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ABSTRACT9

Fluorescence correlation spectroscopy (FCS),10

is a flexible and widely used tool routinely ex-11

ploited for in vivo and in vitro applications. While12

FCS provides estimates of dynamical quantities,13

such as diffusion coefficients, it demands high sig-14

nal to noise ratios and long time traces, typ-15

ically in the minute range. In principle, the16

same information can be extracted from µ-s long17

time traces; however, an appropriate analysis18

method is missing. To overcome these limita-19

tions, we adapt novel tools inspired by Bayesian20

non-parametrics, which starts from the direct21

analysis of the observed photon counts. With22

this approach, we are able to analyze time traces,23

which are too short to be analyzed by exist-24

ing methods, including FCS. Our new analysis25

extends the capability of single molecule fluo-26

rescence confocal microscopy based approaches,27

to probe processes several orders of magnitude28

faster in time and permits a reduction of photo-29

toxic effects on living samples induced by long30

periods of light exposure.31

INTRODUCTION32

Due to its flexibility and limited invasiveness for in33

vivo applications, single molecule fluorescence confocal34

microscopy1–4 is one of the most widely used experimen-35

tal techniques of modern Biophysics. In this technique,36

fluorescent molecules are allowed to freely diffuse into37

a volume illuminated by a tightly focused laser beam38

of a conventional single-focus confocal setup. Molecu-39

lar motion inside the illuminated volume generates fluc-40

tuations in the emitted fluorescence that is recorded41

and subsequently temporally autocorrelated1–4 or, jointly42

spatiotemporally autocorrelated5–7, to deduce physical43

quantities of interest. For example, fluorescence corre-44

lation spectroscopy (FCS)1,2 as well as complementary45

methods – such as Fluorescence Cross-Correlation Spec-46

troscopy (FCCS)8, scanning FCS9,10, spot variation Flu-47

a)Email: spresse@asu.edu

orescence Correlation Spectroscopy (svFCS)11, Fluores-48

cence Resonance Energy Transfer-Fluorescence Correla-49

tion Spectroscopy (FCS-FRET)12,13, etc – estimate dif-50

fusion coefficients, reaction kinetic, binding affinities and51

concentrations of labeled molecules14,15.52

While single molecule fluorescence confocal microscopy53

data is acquired on the micro- to millisecond timescales54

(µs-ms), fluorescence correlation methods typically re-55

quire the analysis of long time traces, several seconds to56

tens of minutes long, depending on the molecular con-57

centrations and emission properties of the fluorophores58

employed16,17. These traces, capturing multiple molecule59

traversals of the confocal volume, provide the statistics60

needed for the post-processing steps used in traditional61

FCS analysis16 (e.g. autocorrelation, and nonlinear fit-62

ting to theoretical curves). However, processing steps63

like these downgrade the quality of the available data64

and demand either relatively high concentrations or ex-65

cessively long time traces to yield reliable estimates. The66

same downgrades are encountered even with less tradi-67

tional FCS analyses, including Bayesian approaches18–22,68

that also rely on auto-correlations.69

In principle, within milliseconds, for the fluorophore70

concentrations and confocal volumes used in most exper-71

iments1,2,23, thousands of data points are already avail-72

able. Accordingly, if one could, somehow, estimate dif-73

fusion coefficients within tens of ms with the same accu-74

racy as FCS, one could hypothetically use tens of minutes75

worth of data to discriminate between very small differ-76

ences in diffusion coefficients. Alternatively, one could77

opt for shorter traces in the first place and, in doing78

so, reduce the sample’s light exposure to only a few ms,79

thereby minimizing photo-toxic effects which remain a80

severe limitation of fluorescence microscopy24–26.81

Exploiting data on ms timescales would require a82

method that, simultaneously and self-consistently, esti-83

mates the number of fluorescent molecules at any given84

time within the (inhomogenously) illuminated volume85

and deduce their dynamical properties based on their86

photon emissions, which, in turn, depend on their evolv-87

ing location within the confocal volume. The mathemat-88

ics to do so in a rigorous and efficient manner have, so far,89

been unavailable as analyzing ms traces would demand90

that we consider all possible populations of molecules re-91

sponsible for the observed traces, their diffusion coeffi-92

cients, and every possible location (and, thus, photon93

emission rate) of those molecules at any given time.94

Indeed, with current technology, this global optimiza-95
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tion is prohibitively computationally expensive. To wit,96

