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ABSTRACT New technologies have given rise to an abundance of -omics data, particularly metabolomics
data. The scale of these data introduces new challenges for the interpretation and extraction of knowledge,
requiring the development of new computational visualization methodologies. Here, we present a new method
for the visualization of time-course metabolomics data within the context of metabolic network maps. We
demonstrate the utility of this method by examining previously published data for two cellular systems—the
human platelet and erythrocyte under cold storage for use in transfusion medicine.
The results comprise two animated videos that allow for new insights into the metabolic state of both cell types.
In the case study of the platelet metabolome during storage, the new visualization technique elucidates a
nicotinamide accumulation which mirrors that of hypoxanthine and might, therefore, reflect similar pathway
usage. This visual analysis provides a possible explanation for why the salvage reactions in purine metabolism
exhibit lower activity during the first few days of the storage period. The second case study displays drastic
changes in specific erythrocyte metabolite pools at different times during storage at different temperatures.
In conclusion, this new visualization technique introduced in this article constitutes a well-suitable approach
for large-scale network exploration and advances hypothesis generation. This method can be applied to any
system with data and a metabolic map to promote visualization and understand physiology at the network level.
More broadly, we hope that our approach will provide the blueprints for new visualizations of other longitudinal
-omics data types.
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AUTHOR SUMMARY1

Profiling the dynamic state of a metabolic network through the2

use of time-course metabolomics technologies allows insights into3

cellular biochemistry. Interpreting these data together at the sys-4

tems level provides challenges that can be addressed through the5

development of new visualization approaches. Here, we present6

a new method for the visualization of time-course metabolomics7

data that integrates data into an existing metabolic network map.8

In brief, the metabolomics data are visualized directly on a net-9

work map with dynamic elements (nodes that either change size,10

fill level, or color corresponding with the concentration) while11
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the user controls the time series (i.e., which time point is being 12

displayed) through a graphical interface. We provide short videos 13

that illustrate the utility of this method through its application 14

to existing data sets for the human platelet and erythrocyte. The 15

results presented here give blueprints for the development of vi- 16

sualization methods for other time-course -omics data types that 17

attempt to understand systems-level physiology. 18

INTRODUCTION 19

Over the last few decades, new technological developments have 20

enabled the generation of vast amounts of “-omics” data [29]. 21

These various -omic data types have helped bring new insights 22

to a vast array of biological questions [24, 21, 41]. As more and 23

more data are generated, however, researchers are faced with the 24
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enormous challenge of integrating, interpreting, and visualizing25

