrawal et 81 

al. 1999). Such inherited environmental effects can be transmitted from parent to offspring (and to 82 

additional generations in some cases) by diverse mechanisms, including heritable epigenetic 83 

modifications (i.e., DNA methylation marks, histone modifications, and small RNAs) and the 84 

allocation of nutritive resources, hormones, mRNAs, and regulatory proteins to seeds or eggs (these 85 

mechanisms are not mutually exclusive; (Herman and Sultan 2011; Jablonka 2013). As more research 86 

has focused on transgenerational plasticity, it has become clear that these effects are highly variable 87 

(Herman and Sultan 2016; Colicchio 2017; Groot et al. 2017) and nearly absent in some cases 88 

(Ganguly et al. 2017). Empirical investigations in diverse plant and animal systems have confirmed 89 

that transgenerational environmental effects can be adaptive when parent and progeny environments 90 

match (i.e., under positive intergenerational environmental autocorrelations; see e.g., Bilichak et al. 91 

2012; Herman et al. 2012; Rasmann et al. 2012; Slaughter et al. 2012; Verhoeven and van Gurp 2012; 92 

Dantzer et al. 2013; Lopez Sanchez et al. 2016; Walsh et al. 2016; Wibowo et al. 2016). Further, Dey 93 
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et al. (2016), Graham et al (2014)., and Sikkink et al. (2014) have demonstrated transgenerational 94 

plasticity can evolve in experimental settings. 95 

These results motivated evolutionary research probing the theoretical scenarios in which 96 

transgenerational plasticity is expected to evolve adaptively. A central insight is that natural selection 97 

should favor specific forms of plasticity depending on the precise patterns of environmental variation 98 

experienced by a population (Shea et al. 2011; Sultan and Spencer 2002). Existing theory on the 99 

evolution of both within-generation (Tufto 2015; reviewed by Scheiner 1993; Schlichting and 100 

Pigliucci 1998) and transgenerational plasticity (Lachmann and Jablonka 1996; Räsänen and Kruuk 101 

2007; Kuijper et al. 2014; Prizak et al. 2014; Leimar and McNamara 2015) has demonstrated that 102 

plasticity can evolve when environmental conditions are correlated across time, there is little to no 103 

cost of responding to environmental cues, and there is genetic variation in reaction norm slope.  104 

Transgenerational plasticity in particular is likely to evolve when parental and offspring 105 

conditions are either positively or negatively correlated (Proulx and Teotonio 2017), with the 106 

magnitude of the correlation being the primary factor determining the optimal level of 107 

transgenerational plasticity. Recent models have shed light into the evolution of transgenerational 108 

plasticity in patchy environments (Leimar and McNamara 2015), explicitly testing the conditions that 109 

favor deterministic vs. randomizing maternal effects (Proulx and Teotonio 2017), how migration and 110 

population structure impact the evolution of transgenerational plasticity (Greenspoon and Spencer 111 

2018), the optimal levels of epigenetic resetting between generations (Uller, English, and Pen 2015), 112 

and the interaction between the evolution of within-generation and transgenerational phenotypic 113 

plasticity (Kuijper and Hoyle 2015). Additionally, other groups have developed systems comparing 114 

invasion probabilities of lines with various epigenetic modifier loci (Furrow and Feldman 2014) and 115 

applied information theory (Donaldson-Matasci, Bergstrom, and Lachmann 2013) to the evolution of 116 

transgenerational phenotypic plasticity.  117 

As formally shown through a variety of models, when environmental autocorrelations 118 

increase, the optimal degree of transgenerational response also increases (e.g., McNamara et al. 2016). 119 

In other words, for transgenerational plasticity to be adaptive, the environment must not only be 120 

variable but also predictable (Burgess and Marshall, Oikos, 2014) from one generation to the next.  121 

The scale of environmental variation can also be described in terms of environmental grain (Gillespie 122 

1974), where the relative “coarseness” describes whether the environment fluctuates rapidly or slowly 123 

between states. When the environmental grain is too coarse, genetic adaptation is expected to 124 
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predominate over forms of plasticity (Banta et al. 2007). When the coarseness is too fine-grained, 125 

transgenerational plasticity is not expected to evolve because the environmental information sensed 126 

by the parent is out of date when progeny receive it (McNamara et al. 2016). In the case of organisms 127 

with relatively fixed generation times, the autocorrelation between parental environmental cues and 128 

offspring selective environments provides a simple quantification of the levels of transgenerational 129 

plasticity that should maximize the mutual information between phenotype and environment. A 130 

common theme across all of the theoretical literature is that these autocorrelations are likely the most 131 

important factor in the adaptive evolution of transgenerational plasticity (Burgess and Marshall, 132 

2014). This consensus motivated us to assess the presence of autocorrelations across this scale of 133 

environmental grain. 134 

 Despite this surge of experimental evidence, molecular understanding, and theoretical 135 

interest, no study to date has examined long-term environmental data for the presence of such 136 

environmental autocorrelations.  Although evolutionary research has traditionally focused on how 137 

the average environmental conditions differ across a landscape, there is no reason to expect that the 138 

scale and predictability of environmental variation is any less complex or ubiquitous than variation in 139 

mean environmental conditions. As prior modelling studies have demonstrated (Uller et al. 2015), the 140 

spatial variation in the temporal predictability of environmental variation is expected to drive the evolution 141 

of transgenerational effects across a heterogeneous landscape.  142 

In this study, we test if empirical patterns of climatic variation allow for the evolution of 143 

within-generation plasticity, transgenerational plasticity, and multigenerational epigenetic inheritance 144 

across different local climate regimes. We use 120 years of fine-scale (4km2) climate data spanning 145 

the coterminous U.S. to test for auto- and cross-correlations in temperature and precipitation levels 146 

across years. We found many significant correlations that vary widely in both magnitude and 147 

direction across the US. We then constructed separate models, with summer annual plants in mind, 148 

for temperature and precipitation to determine the degree of transgenerational plasticity that would 149 

maximize fitness in each of these sites across the U.S. Furthermore, by running each model using raw 150 

environmental data and the residuals after removing the effects of directional climate change, we 151 

were able to inspect how climate change alters the benefits associated with transgenerational 152 

plasticity. These results allow us to detect where transgenerational plasticity is expected to evolve 153 

given patterns of environmental variation over the past 120 years. 154 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 8, 2019. ; https://doi.org/10.1101/426007doi: bioRxiv preprint 

https://doi.org/10.1101/426007
http://creativecommons.org/licenses/by-nc/4.0/


6 

 

In our precipitation model, we examine transgenerational effects that persist for up to three 155 

generations (Figure 1a), as multiple experimental studies have found that environmentally induced 156 

epigenetic and phenotypic effects can persist for at least this long (e.g., Whittle et al. 2009; Akkerman 157 

et al. 2016), and in some cases for far longer (Vastenhouw et al. 2006; Rechavi et al. 2011). While we 158 

do not consider specific mechanisms of transgenerational plasticity, prior work has demonstrated 159 

that the offspring of plants exposed to drought stress have higher survival in drought conditions, 160 

partially mediated through enhanced root growth phenotypically and altered DNA methylation 161 

patterns at the molecular level (Herman and Sultan 2016). In our temperature model (Figure 1b), we 162 

also determine the degree of within-generation plasticity that would maximize fitness, in response to 163 

both early and late-season temperatures. In plants, transgenerational effects of temperature have 164 

primarily been demonstrated to shift phenology such as flowering time (Case et al. 1996) and 165 

dormancy (Chen et al. 2014), but other phenotypes such as rosette diameter in Arabidopsis are also 166 

impacted by parent temperature (Groot et al. 2017). In animals, egg size, survival, developmental 167 

rate, melanisation, and heat-shock survival were all shown to be impacted by parent temperature (see 168 

review: Donnelson et al. 2017). DNA methylation likely contributes to transgenerational effects of 169 

temperature, and small RNAs also appear to be a major contributor (Houri-Zeevi and Rechavi 2017).   170 