maximum likelihood approaches15,27, popular in a variety97

of applications, are excluded since they require that the,98

otherwise unknown, population of molecules in the con-99

focal volume at any given time be specified in advance by100

other means. These considerations motivate an entirely101

new framework for FCS.102

Here we introduce a novel approach that exploits103

Bayesian non-parametrics15,28,29, a branch of Statistics104

first suggested30 in 1973 and only broadly popularized in105

physical applications over the last few years15,28,29,31–37.106

This approach allows us to account for an arbitrary num-107

ber of molecules responsible for emitting detected pho-108

tons. With the proposed method, we are able to estimate109

physical variables, otherwise determined from FCS, with:110

(i) significantly shorter time traces; and (ii) nearly sin-111

gle molecule resolution. Furthermore, our overall frame-112

work is generalizable, and can estimate not only diffu-113

sion coefficients and molecular populations but also track114

molecules through time as well as determine their molec-115

ular brightness and the background photon emission rate.116

RESULTS117

The method we propose for the analysis of traces from118

single molecule fluorescence confocal microscopy follows119

the Bayesian paradigm15,27,29,38. Within this paradigm,120

our goal is to estimate posterior probability distributions121

over unknown parameters such as diffusion coefficients as122

well as molecular populations over time.123

In this section, we first demonstrate and validate our124

method by computing posterior distributions using syn-125

thetic (simulated) traces mimicking the properties of real126

single molecule fluorescence confocal experiments. We127

subsequently benchmark our estimates with traces from128

control in vitro experiments.129

A. Demonstration and validation with simulated data130

To demonstrate the robustness of our method, we sim-131

ulate fluorescent time traces under a broad range of:132

(i) numbers of labeled molecules in the effective vol-133

ume, Fig. 1; (ii) diffusion coefficients, Fig. 2a; (iii) trace134

lengths, Fig. 2b; and (iv) molecular brightness, Fig. 3.135

Since, the majority of our time traces are too short to be136

meaningfully analyzed with traditional FCS, we compare137

our posteriors directly to the ground truth that we used138

in the simulations.139

The posteriors we obtain, in all figures, are informed140

from the analysis of a single trace. In those, the breadth141

of the posterior (i.e. variance), which is a measure of the142

accuracy of our estimate, therefore indicates the uncer-143

tainty introduced by the finiteness of the data and the144

inherent noise in this single time trace.145

To begin, in Fig. 1 we simulate a 3D Gaussian confocal146

volume of size (ωxy = 0.3 µm and ωz = 1.5 µm) and147

FIG. 1. Testing the effects of the number of molecules
inside the confocal volume on diffusion coefficient es-
timates. (a1) Synthetic fluorescent intensity trace produced
by 1 molecule inside the confocal volume. For this simula-
tion we used a molecular brightness of 5× 104 photons/s and
a background photon emission rate of 103 photons/s. (b1)
Posterior probability distribution over the diffusion coefficient
estimated from the trace in (a1). (a2) Synthetic fluorescent
intensity trace produced by 5 molecules inside the confocal
volume otherwise identical to (a1). (b2) Posterior probabil-
ity distribution over the diffusion coefficient estimated from
(a2). Traces shown in (a1) and (a2) are acquired at 100 µs
for a total of 100 ms and the highlighted regions in (b1) and
(b2) represent the 95% confidence intervals. For clarity, the
horizontal axis is shown in logarithmic scale.