these data. The community has recognized these needs, focusing26

efforts on data visualization as a way to maximize the utility of27

biological data [5]. Data visualization is particularly crucial for a28

systems-level perspective of metabolic networks and pathways.29

Several excellent software tools were made available for drawing30

and exploring biological network graphs [14, 33, 9, 10, 13]. These31

tools provide impressive descriptions of the network and sup-32

port for diverse analyses, including the mapping of omics data to33

networks.34

Metabolomics data provide snapshots of cellular biochemistry,35

presenting essential insights into a cell’s metabolic state [27, 19].36

Visualization tools often allow users to overlay pathway maps with37

static data sets [14]. Recently, time-course metabolomics data sets38

that detail cellular changes over time are becoming more preva-39

lent [26, 43, 3, 25], leading to the need for dynamic visualizations40

that can capture the aspect of time [31]—an essential aspect of41

understanding complex processes such as changes in metabolic42

activity, concentration, or availability. Many visualization tools43

[39, 36, 30, 17], however, do not yet provide support for the rep-44

resentation of dynamic content. Those visualization tools whose45

features do include time series visualization [5, 28, 15, 30, 11, 31]46

only provide static depictions of the data. Some progress has been47

made to provide a stepwise temporal representation of metabo-48

lomics data [1], but a robust and smooth dynamic solution for49

mapping time series data to networks has yet to be presented.50

One reason for the current lack of convincing visual analysis51

methods for dynamically changing data sets is that time-dependent52

data add additional layers of complexity to the already difficult53

problem of visual network exploration. First of all, genome-scale54

metabolic networks can have enormous sizes: Some published55

metabolic network maps comprise several thousand biochemical56

reactions [4, 22], of which human beholders can simultaneously57

only grasp a very small fraction [12]. Another difficulty in the58

interpretation of metabolic networks is their small-world property59

[37]. It means that the connectivity of their nodes (the metabo-60

lites) follows a power-law distribution, i.e., a few nodes are highly61

connected hub-nodes, whereas the majority has only very few62

connections. Examples for common hub-nodes include currency63

metabolites such as ATP, NAD(P)H or cofactors. Overall, nodes64

are connected through very few consecutive edges (the reactions).65

Furthermore, metabolic networks are hypergraphs, in which more66

than one metabolite can act as reactant or metabolites, i.e., one edge67

may connect multiple nodes at once. To circumvent this problem,68

metabolic networks are often displayed in form of bipartite graphs,69

introducing a specific reaction node type to which metabolites70

nodes are connected while prohibiting edges between nodes of71

the same type [23, 14, 18]. Common graph drawing algorithms,72

however, usually do not take this hypergraph or bipartite property73

into account. Very large networks with multiple thousand nodes74

may, therefore, result in hairball-like structures, centered around75

hub-nodes. Duplicating selected hub-nodes has been suggested as76

a strategy for reducing the problem of hairball formation [18] and77

is commonly used in manually-drawn networks because it leads to78

significantly better indication of conceptual sub-maps and flows of79

matter [22]. However, this technique introduces another problem80

when mapping data onto the network. The same node is displayed81

in varying location, therefore also is the quantitative value asso-82

ciated to that node. Particularly in dynamically changing graphs,83

drastic alterations in duplicated nodes may distract beholders from84

less obvious activities in the network. Moreover, metabolic net-85

works traditionally comprise characteristic structures, in particular86

cycles such as the tricarboxylic acid (TCA) cycle or the urea cycle. 87

Not only can a node duplication in the wrong position destroy the 88

circular shape of this graph pattern, but algorithmically drawn net- 89

works without such prior knowledge may not consider structures 90

that researchers usually expect because of their familiarity with 91

common textbook representations. For these reasons, automati- 92

cally drawing a metabolic network from scratch and mapping data 93

to it without human interaction is unlikely produce convincing 94

results, nor can it directly identify hidden activities. 95

With a steadily increasing number of carefully prepared 96

metabolic network layouts being published, we here assume a 97

map to be available for the system of interest. If this is not yet the 98

case, a map can be easily drawn using software such as Escher 99

[14]. This paper focuses on the problem of displaying dynamically 100

changing quantitative data of network components. The aim is to 101

answer the question: How to create expressive visual displays of 102

dynamic metabolic networks? Needed are strategies to visually 103

present the data in a way that beholders can best perceive and 104

estimate quantities of network individual components and that at 105

the same time enable them to conceptually narrow down parts of 106

interest even within large networks. 107

In the next sections, we present an intuitive and comprehensive 108

method for the visualization and contextualization of longitudinal 109

metabolomics data in metabolic networks. We developed three 110

different graphical representations of metabolic concentration that 111