Our optimality models extend previous models (e.g., Kuijper and Hoyle 2015; Leimar and 171 

McNamara 2015), by considering multiple different seasonal timepoints in the parental and offspring 172 

generations in which deterministic transgenerational effects can be induced and alter phenotypes. We 173 

also quantitatively simplify prior methods to allow these multiple parameters to be considered across 174 

hundreds of thousands of locations. We compare geometric mean fitness across the 120 years of 175 

climatic data for individuals that utilize different classes of parental information to different degrees. 176 

This approach is similar to how Proulx and Teotonio (2017) used geometric mean fitness to compare 177 

invasion success in individuals exhibiting a variety of different maternal effect strategies. Rather than 178 

assigning a formal genomic framework to our data, we consider a theoretical scenario in which there 179 

is no sexual reproduction, or gene transfer of any kind, and where alleles altering transgenerational 180 

plasticity can vary in magnitude and direction. By distilling down our models to identify the optimal 181 

values of transgenerational plasticity at a given site, we recapitulate the finding from more dynamic 182 

models that plasticity is tied directly to environmental autocorrelations and are able to apply these 183 

theoretical findings to real world climate data. These results suggest that climatic factors could be 184 

sufficient to select for locally adaptive variation in transgenerational plasticity across the landscape.  185 
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Finally, biologists can use these findings to design experiments by identifying areas of the U.S. where 186 

transgenerational effects are more apt to evolve.  187 

   188 

Methods 189 

Descriptive statistics 190 

Mean monthly temperature and precipitation at a 4km resolution from 1895-2014 (LT81m) were 191 

downloaded from the PRISM climate group web server (PRISM Climate Group, 2004). In short, 192 

PRISM uses climate averages from between 1981-2010 as a predictor grid, and then utilizes station 193 

networks with at least 20 years of data to model monthly temperature and precipitation across the 194 

US.  The emphasis on this dataset is long-term consistency making it ideal for our purposes.  195 

Individual yearly values were concatenated using the QGIS merge raster function (Quantum GIS 196 

geographic information system 2012) to create a single data frame, and exported in the .RData 197 

format for downstream analysis. For precipitation data, October was chosen to represent the start of 198 

the “hydrologic” year in order to more accurately capture water availability patterns during the 199 

growing season. For temperature data, mean daily maximum temperature was calculated for March-200 

May as a measure of early growing season temperature for a given year, and July-September mean 201 

daily maximum temperature for late growing season temperature. Autocorrelations were calculated at 202 

lags between 1 and 12 years (i.e., environmental correlations were calculated between year X and year 203 

X+1, year X and year X+2…year X and year X+12). 204 

 205 

General modeling framework 206 

 Mathematical models were constructed in R for both precipitation and temperature patterns 207 

to compare how individuals that use within-generation plasticity, transgenerational plasticity, and 208 

genetic inheritance to varying degrees differ in their capacity to match their phenotype with the 209 

environmentally optimal phenotype for a given year. In these models, there are hundreds 210 

(precipitation models) or thousands (temperature models) of competing genotypes, each representing 211 

unique points of parameter space for alleles that modify the extent to which environment affects 212 

phenotype.  Trait value is a measure of the expected environment (temperature or precipitation) and 213 

is determined by a combination of the mean environment at a given site over all years, and terms that 214 

modify this value based on recent environmental information. Each genotype is in essence a 215 

climatologist, that utilizes genetic information (based on mean precipitation over the 120 years at a 216 
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site), transgenerational plasticity, or within generation plasticity (only in temperature model) to come 217 

up with an expected environment that it will face.  This expected environmental value is equivalent 218 

to a phenotype, and the closer this phenotype is to the actual environment experienced, the higher 219 

the fitness that genotype will have for a given generation. 220 

While this framework is identical for precipitation and temperature modeling, inherent 221 

differences in precipitation and temperature variables lead to us considering a different set of 222 

parameters for each variable, allowing us to ask related but unique questions regarding 223 

transgenerational inheritance. Precipitation can accumulate as snowpack, bodies of water, or soil 224 

moisture, such that the cumulative precipitation over the course of the water year will determine to a 225 

large extent the amount of water available to a plant.  On the other hand, the effects of temperature 226 

are much more immediate and transient, such that a particularly cold spring will not “keep the plant 227 

cool” over the summer, in the way that a particularly wet spring could provide moisture during a 228 

summer of drought.  For this reason, we decided to extend our temperature models to compare 229 

patterns across different segments of the growing season, and different forms of plasticity both 230 

within and between a single generation.  For precipitation we only considered annual hydrologic year 231 

precipitation without breaking it down by seasons, but we did consider the possibility of multi-232 

generation persistence of transgenerational plasticity.  233 

For each locale, mean annual precipitation (or temperature) across the 120 years (𝑃) is 234 

calculated, and this statistic is used as the baseline phenotype of all genotypes in the raw data variant 235 

of the model (Appendix 1). In the residual variant of this formula, a linear regression was fit over the 236 

time-course, and residuals were used as the climate values for each year, with a baseline phenotype of 237 

0.  This baseline phenotype is then be adjusted to varying degrees by the parent environment, such 238 

that different genotypes will weigh the contribution of parent environment to a different extent. For 239 

both the precipitation and temperature model we calculated the phenotypes produced by each of 176 240 

(precipitation) and 3,125 (temperature) genotypes at each site (481,631), for each year (119).   Then 241 

by comparing the phenotype produced during a season with the actual environment of that season, 242 

we imposed a linear cost on fitness based on the distance between phenotype and the actual 243 

temperature or precipitation of that year (Appendix 1). We then the calculated geometric mean 244 

fitness of every genotype at each site independently to predict which genotype would have the 245 
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greatest increase in frequency over the course of the time series, and we considered this the optimal 246 

phenotype for that site.  247 

This modeling framework represents a variant of other transgenerational plasticity models 248 

where the direct parent environment alters offspring phenotype. We model the transgenerational 249 

effect as a linear reaction norm with slope m with respect to the environment experienced at a 250 

particular previous point in time (for the precipitation model this represents the water year 251 

experienced by the past generation, or in the temperature model the temperature experienced in the 252 

current generation’s spring, the previous generation’s spring, or the previous generation’s fall). In the 253 

case of multigenerational effects, our g terms linearly reduce the norm of reaction slope of the 254 

grandparental and great-grandparental generation relative to the effects of the parental generation 255 

(Appendix 1). This approach is similar to the analytical models designed by Uller, English, and Pen 256 