1 molecule inside the effective volume (Fig. 1a1) or 5148

molecules inside the effective volume (Fig. 1a2) diffusing149

at 10 µm2/s for a total period of 100 ms.150

As can be seen in Fig. 1, a low intensity leads to a wide151

estimate of the diffusion coefficient. However, the higher152

the intensity, the sharper (i.e. more conclusive) the es-153

timate of the diffusion coefficient becomes (e.g. note a154

narrower posterior in Fig. 1b2 as compared to Fig. 1b1).155

Thus, diffusion coefficients are determined more accu-156

rately when the number of labeled molecules are higher.157

Accordingly, the most difficult data to analyze are those158

where concentrations of molecules are so low that, on av-159

erage, only one molecule ventures, albeit rarely, into the160

effective region of the confocal volume where it can be161

appreciably excited. Put differently, for an equal length162

time trace, the posterior estimate over the diffusion coef-163

ficient is broader (i.e. less conclusive) for lower numbers164

of molecules inside the effective volume, Fig. 1b1, than it165

is for larger numbers of molecules, Fig. 1b2.166

Following a similar reasoning, the slower a molecule167

diffuses, the more photons are collected, leading to a168

sharper posterior estimate of the corresponding diffusion169

coefficient, Fig. 2a. Likewise, the longer the trace is,170

Fig. 2b, or the greater the molecular brightness is, Fig. 3,171

the sharper the diffusion coefficient estimate becomes.172
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FIG. 2. Testing the effects of diffusion coefficient and
trace length on diffusion coefficient estimates. (a) Pos-
terior probability distributions deduced from traces produced
from molecules with diffusion coefficients of 0.01, 0.1, 1, 10
and 100 µm2/s. For clarity, posteriors are normalized to max-
imum 1 and the horizontal axis is shown in logarithmic scale.
Shaded regions illustrate the 95% confidence intervals. (b)
Posterior probability distributions deduced from traces ac-
quired at 100 µs with total trace lengths of 5 × 102, 1 × 103,
5 × 103, 1 × 104, 5 × 104 and 1 × 105 time steps. For com-
parison, exact values and FCS estimates are also shown and,
for clarity, the vertical axis is shown in logarithmic scale. As
can be seen from (b), it is typical for FCS to require ≈1000×
more data than our method before estimating diffusion coef-
ficients within 2× of the correct value. (c) The entire trace
used to deduce diffusion coefficients in (a) and (b). Each seg-
ment marked by dashed-lines represents the portion used in
(b). The molecular brightness and background photon emis-
sion rates used to generate the time traces used are 5×104

and 103 photons/s.

We emphasize that our definition of molecular bright-173

ness is based on the the maximum number of detected174

photons emitted from a single fluorophore when located175

at the center of the confocal volume and we provide more176

details in the supplementary materials.177

In Fig. 3 we demonstrate the robustness of the diffusion178

coefficient estimates when varying the molecular bright-179

ness. While we keep the background photon emission180

rate fixed, we simulate gradually dimmer fluorophores181

FIG. 3. Testing the effects of molecular brightness on
diffusion coefficient estimates. (a) Intensity traces pro-
duced by the same molecular trajectories under a molecular
brightness of 105, 5 × 104 and 1 × 104 photons/s and back-
ground photon emission rate fixed at 103 photons/s. (b) Pos-
terior probability distributions and exact values of diffusion
coefficients obtained from the corresponding traces. Shaded
regions illustrate the 95% confidence intervals.

such as those encountered in an experiment under lower182

laser powers, until the molecular signature is virtually183

lost. As can be seen, such traces lead to broader posterior184

estimates over diffusion coefficients, as one would expect,185

since these traces are associated with greater uncertainty.186

Also, as such traces lead to a weaker (i.e. less constrain-187

ing) likelihood, the posterior resembles more closely the188

prior (not shown) and naturally starts to deviate from189

the exact value.190

B. Benchmarking on experimental data with elongated191

confocal volume shapes192

Here we apply our method on experimental traces cap-193

tured with an elongated confocal volume that we approx-194

imate by a cylinder. To do so, we apply our method195

on fluorescent beads (with average diameter of 45 nm)196

diffusing in water. We benchmark our estimated dif-197

fusion coefficients against the Stokes-Einstein prediction198
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FIG. 4. Diffusion coefficient estimates from experimental traces of free fluorescent beads using an elongated
confocal volume. (a) Experimental fluorescent intensity trace used in FCS. (b) Auto-correlation curve of the trace in (a) and
best theoretical fit. (c) Portion of the trace in (a) to be used as the input to FCS and our method. (d) Auto-correlation curve
of trace in (c). (e) Posterior probability distribution over diffusion coefficient estimated from the trace in (c). Stokes-Einstein
prediction are denoted by a green line. Traces shown in (a) and (c) are acquired in bins of 100 µs for a total period of 5 seconds
and 0.1 second respectively. The laser power used to generate the trace (a) is 100 µW (measured before the beam enters the
objective). The estimate of diffusion coefficient resulting by autocorrelation fitting in (a) matches with the Stokes-Einstein
prediction (i.e. 10.5 µm2/s); while in (d) is almost ten fold higher (∼100 µm2/s).