allow for different interpretations of metabolomics data through a 112

smooth animation. We present two case studies using this method 113

that examine two different cellular systems—the human platelet 114

and the human red blood cell (RBC)—to show how visualizing 115

existing data can provide new insights into cellular metabolism. 116

The result are two animated videos that give detailed information 117

about the systems under study and highlight new insights that 118

were not previously apparent. We hope that this intuitive method 119

will aid researchers in interpreting and visualizing complex data 120

sets. 121

RESULTS 122

In this study, we present a new approach for the visualization 123

of time-course metabolomics data in the context of large-scale 124

metabolic network maps. The idea is that time series can be 125

adequately observed in the form of an animated sequence of a 126

dynamically changing network map when using an appropriate 127

representation of metabolic quantities. To this end, our technique 128

exploits the repeatedly observed ability of human beholders to 129

estimate quantities most precisely when these are mapped to a 130

lengths scale [6]. Since metabolic maps commonly represent nodes 131

with circles [16, 14], we suggest using the fill level of each node as 132

a visual element to represent its amount at each time point. We 133

experimented with visualization of data in several different ways, 134

based on node size, color, a combination of size and color, or fill 135

level (Supplementary Figure S1). Each of these visual representa- 136

tions provides some advantages over the others, but the notion 137

of the fill level of a node can be the most intuitive [6] as it allows 138

for the user to understand and gauge its minimum or maximum 139

value quickly (see Discussion). 140

Using this technique, we created such an animation for given 141

longitudinal metabolomics data and a metabolic network map that 142

corresponds to the observed cell type (Figure 1). To provide a 143

smooth animation, additional time points are interpolated in the 144

provided time series. Further details regarding the development 145

and use of the implementation of the method can be found in the 146

Supplementary Information. 147

2 | Buchweitz and Yurkovich et al. Submission to bioRxiv

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 26, 2018. ; https://doi.org/10.1101/426106doi: bioRxiv preprint 

https://doi.org/10.1101/426106
http://creativecommons.org/licenses/by-nc-nd/4.0/


Metabolomics Measurements
A

DC

Dynamic Metabolic Network Map

Time Time

B

C
on

ce
nt

ra
tio

n

Measured Unmeasured

B
D

A

C

Fig. 1 Dynamic visualization of metabolomics data. We take metabolomics data as input and generates a dynamic animation of the
data over time which enables the visualization of pool sizes for individually measured metabolites. Several different options are dis-
cussed in this article for the visualization of the data based on node size, color, and fill level. The method has been implemented in
SBMLsimulator including an export function to save the resulting output in a video file. For creation of animation videos highlighted in
Box 1 and Box 2 post-processing steps are needed as descibed in the Supplementary Information.

To demonstrate the utility of this method, we applied these148

visualization methods to two different cellular systems—human149

platelets and RBCs—for which longitudinal quantitative data sets150

were available in the literature [26, 43]. Transfusion medicine151

plays a vital role in modern healthcare, making the storage of152

different blood components important physiological processes to153

understand. In particular, platelets and RBCs represent relatively154

simple human cell types that can be intensely studied in the well-155

defined, static environment provided by blood storage (packed in156

plastic bags and stored at 22 ◦C and 4 ◦C for platelets and RBCs,157

respectively). While the cells are stored in these conditions, bio-158

chemical and morphological changes occur (the “storage lesion”)159

that are well-studied through the use of metabolomics data [19, 40].160

Metabolic models were previously available for both the platelet161

[34] and RBC [2], enabling the creation of network maps for both162

reconstructions. Thus, these data could be visualized in the context163

of the entire metabolic network.164

Case study: human platelets under storage conditions Our first case165

study examined the storage of platelets. We manually created a166

metabolic map for the complete metabolic network of the platelet167

using Escher [14]. We then overlaid metabolomics data which char-168

acterized the baseline storage conditions with eight time points169

over ten days of storage [26] to produce a network-level visualiza-170

tion of the data (Figure 2). Using this network-level visualization,171

we examined the dynamics of the platelet metabolome.172

During the first part of storage, stress due to the non-173

physiological conditions of storage (i.e., packed in a plastic bag174

at 22 ◦C) slows metabolic activity through glycolysis, the pentose175

phosphate pathway, and purine salvage pathways [26]. Several176

metabolites are secreted by the cells and accumulate in the storage177

media, such as hypoxanthine. The metabolite 5-Phospho-alpha-D-178

ribose 1-diphosphate (PRPP) is produced from the pentose phos-179

phate pathway and is a cofactor in the salvage reactions that break180

down hypoxanthine. Because flux through the pentose phosphate 181

pathway is lower, the cells have less capacity to recycle hypoxan- 182

thine using the salvage pathways. 183

Box 1: Visualization of Biochemical Processes – Storage
of Platelets / 8 min: 26 s