(2015) where maternal effects were modeled as a “linear reaction norm with respect to the mother’s 257 

perceived environment” where the perceived environment was the environmental state of the previous 258 

generation with an additional normally distributed error term. Leimar and McNamara (2015) utilize a 259 

more complex model where adult phenotype is modeled as a logistic function wherein the amat term 260 

determines the weighting of maternal environmental cue, as well as two terms (mmat  and dmat) that 261 

control the weighting of maternal phenotype transgenerational plasticity and direct parent 262 

environment transgenerational plasticity. Proulx and Teotonio (2017) consider six different classes of 263 

inheritance strategies competing in environments that switch between two states with variable 264 

frequencies.  In their modeling framework the strategies aDME and mDME correspond to two-state 265 

variants of positive (m>0) and negative (m<0) transgenerational effects, respectively, as modeled 266 

here. Finally, Kuijper and Hoyle (2015) model maternal effects as a linear transgenerational reaction 267 

norm but on parental phenotype rather than parental environment.  In our models, we consider 268 

fitness to decrease linearly as an individual’s phenotype moves further from the phenotypic optimum 269 

at a point in time. We compare the geometric mean fitness of individuals expressing different 270 

strategies over the 120 years to find the strategy most likely to invade. Similar to most previous 271 

models (Uller, English, and Pen 2015; Proulx and Teotonio 2017; Lachmann and Jablonka 1996; but 272 

see Leimar and McNamara 2015; Greenspoon and Spencer 2018), we base our model on haploid 273 

asexually reproducing individuals. Our temperature model extends previous work by explicitly 274 

breaking down both the life cycle of the parent and offspring generations between early and late 275 
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growing season, allowing for five different temporal classes of plasticity (four types of 276 

transgenerational plasticity, and within-generation plasticity).   277 

 278 

Results 279 

 Both mean annual precipitation and growing season temperatures vary immensely across the 280 

US (Figure 2 and S1), but for the evolution of locally adaptive phenotypic plasticity, it is the patterns 281 

of variation that are more relevant. The standard deviation of a site’s annual precipitation and 282 

growing season temperatures over the past 120 years also varied dramatically (Table 1 and S1), with 283 

precipitation inter-annual standard deviation (IASD) varying from 40mm to 800m, spring 284 

temperature IASD from 0.77C to 1.95C, and summer temperature IASD from 0.35C to 1.32C 285 

(Figure 2 and S1 and Table S1). The southwest US generally had the highest precipitation IASD 286 

relative to its mean precipitation, with IASD being nearly equal to the mean precipitation in some 287 

regions (Figure 2).   288 

 Directional climate change over the past 120 years was prevalent and variable across the US 289 

(Figure 2).  Mean annual precipitation has declined over much of the Sierra Nevada mountain range, 290 

southern California, and other scattered regions over the last 120 years, while precipitation levels 291 

have increased in the Midwestern and much of the northeastern US. Both spring and summer 292 

temperatures have risen substantially with the exception of the southeast, where spring temperatures 293 

have decreased and summer temperatures have changed little (Figure 2).  This phenomenon has been 294 

noted numerous times (Knappenberger et al. 2001; Ellenburg et al. 2016) and seems to be largely due 295 

to a switch from cropland to natural forest ecosystems across the southeastern US during the past 296 

120 years that has led to greater transpiration cooling.  297 

 Although a variable environment is necessary for the evolution of adaptive phenotypic 298 

plasticity, it is the patterns and predictability of this variation that influence which forms of plasticity 299 

will be favored. In particular, when the grain of environmental variation is such that autocorrelations 300 

between the parental environmental cue and the offspring environment at the time of selection, 301 

mutual information will be maximized by transgenerational plasticity. We calculated autocorrelations 302 

in annual temperature and precipitation levels between successive years, which allowed us to sum 303 

across the frequencies of environmental fluctuations to capture the scale of environmental grain 304 

expected to favor transgenerational plasticity in annual species. We found that the magnitude and 305 
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directions of autocorrelations on this timescale were highly variable across the US (Figure 2 and S1, 306 

Table 1 and S1).   307 

 Averaged across all sites, the precipitation autocorrelation (AC) at lag-1 (i.e., the correlation 308 

between the precipitation one year and the next) was slightly positive (mean=0.04, Table 1, Figure 309 

S1), and was reduced by half after taking linear changes in precipitation into account (mean=0.02, 310 

Table 1, Figure S1).  Spatially, we found that the southeastern gulf coast was the largest region with 311 

negative lag-1 ACF (dry years tend to be followed by wet years), while the northeastern US was the 312 

largest region of substantially positive lag-1 ACF (Figure 2).  Somewhat surprisingly, there were many 313 

more sites with moderately positive (62,693: lag-2 PACF > 0.2, vs. 21,671: lag-1 ACF >0.2) and 314 

negative (5,088 lag-2 PACF <-0.2 vs. 441 lag-1 ACF <-0.2) lag-2 partial autocorrelation (PAC) than 315 

lag-1 ACF. This suggest that climatic oscillations impacting annual precipitation tend to operate over 316 

more than two years in these regions, and that on a year to year basis, variation is more stochastic 317 

(leading to lower absolute lag-1 ACF).  318 

 Patterns of temperature autocorrelations extended over larger regions and were more 319 

extreme than the patterns observed for precipitation autocorrelations (Figure 2).  Lag-1 ACF for 320 

spring and summer temperatures varied a great deal, with patterns of summer temperature 321 

autocorrelation substantially more positive than those of spring (summer ACF-1 mean: 0.24, spring 322 

mean: -0.01, Figure S1).  In both cases, however, the western US tended to have more positive 323 

autocorrelations than the rest of the country (with the exception of southern Florida; Figure 2).  The 324 

mean lag-2 PACF for spring temperature was negative (mean: -0.04, Figure 3) and more variable than 325 

lag-1 ACF (sd=0.1 vs. 0.08), with much of the north-central US displaying lag-2 PACF of less than -326 

0.2 (Figure 2). The mean lag-2 PACF for summer temperatures was positive (mean: 0.09), but 327 

substantially lower than the mean lag-1 ACF (mean: 0.24).  328 

Modelling work on transgenerational plasticity has often focused on positive lag-1 329 

autocorrelations and found them to be highly correlated with optimal transgenerational plasticity.  In 330 

the particular case of anticipatory transgenerational effects, the autocorrelation between the 331 

environment the parent experiences and the offspring selective environment was found to be almost 332 

perfectly tied to the evolved mean maternal effects after 50,000 simulated generations (Kuipjer et al., 333 

2014), with similar results in a number of other studies (Tufto 2015; English et al. 2015; McNamara 334 

et al 2016). Partial-autocorrelations at lag-2 represent the additional mutual information captured by 335 

the grandparental environment, and are therefore is expected to influence the evolution of 336 
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transgenerational effects that are transmitted over two generations. From these prior modeling 337 

results it is reasonable to expect that locations with high positive autocorrelations may be favorable 338 

for the evolution of transgenerational plasticity. Within these sites, areas with high lag-2 partial 339 

autocorrelations may favor the transmission of environmental information across two generations. 340 

 341 

 Modeling Results 342 

Optimal levels of transgenerational plasticity: precipitation 343 

 As expected, the dramatic variability of precipitation autocorrelations across the US leads to a 344 

great deal of variation in the optimal levels of plasticity in our evolutionary models (Figure 3, Table 345 

S1). In the raw variant of the model, optimal parental effect values were positive in 314,118 cases 346 