and results from FCS. In particular, Fig 4 illustrates our199

method’s performance in the analysis of traces too short200

to be meaningfully analyzed by FCS. Both the precise201

FCS formulation used here as well as additional results202

of our method on traces generated with free Cy3B dyes in203

glycerol/water mixtures with 70% glycerol can be found204

in the Supplementary materials.205

C. Benchmarking on experimental data with elliptical206

confocal volume shapes207

1. Fluorescent dyes208

Next, we apply our method on experimental time209

traces derived from single molecule fluorescence confocal210

microscopy. In our setup, we monitor Cy3 dyes which dif-211

fuse freely in a mixture of water and glycerol. We bench-212

mark our estimated diffusion coefficients against two val-213

ues: those predicted by the Stokes-Einstein formula40,214

which is parametrized by physical quantities such as tem-215

perature and viscosity; and those estimated by FCS. To216

analyze the data using FCS, each time we used the full217

(6 min) trace available. This is by contrast to our the218

estimates provided by our method which are obtained on219

traces ≈1000× shorter (100 ms).220

In benchmarking, we obtained and analyzed measure-221

ments with different: (i) numbers of Cy3 dyes inside the222

effective volume (tuned by varying Cy3 concentrations);223

(ii) diffusion coefficients (tuned by adjusting the viscos-224

ity of the solution); and (iii) molecular brightness (tuned225

by adjusting the laser power). For example, in Fig. 5b1-226

b4, we illustrate the effect of different dye concentrations227

where a trace with stronger signal, anticipated when con-228

centrations are higher, is expected to lead to better dif-229

fusion coefficient estimates (and thus sharper posteriors)230

on traces of equal length due to the higher number of231

labeled-molecules inside the confocal volume. Consis-232

tent with the synthetic data shown earlier, we obtain233

a broader posterior over diffusion coefficients when the234

number of dyes inside the effective volume is low and235

sharper posteriors for higher numbers of dyes.236

Just as before, the slower a molecule diffuses, the more237

time it spends in the vicinity of the confocal volume,238

so the more photons are collected, thereby leading to239

sharper posterior estimates for the diffusion coefficient;240

see Fig. 5a.241

A posterior’s sharpness depends strongly on the num-242

ber of molecules in a time trace, their respective lo-243

cations, and thus their photon emission rates. As the244

molecular population near the center of the confocal vol-245

ume may exhibit strong fluctuations, the width of the246

posterior may also fluctuate from trace to trace, espe-247

cially when the individual traces are short. Thus, the248

individual posteriors become sharper only on average as249

we move to higher numbers of molecules inside the effec-250

tive volume or molecular brightness.251
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FIG. 5. Estimating diffusion coefficients of free Cy3.
(a) Posterior probability distributions of diffusion coefficients
of free Cy3 in different concentrations of glycerol/water mix-
ture. The legend labels the posteriors according to FCS es-
timates of long time traces. For clarity, posteriors are nor-
malized to maximum 1 and the horizontal axis is shown in
logarithmic scale. Also, the 95% confidence intervals are
shown by highlighted regions. Posteriors are obtained from
the analyses of time traces acquired at 100 µs for total peri-
ods of 100 ms. Different diffusion coefficients are obtained by
varying the amount of glycerol from 99% to 50% in the glyc-
erol/water mixture. (b) Posterior probability distributions
over the diffusion coefficients of traces generated by differ-
ent laser powers (25 and 100 µW , respectively) with different
concentrations of Cy3 (100 pM and 1 nM, respectively) in a
glycerol/water mixture of 94% glycerol. For comparison, FCS
estimates shown by dashed lines are obtained by traces, each
of 6 min, i.e. ≈1000× longer than the segments used in our
method.