This video introduces a new method for visualizing
metabolic processes in the context of a full biochemical
network. Representing the metabolic network as a graph
where metabolites are nodes and reactions are edges can
help elucidate complex relationships within the network.
While viewing a network in this manner is not new, over-
laying -omics data onto the map allows for an accurate
integration of disparate data types. By visually interpret-
ing the information in this dynamic, graphical format, we
can more easily distinguish important characteristics of the
network. This video utilizes the metabolomics data from
the study “Comprehensive metabolomic study of platelets
reveals the expression of discrete metabolic phenotypes
during storage” [26]. u/GQuT7R-ldS4

184

By viewing all of the data simultaneously at the network level, 185

we were able to discover that the concentration profile of nicoti- 186

namide mirrors that of hypoxanthine. This observation suggests 187

a similar rationale for the accumulation of nicotinamide, provid- 188

ing a hypothesis as to why the salvage pathway within purine 189

metabolism has lower activity during the first few days of stor- 190

age. These findings are demonstrated in the video highlighted in 191

(Box 1), helping show how network-level visualization allows for 192

improved extraction of biological insight from large, complex data 193

sets. 194

Case study: human red blood cells under storage conditions Our sec- 195

ond case study examined the storage of RBCs. A metabolic map 196
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Fig. 2 Network map in SBGN style [16] for the human platelet with metabolomics data [26] overlaid. This figure represents a visual-
ization in which the fill level of a node represents the relative size of the corresponding metabolite pool.

was already available for the RBC [42] and captures the complete197

metabolic network [2]. Here, we sought to examine a data set that198

provided the opportunity to visualize different experimental con-199

ditions for the same network. Recently, a study was published [43]200

that used quantitative longitudinal metabolomics data to exam-201

ine the state of the RBC metabolome under four different storage202

temperatures: 4 ◦C (storage temperature), 13 ◦C, 22 ◦C, and 37 ◦C203

(body temperature). For this system, we opted to visualize the204

dynamics of the metabolite concentrations as nodes with variable205

size where smaller nodes represent smaller pool sizes, and larger206

nodes represent larger pool sizes (Figure 3).207

To highlight the differences between the experimental condi-208

tions, we examined two of the conditions side-by-side (see the209

video highlighted in Box 2). This visualization helps supplement210

the type of statistical and modeling analyses performed previ-211

ously and helps contextualize the effects of the temperature change212

across different parts of the network. In particular, it is obvious213

from a network-level view of the system that certain parts of the214

network are more active at different points in the time-course. A215

side-by-side comparison helped emphasize that the availability of216

reduced glutathione is different with increased temperature, an im-217

portant physiological feature due to the role of glutathione in neu-218

tralizing reactive oxygen species [38] that accumulate during stor-219

age and contribute to the storage lesion [7]. Finally, it can be seen220

that hypoxanthine—a known toxic metabolite whose concentration221

has been shown to inversely correlate with the post-transfusion222

recovery rates of transfusion patients [20]—accumulates faster at223

higher temperatures. Like in the other case study presented above,224

the new insights into complex processes (which are not yet fully225

understood) provide evidence that this method can be beneficial226

for the simplification and understanding of large, complex data 227

analyses. 228

Box 2: Visualization of Biochemical Processes – Temper-
ature Dependence of Red Blood Cells / 1 min: 33 s

This video visually compares the biochemical effects of
increasing the storage temperature from (4 ◦C to 13 ◦C) of
stored RBCs on metabolic processes. The relative node
size shows changes in metabolite concentrations for each
measured metabolite. Zooming in on various parts of
the network helps visualize how specific metabolite pools
undergo more drastic changes at different points during
storage. This video utilizes the metabolomics data from
the study “Quantitative time-course metabolomics in hu-
man red blood cells reveal the temperature dependence of
human metabolic networks” [43]. u/0INItST4FQc