(65%), zero in 32,352 (7%), and negative in 135,161 (28%), compared to 55%, 7%, and 38% 347 

respectively in the residual variant. The most common “parental effect” value ( 𝑚 , see Appendix 1) 348 

in the precipitation model was 0.1 (22.5% and 21.8% of sites in the raw and residual models, 349 

respectively, Figure 3a.). This level of parental effect indicates that 90% of phenotypic variance is 350 

dictated by the long-term average (genetic effects), and 10% by the difference between the parental 351 

environment and the long-term average environment. The second most common optimal value of 𝑚 352 

was 0.2 (19.15% in the raw model, 18.6% in residual model), followed by -0.1 (14.3% in the raw 353 

model, 17.2% in the residual, Figure 3a).   354 

 The multigenerational persistence (𝑔, Appendix 1) of transgenerational effects was also 355 

found to vary greatly across the US with the two most common values being 1 (40.7% raw, 39.5% 356 

residual) and 0 (18.6% raw, 16.8% residual) (Figure 3b). Here, a value of 1 indicates that the 357 

precipitation one, two, and three years prior all contribute equally to the expected precipitation at a 358 

given site. A 𝑔 value of 0 indicates that only the previous year’s precipitation is predictive of the 359 

current precipitation level.  The remaining 40.7% of sites (in the raw variant) have intermediate 360 

optimal values of 𝑔, suggesting that in these locations the precipitation of each of the past three years 361 

is informative, but information from the immediately preceding year is of the highest value (Figure 362 

4).  Interestingly, full multigenerational persistence (𝑔 =1) was more frequently optimal at sites with 363 

negative transgenerational effect values compared to those with positive values (44.9% vs. 38.9%, 364 

respectively), where intermediate multigenerational persistence was more common (Figure S2).   365 
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Spatial variation for optimal precipitation plasticity values largely paralleled the spatial 366 

distribution of inter-annual precipitation autocorrelation patterns (compare Figure 2a to Figure 4a).  367 

This agrees with previous modeling results that have linked autocorrelation levels with the optimal 368 

levels of transgenerational plasticity (McNamaraa et al., 2016). At the broadest level, the northern 369 

latitudes show the highest optimal transgenerational precipitation plasticity values (Figure 4a), but not 370 

necessarily multi-generation persistence of transgenerational effects (Figure 4b). Optimal 371 

transgenerational plasticity values were on average 0.057 lower in the residual variant of the model 372 

compared to the raw variant, with the vast majority of sites having equal values (56%), decreasing by 373 

0.1 (24%), decreasing by 0.2 (8.5%), or increasing by 0.1 (4.3%). The northeastern US and the 374 

Yellowstone National Park region, where precipitation increased most (Figure 2), also saw the 375 

greatest proportion of their optimal transgenerational plasticity values diminished after factoring out 376 

linear climate change (Figure 4c). Therefore, although transgenerational plasticity has been optimal 377 

over the past 120 years in these regions, these benefits appear to be contingent upon recent warming 378 

trends.  379 

 380 

Optimal levels of transgenerational plasticity: Temperature  381 

Purely positive transgenerational effects (𝑚𝐸𝐸 ≥ 0 , 𝑚𝐸𝐿 ≥ 0, 𝑚𝐿𝐿 ≥ 0, 𝑚𝐿𝐸 ≥ 0 ) of 382 

temperature were optimal in 70.2% of sites (338,327 out of 481,631) in the raw version of the model 383 

and 55.7% of sites (268,307) in the residual variant. Conversely, only 1.4% of sites (7,018) in the raw 384 

model and 3.1% (14,777) in the residual version included only negative transgenerational plasticity 385 

values. Only 0.4% (raw model) or 0.9% (residual model) of sites totally lacked transgenerational 386 

plasticity (either positive or negative) as part of the optimal strategy. The optimal strategies in the 387 

remaining sites (28% raw model, 40% residual model) comprised a mixture of positive and negative 388 

transgenerational plasticity values. Positive within-generation plasticity was favored in 79.7% of sites 389 

(383,667), compared to only 0.03% of sites (157) in which negative within-generation plasticity (𝑤, 390 

Appendix 1) was favored, and 20.3% of sites (97,807) in which no within-generation plasticity was 391 

favored (Figure 3g). Optimal levels of within-generation plasticity were generally positive and minor 392 

across the US; 72% (346,603/481,631) of sites had an optimal 𝑤 value of 0.1 (Table S1). 393 

The most common optimal form of transgenerational plasticity to temperature in both the 394 

raw and residual models was the effect of late growing season temperature on the next generation’s 395 
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late growing season phenotype (𝑚𝐿𝐿, Figure 3f, Table 2a). Effects of late season temperature on the 396 

next generation’s early season phenotype (𝑚𝐿𝐸) were the most variable, with a substantial number of 397 

sites having negative transgenerational plasticity values (63,881 raw, 100,267 residual) and many 398 

others having moderate (98,524 raw, 66,625 residual) and major (26,967 raw, 10,080 residual) positive 399 

values (Figure 3e). When considering the combined plasticity value profile of a site, the most 400 

common combination of plasticity values is, EE: none (0), EL: minor (0.1), LE: minor (0.1), LL: 401 

moderate (0.3), WP: minor (0.1) (Table 2b).  Summing the four transgenerational plasticity alleles 402 

together we find the southwest US has the highest optimal values of transgenerational plasticity, 403 

while the Great Lakes region has the lowest optimal values (Figure 4d).  In the southwestern US, 404 

where temperature increased the most over the past 120 years (Figure 2), the difference between the 405 

raw and residual model was the greatest (Figure 4g).  406 

Variation in different classes of temperature autocorrelations between seasons explains a 407 

large portion of the variation in the optimal transgenerational response to temperature at a given site.  408 

For example, the autocorrelation between early season growing temperature and the next year’s late 409 

season growing temperature is the factor that explains the largest amount of variation in optimal 410 

levels of 𝑚𝐸𝐿 (Table 3). We assessed potential tradeoffs between different forms of transgenerational 411 

plasticity to temperature by first calculating the residuals of a particular plasticity term after 412 

accounting for the effects of environmental autocorrelations, then testing the effect of the other four 413 

plasticity terms on these residuals. There was a highly significant negative association between 𝑚𝐿𝐸 414 

and 𝑚𝐸𝐸 plasticity, and between 𝑚𝐿𝐿 and 𝑚𝐸𝐿 plasticity (Figure S3a). As higher levels of LL 415 

transgenerational plasticity were favored, the optimal levels of EL plasticity also decreased across all 416 

environmental autocorrelation values. These associations suggest that, for a given life history stage in 417 

this model, there are tradeoffs between using transgenerational information from the previous 418 

generation’s early vs. late season temperature (Table S2). For example, there are many sites where no 419 

plasticity, 𝑚𝐸𝐸 plasticity, and 𝑚𝐿𝐸 plasticity all have higher fitness than individuals exhibiting both 420 

𝑚𝐸𝐸 and 𝑚𝐿𝐸 plasticity (Figure S3b).  421 

 422 

 Fitness Landscapes 423 

 In the previous analyses we used restricted parameter space to identify optimal site-specific 424 

combinations of plasticity values across the entire contiguous U.S., but further insight can be gained 425 
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by comparing fitness landscapes across the full parameter space at individual sites.  As both the 426 

magnitude of transgenerational plasticity and the persistence of these effects through time have been 427 

found to vary, these two parameters represent two biologically realistic components of 428 

transgenerational plasticity variation. Using the precipitation model we found that, among sites where 429 

fitness optima are located near zero transgenerational effects, a vertical fitness ridge formed that was 430 

centered near parental effect values of zero.  This result is due to transgenerational persistence levels 431 