2. Labeled proteins252

To test our method beyond free beads and dyes, we253

used labeled proteins, namely freely diffusing strepta-254

vidin labeled by Cy3. Similar to the previous cases, we255

tested a range of concentrations, diffusion coefficients,256

and laser powers. Figure 6 summarizes characteristic re-257

sults and compares our analyses against the results of258

FCS applied on longer time traces. As can be seen, our259

method provides acceptable estimates of the diffusion co-260

efficient even with ≈1000× less datapoints than FCS.261

FIG. 6. Estimating diffusion coefficients of free strep-
tavidin. (a) Posterior probability distributions of diffusion
coefficients of free streptavidin labeled by Cy3 in different
concentrations of glycerol/water mixture. The legend labels
the posteriors according to FCS estimates of long time traces.
For clarity, posteriors are normalized to maximum 1 and the
horizontal axis is shown in logarithmic scale. Also, the 95%
confidence intervals are shown by highlighted regions. Poste-
riors are obtained from the analyses of time traces acquired
at 100 µs for total periods of 100 ms. Different diffusion
coefficients are obtained by varying the amount of glycerol
from 94% to 0% in the glycerol/water mixture. (b) Poste-
rior probability distributions over the diffusion coefficients of
traces generated by different laser powers (25 and 100 µW , re-
spectively) with different concentrations of Cy3 (100 pM and
1 nM, respectively) in a glycerol/water mixture of 94% glyc-
erol. For comparison, FCS estimates shown by dashed lines
are obtained by traces, each of 6 min, i.e. ≈1000× longer than
the segments used in our method.

D. Additional results262

For all cases described so far, we estimated more than263

just diffusion coefficients. For example, we also estimate264

the population of molecules contributing photons to the265

traces, their instantaneous photon emission rates and lo-266

cations relative to the center of the confocal volume, as267

well as the background photon emission rate. A more268

detailed report of our estimates, with discussions of full269

joint posterior distributions, can be found in the Sup-270

plementary materials.271

In addition to cases involving a single diffusion coeffi-272
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FIG. 7. Estimating multiple diffusion coefficients in
experimental Cy3 traces. (a1)–(a2) Experimental traces
of free Cy3 in glycerol/water mixtures with 94% and 75%
glycerol, respectively. (a3) Trace resulting by mixing the
traces in (a1) and (a2). (b1)–(b2) Posterior probability dis-
tributions resulting from the analysis of the traces in (a1)
and (a2). (b3) Posterior probability distribution resulting
from the analysis of the trace in (a3). For comparison, FCS
estimates shown by dashed lines are produced from five dif-
ferent traces, each of 6 min, i.e. ≈100× longer than the seg-
ments shown and analyzed in out method. FCS estimates are
highlighted by dashed lines. Posteriors are obtained from the
analyses of time traces acquired at 100 µs for a total period
of 1 s.