229

DISCUSSION 230

With the development of new experimental technologies and the 231

subsequent generation of -omics data sets, life scientists are faced 232

with the challenge of extracting actionable knowledge. New visu- 233

alization methods are a critical way that the community can make 234

strides toward making the most of complex data. Here, we present 235

a new method for the visualization of longitudinal metabolomics 236

data in the context of the metabolic network. We provide two case 237

studies that examine (1) a baseline characterization of a physio- 238

logical process and (2) a set of experimental perturbations that 239
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Fig. 3 Overview of the RBC
metabolic network under
storage conditions at 4 ◦C.
The size and color of the
nodes reflect their abso-
lute abundance. The oval
area on the top magnifies
a region in the center of
the map that appears in
the style of Escher [14] in
contrast to the SBGN style
shown in Figure 2.

allowed for a side-by-side comparison of different experimental240

conditions. The introduction of this new visualization method has241

two significant implications.242

First, this method provides a dynamic visualization of cellular243

processes. Tools such as Cytoscape [32] provide visual analysis of244

networks and supports plugins like TiCoNE [39] and CyDataSeries245

[35] for the visualization of time-course data. However, tools such246

as these or VANTED [30] only offer static representations of dy-247

namic data. To our knowledge, only KEGGanim [1] offers a dy-248

namic visualization of time-course data. The method presented249

here builds on KEGGanim by offering a smooth interpolation250

between time points and offers the further advantage of customiza-251

tion concerning the display of both data and the network itself. The252

method presented outlines an original development for visualizing253

complex biological data in an intuitive and useful manner.254

Second, a network-level representation of large metabolomics255

data sets presents a more holistic view of the data than does sta-256

tistical analysis alone. While visual inspection of data is indeed257

not a replacement for more detailed statistical or modeling anal-258

yses, this method provides an important supplement to existing259

data analysis pipelines. We demonstrate its utility in such an 260

analysis pipeline by highlighting findings from existing data sets 261

[43, 26]. Visualizing the metabolomics data in the context of the 262

full metabolic network allowed for new insights into existing data 263

sets. A potential explanation why the salvage pathway lowers its 264

activity during the first few days of platelet storage could be de- 265

duced for the network of the human platelet. In the RBC network, 266

it could easily be seen that concentrations in certain parts of the 267

network (e.g., nucleotide metabolism) accumulated or depleted 268

together. These findings illustrate the promising potential of intu- 269

itively visualized time-course data and—combined with in-depth 270

computational data analysis—can help elucidate physiological 271

processes. 272

The simplification of experimental data interpretation became 273

extremely relevant in the age of high-throughput technologies. The 274

visualization concept presented here offers an intuitive, systems- 275

level interpretation of metabolomics data. Combined with other 276

data analytics, this method helps provide a holistic view of a data 277

set, moving us closer to being able to realize the full potential 278

of a given data set. More broadly, we hope that the method pre- 279
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sented here will provide the starting point for further visualization280

improvements not only for metabolomics data but for the visu-281

alization and contextualization of other data types. Future work282

may include combining a dynamic representation with static con-283

centration graphs that will continue to improve the capabilities of284

such software to fully meet the needs of life science researchers.285

METHODS286

The method described in this paper utilizes existing software li-287

braries to visually represent metabolomics data in the context of288

a metabolic network map. SBMLsimulator [8] is used to inter-289

polate the data, providing a smooth time-course for simulation.290

Escher [14] is used for the design of metabolic network maps. In291

brief, metabolomics data are provided in a *.csv file format with292

identifiers matching those of the map. The data are interpolated293

over time with input from the user. Other features are selected,294

such as the speed of animation and how metabolite concentrations295

are represented (e.g., fill level). The result is a smooth animation296

that allows features such as zooming and panning across different297

areas of the map. Full details for the implementation and use of298

the software are provided in the Supplemental Material.299
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