(y-axis) having a minimal impact on phenotype when parental effects are marginal.  As absolute 432 

optimal parental effect values increased, however, the fitness landscape shifted from a ridge to a 433 

peak, with certain values of transgenerational persistence imparting extreme fitness advantages over 434 

others (Figure 5). Site B (North Central Minnesota) exemplifies a unique and unexpected outcome of 435 

this model: under certain conditions, there can be multiple local fitness maxima with divergent levels 436 

of transgenerational plasticity (Figure 5). Two fitness maxima exist at this site, one in which the 437 

optimal strategy comprises slightly negative parental effect values with no multigenerational 438 

persistence, and a second in which the optimal strategy comprises slightly to moderately positive 439 

parental effect values with high levels of multigenerational persistence. This situation occurs when 440 

two conditions hold: the lag-1 autocorrelation is in a different direction than the average of the lag-2 441 

and lag-3 autocorrelations, and the absolute value of the lag-1 autocorrelation is less than the average 442 

of the lag-2 and lag-3 autocorrelations.  This scenario occurs in approximately 90k out of the 480k 443 

sites, but only in 30k sites are lag-2 and lag-3 average values greater than 0.1 and therefore likely to 444 

show up as bimodal peaks in our model.  445 

 446 

Discussion 447 

Although transgenerational environmental effects on phenotypic expression have been 448 

recognized for decades (Falconer 1981; Roach and Wulff 1987), interest in these effects has surged 449 

recently due to increased appreciation for the potential role of transgenerational plasticity in 450 

adaptation (Donelson et al. 2018). Despite this renewed interest, a critical question has remained 451 

unanswered: do natural patterns of environmental variation contain fluctuations of intermediate 452 

environmental grain that favor the evolution of adaptive transgenerational plasticity? Our analysis of 453 

120 years of climatic data from the continental U.S. revealed that such patterns are indeed 454 

widespread. Specifically, we analyzed how inter-annual variation in precipitation and temperature 455 

impacts the optimal mode of adaptation for clonally reproducing organisms with a life cycle meant to 456 
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mimic that of an annual plant. When there are correlations between the parental and offspring 457 

environments, neither traditional genetic selection nor within-generation plasticity take full advantage 458 

of the available information inherent in the environment. Instead, under such correlations selection 459 

should favor the genetic evolution of mechanisms that transmit plastic responses from one 460 

generation to the next. Absent such correlations, the information provided by the parental 461 

environment may not be relevant to offspring, and indeed may prove to be maladaptive (reviewed by 462 

Herman et al. 2014).  463 

Our modeling results revealed that the vast majority of sites in the contiguous US 464 

experienced autocorrelations in precipitation and temperature that should favor the evolution of 465 

adaptive transgenerational plasticity. As predicted by other models, the predictability of an 466 

environmental variable as measured by its autocorrelation is a major factor driving the optimal level 467 

of plasticity (e.g., Groot et al. 2017; English et al. 2015; Sultan and Spencer 2002; Scheiner 2016). 468 

Furthermore, we find that the strength and direction of autocorrelations in precipitation and 469 

temperature varied substantially across the U.S., and consequently, the optimal levels of plasticity 470 

were also highly variable. These results provide novel insight into where transgenerational effects are 471 

likely to evolve.  472 

The environmental autocorrelation between successive generations reduces the spectra of 473 

environmental oscillations, or the grain of environmental variation, to a metric that is highly relevant 474 

to transgenerational plasticity. While the precise relationship between the level of autocorrelation and 475 

the optimal degree of transgenerational plasticity can vary depending on the precise modeling 476 

conditions, autocorrelations between parental environments and offspring selective environments are 477 

consistently associated with environments that select for transgenerational plasticity. A recent 478 

synthesis of transgenerational plasticity studies highlighted the importance of considering 479 

environmental predictability when designing experiments that test for the presence of adaptive 480 

transgenerational plasticity (Yin et al. 2019). Indeed, some experiments that failed to find evidence of 481 

adaptive transgenerational plasticity were in systems where models would not expect such effects to 482 

evolve. Our results provide a starting point for biologists looking to design experiments on natural 483 

variation in transgenerational plasticity.  484 

 485 

Precipitation 486 
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Local adaptation to variable water regimes has been a major focus of plant evolutionary 487 

ecology for many years. This literature shows that plants have evolved a wide range of physiological, 488 

phenological, and morphological adaptations to handle site-specific patterns of water availability 489 

(Kooyers 2015). These adaptive phenotypes may be expressed constitutively or may be induced by an 490 

environmental cue that predicts a change in water availability later in the life of the organism. 491 

Increasingly, experimental studies show that the parental soil moisture regime can also adaptively 492 

influence the development of progeny (e.g., Alsdurf et al. 2013; Alsdurf et al. 2015), providing a third 493 

route by which plants can fine tune the phenotypes of their offspring to local soil-moisture levels. 494 

For instance, in Massachusetts genotypes of the annual plant Polygonum persicaria, offspring of 495 

drought-stressed parents make more extensive root systems and deploy them faster in response to 496 

drought as compared to offspring of well-watered parents. This drought-induced change in growth 497 

and development can be inherited for at least two generations, resulting in increased survival of 498 

grand-offspring under severe drought stress (Sultan et al 2009; Herman et al. 2012). Furthermore, 499 

these epigenetic effects of drought are genetically variable in P. persicaria: some genotypes strongly 500 

increase root length and biomass in response to parental drought, while other genotypes do so only 501 

moderately or not at all (Herman and Sultan 2016).  502 

Our analysis revealed substantial and spatially variable interannual autocorrelations in 503 

precipitation, indicating that precipitation levels in one year are often predictive of precipitation levels 504 

up to three years later. For example, across the coterminous U.S., lag-1 interannual precipitation 505 

autocorrelations varied from moderately negative (-0.27) to strongly positive (0.69), including some 506 

values near zero. In turn, the optimal direction and strength of transgenerational effects of 507 

precipitation also varied. Positive parental effects, wherein individuals are developmentally 508 

predisposed to perform better in environments that match their parents’ environment, were optimal 509 

across more than twice as many regions (65% of sites) as negative transgenerational effects (28% of 510 

sites), wherein individuals perform better in a different environment than their parents. Relatively 511 

strong parental effect values of 0.3 or higher were optimal in nearly 30% of sites. By contrast, 512 

complete absence of parental effects was favored in only 7% of sites. 513 

Multigenerational persistence values of 0 (18.7% of sites) and 1 (40.7% of sites) were most 514 

common, representing strategies in which transgenerational effects lasted only a single generation or 515 

persisted fully to the third generation, respectively. The remaining persistence values were somewhat 516 
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evenly distributed between 0 and 1 and represent strategies in which environmental information gets 517 

passed through three generations, but the environment of recent years is weighted more heavily.  518 

The optimal level of transgenerational effects varied on multiple scales. On the largest scale, 519 

we found that the western and northern US experience conditions that select for the highest levels of 520 

transgenerational plasticity (Figure 4a). There was a striking contrast between the northeast, where 521 

positive transgenerational plasticity was generally optimal, and the southeast, where negative 522 

transgenerational plasticity predominated. On these intermediate to large spatial scales, it is likely that 523 

natural selection could counteract the homogenizing force of gene flow to generate patterns of 524 

locally adaptive transgenerational plasticity to precipitation. Experiments designed to compare 525 

transgenerational plasticity to precipitation in individuals derived from these north/south or 526 

east/west clines would provide novel evidence for climatic patterns shaping the system of inheritance 527 

in individuals. There was also considerable variation in optimal levels of transgenerational plasticity 528 

on much finer scales. In some cases, levels of transgenerational plasticity were highly divergent 529 

between adjacent sites (e.g., in Texas and Minnesota). In these cases, and particularly for outcrossing 530 

species, it is less likely that natural selection would be able to counteract gene flow, perhaps limiting 531 

the locally adaptive evolution of transgenerational plasticity. 532 

 533 

Temperature 534 

Temperature is vitally important to plant function and fitness, as it impacts the rate of 535 

physiological reactions, cues developmental transitions, and in extremes can cause stress and 536 

mortality. Plants adapt to variable temperature regimes in a host of ways, including the production of 537 

heat shock proteins and cold-response factors, and the development of morphologies that mitigate 538 

the experience of temperature extremes. Experimental studies have identified adaptive plastic 539 

responses to temperature changes, both within and across generations. For example, ambient 540 

temperature in Arabidopsis thaliana has been shown to influence the expression and splicing of 541 

hundreds of genes, leading to changes in histone methylation (Pajoro et al. 2017), and shifts in 542 

flowering time (Donohue 2009) and other phenotypes (Adams et al. 2016) in genotype-specific ways. 543 