cient that we have considered thus far, our method can be273

generalized to treat multiple diffusion coefficients as well.274

To show this, we artificially mixed (summed) and ana-275

lyzed experimental traces where dyes diffuse in different276

amounts of glycerol and so they exhibit different diffusion277

coefficients. On account of the additivity of photon emis-278

sions and detections, artificial mixing of traces allows us279

to obtain realistic traces of different diffusive species that280

can be analyzed as if they were diffusing simultaneously281

within the same confocal volume and separately as well.282

In Fig. 7, we compare the analysis of intensities created283

by mixing traces containing slow and fast diffusing Cy3284

(94% and 75% glycerol/water, respectively). As can be285

seen, our estimates obtained under simultaneous diffu-286

sion compare favorably to the estimates under separate287

diffusion, indicating that our method can also identify288

robustly multiple diffusion coefficients at once.289

DISCUSSION290

Single molecule fluorescence confocal microscopy has291

the potential to reveal dynamical information at292

timescales that may be as short as a hundred millisec-293

onds. Here, we have exploited Bayesian non-parametrics294

to overcome the limitations of specifically fluorescent cor-295

relative methods in utilizing short, ≈100 ms, and noisy296

time traces to deduce molecular properties such as diffu-297

sion coefficients. Exploiting novel analysis, to obtain re-298

liable results from such short traces or excessively noisy299

traces as those obtained under low laser power, is key300

to minimizing photo-damage inherent to all methods re-301

lying on illumination and especially critical to gaining302

insight on rapid or light-sensitive processes24,26. The303

analysis of similarly short traces may also be required304

when monitoring non-equilibrium processes that can be305

resolved only within hundreds of milliseconds. Further-306

more, novel analysis with increased sensitivity may re-307

serve longer traces to tease out subtle dynamical features308

(such as deducing multiple diffusion coefficients at once).309

The deep implication of our method is that it places310

single molecule fluorescence confocal microscopy at a311

competitive advantage over wide-field techniques used312

in single particle tracking. Indeed, wide-field techniques313

provide high, super-resolved, spatial accuracy15, but with314

diminished temporal resolution, since molecule localiza-315

tion requires the collection of sufficient photons obtained316

only after long frame exposures15. Such a requirement317

is especially problematic for photo-sensitive or rapidly318

diffusing biomolecules15.319

By contrast to wide-field microscopy, single molecule320

fluorescence confocal microscopy yields minimal spatial321

resolution. However, as our analysis shows, although322

spatial resolution may be diminished, reduced photo-323

damage and exceptionally high temporal resolution can324

be achieved instead.325

Since their inception, over half a century ago, correl-326

ative methods, such as FCS, have demanded very long327

traces in order to extract dynamical features from single328

molecule fluorescence confocal microscopy data2,11,41–44.329

In this study, we have developed a principled framework330

capable of taking advantage of all spatio-temporal infor-331

mation nested within time traces of photon counts and,332

together with novel Mathematics, we have reformulated333

the analysis of single molecule fluorescence confocal mi-334

croscopy data.335

Existing methods, even those that apply Bayesian336

techniques such as FCS-Bayes18–22, still utilize auto-337

correlation functions. Therefore, they demand equally338

long time traces as FCS and implicitly assume that the339

physical system under study is at a stationary or equilib-340

rium phase throughout the entire trace. By contrast, our341

method only requires short traces and therefore it avoids342

stationarity or equilibrium requirements on timescales343

longer than those of the data analyzed. In addition, our344

method also: (i) provide interpretable estimation of er-345

rors (i.e. posterior variance) determined exclusively from346
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the information content of the trace supplied (i.e. length347

and noise) as opposed to ad hoc metric fitting (i.e. chi348

square); (ii) track instantaneous molecule photon emis-349

sions and locations; and (iii) estimate the molecular350

brightness and background photon emission rates which,351

if left undetermined, can bias the other estimates.352

Since our method is formulated exclusively in the time-353

domain, it offers a versatile framework for further modi-354

fications. For example, it is possible to adapt the present355

formulation to incorporate scanning-FCS9,10,45 which in-356

volves moving the confocal volume or incorporate de-357

manding illumination profiles, such as those arising in358

two photon excitation43,46, TIRF microscopy42 or even359

Airy patterns47 with or without aberrations48 by chang-360

ing the specified point spread function (see Methods sec-361

tion). Additionally, it is possible to extend our frame-362

work to treat multiple diffusion coefficients (see Supple-363

mentary materials), confining forces or photon emis-364

sion kinetics as would be relevant for FCS-FRET49,50
365

and FLIM51,52 applications. Also, our method could be366

extended to handle more complex photophysics23,53–55,367

and, since we explicitly track individual molecules over368

time, extensions appropriate for fast bimolecular reaction369

kinetics are also conceivable.370

METHODS371

Here we describe the formulation and mathematical372

foundation of our model. Our overarching goal is to373

start from an experimental time series of photon counts,374

w = (w1, w2, ..., wK) where wk denotes the photon in-375

tensity assessed at time tk (which includes both back-376

ground photons as well as photons derived from the la-377

beled molecules of interest), and derive estimates of ki-378

netic quantities such as molecular locations with respect379

to the center of the confocal volume as well as diffusion380

coefficients.381

To derive estimates for the desired quantities, we382

need to compute intermediate quantities which include:383

(i) molecular brightness; (ii) background photon emission384

rate; and, most importantly, (iii) the unknown popula-385

tion of moving molecules and their relative location with386

respect to the center of the confocal volume. Below we387

explain each one of these in detail. Computational de-388

tails and a working implementation of the entire method389

are available in the Supplementary materials.390

E. Model description391

The starting point of our analysis is the raw data,392

namely the photon counts. As our current focus is on393

deducing dynamical information on timescales exceeding394

≈ 1 µs, we ignore triplet state and photon anti-bunching395

effects which occur on vastly different timescales16,56,57.396

At the timescale of interest, individual photon detec-397

tions happen stochastically and independently from each398

other. Accordingly, the total number of photon counts399

wk between successive assessments follows Poisson15,27
400

(shot noise) statistics401

wk ∼ Poisson

(
(tk − tk−1)