Additionally, recent work has demonstrated that effects of temperature on A. thaliana plants persist 544 

for multiple generations (Whittle et al. 2009; Suter and Widmer 2013a; Suter and Widmer 2013b; 545 

Groot et al. 2017). In order for these responses to adaptively match phenotypes with environments, 546 

there must be substantial correlations in temperature within and between growing seasons.  547 
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 We found significant autocorrelations in temperature, both within and between years. Within 548 

a single growing season, temperatures early and late in the growing season tended to be positively 549 

correlated across the U.S. Furthermore, we found that the temperatures of the late growing season 550 

months (July, August, September) were generally strongly autocorrelated between successive years. 551 

Interannual correlations between the temperatures of the early growing season months (February, 552 

March, April) were often much lower. As expected, we find that, at a given site, the strength of the 553 

correlation between the average temperature during the season in which information is gathered and 554 

the average temperature during the season when selection occurs is highly predictive of both the type 555 

and degree of plasticity that will be favored. For example, warmer than average springs were very 556 

often followed by hotter than average summers, and this information yielded benefits via within-557 

generation responses to temperature in many sites. The optimal strategy in more than 99% of sites 558 

across the U.S. contained some form of transgenerational plasticity, suggesting that environmental 559 

oscillations provide valuable information that allows transgenerational plasticity to improve the 560 

match between phenotypes and temperature regimes.  561 

The most common form of transgenerational plasticity in this model was late-growing season 562 

temperature impacting the following generation’s phenotype late in the growing season, which 563 

matches our expectations based on the patterns of temperature autocorrelation. Interestingly, 564 

patterns of environmental oscillations lead to favorable strategies in which the current late-season 565 

phenotype was more strongly impacted by the previous late-season temperature than it was by the 566 

current generation early season temperature. Indeed, this pattern was found in over half of the 567 

regions considered (270k/480k). Although intuition suggests that more recent information is of 568 

higher value, this result suggests that parental environments can be more predictive of offspring 569 

selective environments than environmental cues early in the offspring generation. This result stems 570 

from the cyclic nature of seasonal environments (Auge et al. 2017). Since autocorrelations between 571 

consecutive early growing seasons were generally low, it is not surprising that effects of early growing 572 

season temperatures on phenotypes in the following early growing season was the least common 573 

form of plasticity and was in the negative direction more often than the positive. Other forms of 574 

transgenerational plasticity were present at intermediate levels and varied across the US.  575 

The west coast of the US and southern Florida experienced the highest optimal 576 

transgenerational plasticity values. Because these regions are due east of large bodies of water, their 577 

climates are heavily influenced by maritime airflow including the prevailing westerlies, loop current, 578 
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and Coriolis affect (Lorentz 1966). As water has a substantially higher heat capacity than either rock 579 

or soil, the location of these land masses downstream of maritime air may predispose them to 580 

temperature autocorrelations between years, but whether this result is universal will take studies on 581 

other continents. These areas may be primed for large-scale, community level comparisons of 582 

transgenerational plasticity. Comparisons of transgenerational plasticity in individuals found on the 583 

west vs. east coast could shed light on the generality of these patterns across a diversity of annual 584 

plants and other taxa. 585 

 We found highly variable associations between late growing season temperature and the 586 

following generation’s early growing season temperature. This result is intriguing because the 587 

temperature experienced during seed maturation strongly influences the dormancy and germination 588 

behavior of seeds, with cascading effects throughout the life cycles of annual plants (Donohue 2009; 589 

Burghardt et al. 2016). Consequently, site-specific correlations between maternal late-season 590 

temperature and the early-season temperature in the next generation may select for divergent, site-591 

specific effects of maternal temperature on germination. Intriguingly, parental effects of temperature 592 

on germination and flowering time are highly genetically variable in A. thaliana (Burghardt et al. 2016; 593 

Kerdaffrec and Nordburg 2017; Groot et al. 2017). In Plantago lanceolata, such genotype-by-maternal 594 

temperature effects persist throughout the offspring life cycle to generate variation in reproduction in 595 

the field (Lacey and Herr 200). Our results suggest that genetic variation for maternal effects may 596 

derive in part from variable selection imposed by differences among sites in temperature correlations 597 

(see also Groot et al. 2017). 598 

 599 

Common Themes and Future Directions 600 

Although our precipitation and temperature models yielded distinct insights into the 601 

dynamics of each of these factors, common themes emerged in both sets of analyses. For example, 602 

we found higher levels of inter-annual autocorrelation, and therefore more prominent 603 

transgenerational effects, at northern latitudes and along coastal regions within both models. Studies 604 

that compare patterns of transgenerational plasticity across such large geographic regions will be 605 

necessary to determine whether underlying differences in environmental patterns do in fact drive 606 

differences in transgenerational plasticity. While the scale of gene flow varies greatly among species, 607 

these large-scale patterns generate large contiguous regions with divergent optimal levels of 608 

transgenerational plasticity that should provide ample opportunity for natural selection to drive the 609 
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evolution of transgenerational effects even in the face of gene flow. For example, in our temperature 610 

model, the western half of the US represents a contiguous region where positive transgenerational 611 

effects are expected to evolve, while the neighboring great lakes region is many thousands of square 612 

miles in area with negative optimal transgenerational plasticity. These large regional differences 613 

should allow selection to produce divergent transgenerational norms of reaction; future studies 614 

explicitly modeling the migration and evolutionary parameters of specific species will be necessary to 615 

test these predictions in different scenarios.   616 

Another common finding of both the temperature and precipitation models is that 617 

transgenerational effects are expected to provide greater benefits in changing climates relative to 618 

purely oscillating climates, in which linear climate change has been removed (i.e., the residual 619 

models). These results suggest that transgenerational effects may have an important role in 620 

adaptation to human-induced climate change, and that rapid climate change should select for more 621 

transgenerationally plastic individuals. However, there is an important caveat. In our models we 622 

assume that genotypes are uniform in their mean phenotype, and do not allow for mutations that 623 

could lead to genetic adaptation to changing conditions. The potential for transgenerational plasticity 624 

to either promote or hinder genetic adaptation has been explored (Day and Bonduriansky 2011), but 625 

our models do not address this issue. In the absence of genetic evolution, it follows that if there is a 626 

linear trend towards hotter or drier years in addition to climatic oscillations (as in the raw model 627 

variants), then there is more transgenerational information relative to a situation in which only 628 

climatic oscillations are occurring (residual model variants). Theory indicates that these dynamics 629 

become much more complex when local genetic adaptation to changing conditions is allowed to 630 

occur along with plastic responses (Groot et al. 2017). For instance, in some scenarios 631 

transgenerational effects can increase fitness in the short term, while reducing it in the long term 632 

(Hoyle and Ezard 2012).  633 

Temperature and precipitation autocorrelations likely stem in part from the same broad-scale 634 

climatic oscillations, such as the El Niño Southern Oscillation (Yang et al. 2018), the Quasi-biennial 635 

oscillation (Baldwin et al. 2001), and the Pacific Decadal Oscillation (Mantua and Hare 2002; 636 

Newman et al. 2016). Aside from these climatic oscillations, autocorrelations will arise due simply to 637 

“red” or “pink” noise in which rare, large events and common, small events have equal power in 638 

explaining variation (Szendro et al. 2001). It has been demonstrated that even without clear 639 

underlying phenomena explaining variation, pink-noise is often the model that best explains patterns 640 
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of ecological and abiotic time-series variation (Halley 1996). These oscillations and general patterns 641 

of red noise will interact with each other to varying degrees across different regions of the US, 642 

leading to variable levels of autocorrelation at all lags for both precipitation and temperature.  643 

Furthermore, because temperature and precipitation interact to alter moisture availability, it is 644 

likely that organisms do not process temperature and precipitation information independently, but 645 

rather use them in tandem along with other sources of information to fine tune phenotypes for the 646 

most likely future environment. For instance, temperature influences water availability by influencing 647 

rates of evaporation and transpiration. Interactions between temperature and water availability also 648 

shape the collection of herbivores, pathogens, and competitors present in a given locality. 649 

Understanding how these environmental factors jointly influence the expression of transgenerational 650 

plasticity is an important goal for future research.  651 

A key element of this research direction is to study environmental (auto)correlations at fine 652 

scales in the context of dispersal distances. It is possible that transgenerational plasticity may be a 653 

more common mode of adaptation for organisms with short dispersal distances, in which parents 654 

and offspring are more likely to grow and develop in similar microsites. Finally, differences in life 655 

history strategies and generation times will alter the timescales and types of environmental 656 

autocorrelations relevant to transgenerational plasticity.  657 

A recent meta-analysis of 1,170 transgenerational plasticity effect sizes found that there was 658 

substantial evidence for adaptive transgenerational plasticity, but that these effects varied according 659 

to the type of trait that was considered, the environmental context, and the taxonomic and life-660 

history group of the focal organism (Yin et al., 2019).  In particular, this meta-analysis found that 661 

annual plants displayed the most substantial evidence for adaptive transgenerational plasticity, and 662 

that physiological traits showed the highest evidence for adaptive plasticity to parent environments. 663 

The finding that annual plants displayed the greatest degree of transgenerational plasticity is 664 

consistent with their limited mobility and short-life cycle, both of which increase the likelihood that 665 

offspring experience similar environments to their parents. The mean effect size found in this study 666 

for annual plants was 0.163 for reproductive traits and 0.216 for physiological traits, which is 667 

consistent with our modeling results. We found that the mean inter-annual summer temperature 668 

autocorrelation was 0.24 and 0.17 before and after factoring out linear effects of climate change, with 669 

optimal transgenerational effect sizes in our temperature model ranging from 0 to 0.3.  While Yin et 670 

al. 2019 did not consider differences between environmental variables, inter-annual temperature 671 
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autocorrelations could drive autocorrelations in a diversity of selective pressures. Taken together with 672 

our modeling results, this meta-analysis indicates that observed strengths of transgenerational effects 673 

in annual plants are in line with the predictions made by patterns of autocorrelations observed in 674 

nature. Similarly, Yin et al. (2019) found that short-lived invertebrates were the second most likely 675 

group to express transgenerational plasticity, suggesting that the capacity to transmit epigenetic 676 

information between generations is not phylogenetically limited. For longer-lived taxa, such inter-677 

annual autocorrelations would be relatively fine-grained, and thus more likely to select for within-678 

generation rather than transgenerational plasticity. Future studies modeling the evolution of 679 

transgenerational plasticity in individuals with disparate life histories will be critical for better 680 

understanding the evolution of these environmental effects. 681 

 682 

 683 

Conclusion 684 

In summary, we demonstrate that patterns of climatic variation in nature may favor the 685 

adaptive evolution of transgenerational plasticity in organisms with approximately annual generation 686 

times, such as annual plants. Our models indicate that differing patterns of climatic oscillations 687 

across the US lead to strikingly different optimal patterns of within- and transgenerational plasticity.  688 

Thus, for a given species, one may expect that environmental variation across its range not only 689 

selects for different locally adapted mean trait values, but also different classes and magnitudes of 690 

plasticity. Perhaps the most meaningful result of this study is that the climatic patterns across 691 

relatively small geographic regions vary so dramatically that the optimal value of transgenerational 692 

plasticity ranges from extremely high to non-existent. It should therefore be expected that although 693 

many species, environmental variables, or phenotypes of interest may show no evidence of 694 

transgenerational plasticity, such results may be due to their specific ecological situation rather than a 695 

fundamental biological limitation. This applies equally strongly to the other side of the coin: because 696 

a single population or species expresses strong transgenerational plasticity does not mean that 697 

transgenerational effects are a universally key driver of evolutionary processes. Rather, variation in 698 

transgenerational plasticity should be expected, just as genetic variation is ubiquitous in natural 699 

populations. Transgenerational plasticity is best considered in the specific ecological and evolutionary 700 

context of the study organism, and broad generalizations about the role of these effects in evolution 701 
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should be avoided until considerably more field data are in hand. The results described here provide 702 

a source of testable predictions for geographical variation in this mode of adaptation. 703 
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Table 1: Summary statistics of climatic patterns relevant to the evolution of within and 724 

transgenerational plasticity. Mean (s.d.). IASD: Inter-annual standard deviation (representative of 725 

how variable conditions are between years). ACF: Autocorrelation at lags 1, 2 and, 3. 726 

 727 

 Mean IASD ResACF-1 ACF-1 ACF-2 ACF-3 

Precipitation 763 (443) 145 (76) 0.02 (0.08) 0.04 (0.09) 0.05 (0.13) 0.01 (0.09) 

Spring Temp 10.4 (5.5) 1.2 (0.2) -0.04 (0.07) -0.01 (0.08) -0.04 (0.1) 0.05 (0.09) 

Summer Temp 21.2 (4.2) 0.9 (0.2) 0.17 (0.1) 0.24 (0.12) 0.09 (0.1) 0.11 (0.09) 

 728 

 729 

 730 

 731 

 732 

 733 

 734 

 735 

 736 

 737 

 738 

 739 

 740 

 741 

 742 

 743 

 744 

 745 

 746 

 747 

 748 
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Table 2: Most common, second most common, and mean optimal plasticity values across all sites in 749 

the US for precipitation and temperature models.  750 

 751 

  Raw Residual 

Climate Term  #1 / #2 Mean (s.d.) #1 / #2 Mean (s.d.)_ 

Precipitation M 0.1/0.2 0.094 (0.22) 0.1/0.2 0.036 (0.21) 

G 1/0 0.63 (0.40) 1/0 0.64 (0.40) 

Temperature 𝑚𝐸𝐸  0 / 0.1 -0.016 (0.098) 0 / -0.2 -0.04 (0.11) 

𝑚𝐸𝐿 0.1 / 0 0.057 (0.073) 0.1 / 0 0.045 (0.073) 

𝑚𝐿𝐸  0.1 /0 0.096 (0.178) 0 / 0.1 0.042 (0.17) 

𝑚𝐿𝐿 0.3 / 0.1 0.204 (0.133) 0.1 / 0.3 0.148 (0.117) 