(
µback +

∑
n

µn
k

))
(1)402

where µback is a background photon emission rate and403 ∑
n µ

n
k gathers the photon emission rates µn

k from in-404

dividual fluorescent molecules that we index with n =405

1, 2, . . . . The the total number of molecules involved in406

the summation above is to be determined. This is the407

key reason we invoke Bayesian non-parametrics in the408

model inference section (see below). Since we only col-409

lect a small fraction of the total photons emitted by the410

fluorescent molecules, in our framework µn
k coincides with411

the emission rate of detected photons, as opposed to the412

true photon emission rate which might be larger.413

Each rate µn
k depends on the position (xnk , y

n
k , z

n
k ) of414

the corresponding molecule relative to the center of the415

confocal volume as well as other features such as laser416

intensity, laser wavelength, quantum yield and camera417

pinhole size58. Similar to other studies41,59,60, we com-418

bine all these effects into a characteristic point spread419

function (PSF) that combines excitation and emission420

PSFs421

µn
k = µmolPSF(xnk , y

n
k , z

n
k ). (2)422

The parameter µmol represents the molecular brightness423

and as we discuss in the supplementary materials it424

is related to the maximum photon emission rate of a sin-425

gle molecule that is located at the center of the confocal426

volume. Specific choices of PSF models, such as Gaussian427

or Gaussian-Lorentzian, are also detailed in the Supple-428

mentary materials.429

Finally, we associate individual molecular locations430

across time by adopting a motion model. Here we as-431

sume that molecules are purely diffusive and arrive at432

xnk ∼ Normal
(
xnk−1, 2(tk − tk−1)D

)
ynk ∼ Normal

(
ynk−1, 2(tk − tk−1)D

)
znk ∼ Normal

(
znk−1, 2(tk − tk−1)D

) (3)433

where D denotes the diffusion coefficient, which we as-434

sume is the same for all molecules. As we explain in the435

Supplementary materials, these probabilities result436

directly from the diffusion equation. Additionally, in the437

Supplementary materials, we illustrate how this mo-438

tion model can be generalized to capture more than one439

diffusion coefficients.440

A graphical summary of the entire formulation is441

shown on Fig. 8.442

F. Model inference443

The quantities which we want to estimate, for example444

the diffusion coefficient D, molecular locations through445
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FIG. 8. Graphical representation of the formulation used in the analysis of fluorescence time traces. A population
of model molecules, labeled by n = 1, 2, . . . , evolves over the course of the experiment which is marked by k = 1, 2, . . . ,K. Here,
xnk ,ynk ,znk denote the location in Cartesian space of molecule n at time tk; µmol denotes the brightness of an individual molecule;
and µback denotes the background photon emission rate. During the experiment, only a single observation wk, combining photon
emissions between tk−1 and tk from every molecule and background is recorded at every time step. The diffusion coefficient
D determines the evolution of the molecular locations which, in turn, influence the photon emission rates and ultimately the
recorded photon intensity wk. Auxiliary variables bn, or “loads”, and corresponding prior weights qn, are introduced in order
to estimate the unknown population size. The dashed arrows apply for the 3D-Gaussian and 2D-Gaussian-Lorentzian PSFs;
while in the case of the 2D-Gaussian-Cylindrical there is no dependency of the measurements wk on the znk coordinates of the
molecules (see the Supplementary materials for the definitions of these PSFs).