𝑤 0.1 / 0 0.095 (0.072) 0.1 / 0 0.092 (0.072) 

 752 

 753 

 754 

 755 

 756 

 757 

 758 

 759 

 760 

 761 

 762 

 763 

 764 

 765 

 766 

 767 

 768 

 769 
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Table 3: Correlations between the temperature inter-annual autocorrelations and the optimal 770 

transgenerational plasticity values. 771 

 772 

 𝑚𝐸𝐸  𝑚𝐸𝐿 𝑚𝐿𝐸  𝑚𝐿𝐿 

EE ACF 0.757139 -0.131583 -0.049501 -0.156768 

EL ACF -0.036229 0.5968488 -0.069245 -0.153818 

LE ACF 0.1256068 -0.036048 1.3390581 -0.067451 

LL ACF 0.0135772 -0.017808 -0.120773 0.9757164 

Within ACF -0.067861 -0.160476 0.0595802 0.0701295 

 773 

 774 

 775 

 776 

 777 

 778 

 779 

 780 

 781 

 782 

 783 

 784 

 785 

 786 
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 788 

 789 

 790 
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Figure 1: Schematic depicting the ecological motivations (summer annual plants) and theoretical 792 

underpinnings for the evolutionary modeling of plasticity traits (A and C), and the types of 793 

environmental fluctuations that may influence their evolution. (A) Temperature plasticity model. In 794 

the abbreviations, E denotes the Early growing season (spring) and L denotes the late growing 795 

season (summer). The first letter represents the relevant season during the parental generation and 796 

the second letter represents the relevant season in the offspring generation (e.g., EL denotes effects 797 

of parental early growing season temperature on offspring phenotypes late in the growing season).  798 

Within generation developmental changes in response to early season environment (W) are also 799 

considered in this model. Additionally, the long-term average environmental conditions at a specific 800 

area determine the genetic baseline phenotype of an individual (G). (B) On the left we see an 801 

example of an environment with high within season autocorrelations for temperature (hot springs 802 

tend to be followed by hot summers), but low inter-annual autocorrelations (a hot year does not tend 803 

to be followed by another hot year) that selects for within generation plasticity but not 804 

transgenerational plasticity. On the right, a situation where spring and summer temperatures are not 805 

correlated with each other, but we do find that environmental oscillations lead to a string of warmer 806 

than average springs and cooler than average summers, in this situation transgenerational plasticity 807 

(EE and LL) but not within generation plasticity is expected to be optimal.  (C) Precipitation 808 

plasticity model.  The amount of precipitation experienced by an individual can lead to 809 

transgenerational effects in the next generation (T), as well as persist for two (TG) or three (TGG) 810 

generations.  (D) On the left, relatively gradual decadal oscillations give value to transgenerational 811 

effects that persist for multiple seasons (T, TG, and TGG). On the right shorter period climatic 812 

oscillations may favor parental effects (T), but not multi-generation effects (TG or TGG). 813 

 814 
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Figure 2: Maps depicting natural climatic variation across the conterminous US.  815 

 816 

Figure 3: Distributions of optimal plasticity (A and B) and temperature (C-G) values across all 4km x 817 

4km sites in the US.  Histograms of optimal (A) precipitation transgenerational plasticity value (T), 818 

(B) precipitation multi-generation persistence (G),  (C) temperature spring (early season) -> spring 819 

(early season) transgenerational plasticity (𝑚𝐸𝐸) , (D) temperature spring (early season) -> summer 820 

(late season) transgenerational plasticity (𝑚𝐸𝐿), (E) temperature summer (late season) -> spring(early 821 

season) transgenerational plasticity (𝑚𝐿𝐸), (F) temperature summer (late season) -> summer (late 822 

season) transgenerational plasticity (𝑚𝐿𝐿), and within generation temperature plasticity (W) 823 

 824 

Figure 4: Maps coded to show patterns of variability for optimal precipitation (A-C) and temperature 825 

(D-H)  plasticity values across the US. (A) Optimal transgenerational plasticity values for the one-826 

generation transmission of precipitation level information.  (B) Optimal grandparental 827 

transgenerational plasticity values coded blue (green) or red (orange) based on the direction of effect 828 

(positive or negative).  White regions have an optimal multi-generation persistence (G) of 0, while 829 

red and blue both have optimal multigeneration persistence of 1, intermediate values (0>G>1) in 830 

orange and green.  (C) The difference between optimal transgenerational plasticity values in the raw 831 

vs. residual variant of the mode. Higher values suggest that the primary value associated with 832 

transgenerational plasticity over the past 120 years has been associated with allowing individuals to 833 

keep up with linearly changing precipitation patterns.  (D) Optimal total levels of transgenerational 834 

temperature plasticity ((MEE + MEL + MLE + MLL)/2).  (E) Optimal transgenerational plasticity of 835 

most extreme positive transgenerational plasticity allele.  (F) Optimal transgenerational plasticity of 836 

lowest transgenerational plasticity allele.  Regions in orange have at least one form of 837 
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transgenerational plasticity for which negative transgenerational effects increase fitness.  (G) The 838 

difference between optimal transgenerational plasticity values in the raw vs. residual variant of the 839 

mode. Higher values suggest that the primary value associated with transgenerational plasticity over 840 

the past 120 years has been associated with allowing individuals to keep up with increasing 841 

temperature. (H) Optimal within generation plasticity (W) values.  842 

 843 

Figure 5: Fitness landscapes of transgenerational precipitation alleles for twelve sites across the US. 844 

Sites with low optimal parental effects (D and I) have only very subtle fitness differences associated 845 

with chanes in the multigeneration persistence (Y-axis) due to the minor role in any form of 846 

transgenerational effect on fitness in these cases.  More defined fitness peaks tend to occur in areas 847 

where more substantial transgenerational effects are optimal (E, G, J, K, L).  In some rare cases, 848 

bimodal fitness landscapes arise (B) where lines with either positive (with high persistence) or 849 

negative (with low persistence) transgenerational persistence have higher fitness than lines with no 850 

transgenerational inheritance. 851 

 852 

Figure S1:  Distribution of climatic summary statistics across the 481k 4x4km grids in the US. Dotted 853 

lines at 0 for autocorrelation histograms.  854 

 855 

Figure S2: Mosaic plot showing the frequency of specific combinations of optimal transgenerational 856 

effects and multi-generational persistence values.  More subtle transgenerational effects more 857 

frequently only have a single generation of persistence (G=0), while more extreme transgenerational 858 

effects tend to coincide with full transgenerational persistence (G=1) where each of the prior three 859 
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years contribute equally.  Additionally, positive transgenerational effects were more likely to have 860 

intermediate levels of persistence than negative transgenerational effects.  861 

 862 

Figure S3: Figures demonstrating tradeoffs between classes of plasticity. (A) Tradeoffs between early-863 

late (m12) and late-late (m22) transgenerational plasticity in relation to the autocorrelations in 864 

summer temperature.  Generally, as inter-annual summer autocorrelations increase, so too does the 865 

frequency of minor and moderate early-late transgenerational plasticity.  However, we also find that 866 

areas that favor higher levels of late-late transgenerational plasticity tend to favor lower levels of 867 

early-late plasticity compared to other sites with similar levels of temperature autocorrelation. (B) 868 

Within a single site there are many examples of localities where either early-late or late-late 869 

transgenerational plasticity lead to fitness increases relative to clones with no plasticity, but 870 

individuals expressing both forms of plasticity have the lowest fitness of all.  871 

 872 
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