time (xnk , y
n
k , z

n
k ), molecular brightness µmol and back-446

ground photon emission rate µback or the molecular pop-447

ulation are introduced as model variables in the preceding448

formulation. To estimate values for these variables, we449

follow the Bayesian paradigm15,28,38,60.450

Variables such as D, µmol and µback are parameters of451

the model and, as such, require priors. Choices for these452

priors are straightforward and, for interpretational and453

computational convenience, we adopt the distributions454

described in the Supplementary materials.455

Additionally, we must place priors on the initial molec-456

ular locations, (xn1 , y
n
1 , z

n
1 ), i.e. the locations of the457

molecules at the onset of the measurement period. Spec-458

ifying a prior on initial molecular locations also entails459

specifying a prior on the molecular population.460

In particular, to allow the dimensionality or, alterna-461

tively, the complexity of our model to fluctuate based on462

the number of molecules that contribute to the fluores-463

cent trace, we abandon traditional Bayesian parametric464

priors and turn to the non-parametric formulation de-465

scribed below.466

Before we proceed any further, we recast equation (2)467

as468

µn
k = bnµmolPSF(xnk , y

n
k , z

n
k ). (4)469

The newly introduced variables bn, one for each model470

molecule, may take only values 1 or 0. In particular, the471

possibility that bn = 0, coinciding with the case where472

molecules do not contribute to the observation, allows473

us to introduce an arbitrarily large number of molecules,474

technically an infinite number. With the introduction475

of bn, we can estimate the number of molecules that476

contribute photons (termed “active” to distinguish them477

from those that do not contribute termed “inactive”) si-478

multaneously with the rest of the parameters simply by479

treating each bn as a separate parameter and estimat-480

ing its value (of 1 for active molecules and 0 for inactive481

ones).482

To estimate bn, we place a prior bn ∼ Bernoulli(qn)483

and subsequently a hyperprior on qn in order to learn484

precisely how many model molecules are active. For the485

latter, we choose qn ∼ Beta(Aq, Bq) with hyperparame-486

ters Aq and Bq. Both steps can be combined by invoking487

the newly developed Beta-Bernoulli process36,61 which is488

described in more detail in the Supplementary mate-489

rials.490

Once the choices for the priors above are491

made, we form a joint posterior probability492

p(D,µmol, µback, {xnk , ynk , znk , bn, qn}nk |w) encompass-493

ing all unknown variables which we may wish to494

determine.495

The nonlinearities in the PSF, with respect to variables496

{xnk , ynk , znk }nk , and the non-parametric prior on {bn, qn}n497

exclude analytic forms for our posterior. For this reason,498

we develop a computational scheme exploiting Markov499

chain Monte Carlo38,62 that can be used to generate500

pseudo-random samples from this posterior.501

The main bottleneck of a naive implementation of our502
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method, as compared to correlative methods, is its higher503

computational cost. As we explain in the Supplemen-504

tary materials, to have computations run on an aver-505

age desktop computer, we adopt mathematical approxi-506

mations (e.g. photon binning, Anscombe transform63 and507

filter updates64,65) that are tested on the synthetic data508

presented.509

A working implementation (source code and GUI) is510

given in the Supporting Materials.511

G. Data acquisition512

1. Synthetic data513

We obtain the synthetic data presented in the Re-514

sults section by standard pseudo-random computer simu-515

lations66–68 that mimic the common single molecule fluo-516

rescence confocal setup. We provide details and complete517

parameter choices in the Supplementary materials.518

2. Experimental data519

For the experimental data acquired with elongated520

confocal volumes, a stock solution of Cy3B (mono-521

reactive NHS ester, GE Healthcare) was prepared by522

dissolving a small amount of solid in 1 mL of doubly-523

distilled water, and its concentration was determined524

from the absorbance of the solution using the extinction525

coefficient provided by the vendors. A 10 nM solution526

was then prepared by appropriate dilution of the stock527

and measured on a silicone perfusion chamber mounted528

on a glass coverslip. Fluorescent beads were purchased529

from ThermoFisher (Catalog number: F8792. Lot num-530

ber: 1604237). The average diameter was 0.046 µm as531

indicated in the certificate of analysis provided by the532

vendors. Suspensions for FCS measurements were pre-533

pared by adding 3 µL of stock solution (9.4 x 1014 par-534

ticles/mL) to 1 mL of water and sonicating the mixture535

for 20 minutes. Measurements were carried out using a536

home-built instrument. A 532 nm continuous-wave laser537

(Compass 215M-10, Coherent, Santa Clara, CA) was at-538

tenuated to 100 µW and focused onto an PlanApo 100x,539

1.4 NA, oil-immersion, objective (Olympus, Center Val-540

ley, PA). Emitted fluorescence was collected using the541

same objective and then passed through a 50 µm pinhole542

to reject the out-of-focus light. The signal was detected543

using a silicon avalanche photodiode (SPCM-AQR-14;544

Perkin-Elmer, Fremont, CA). A band-pass filter (Omega545

3RD560-620) in front of the detector was employed to546

further reduce the background signal and an ALV corre-547

lator card (ALV 5000/EPP, ALV-GmbH, Langen, Ger-548

many) was used to correlate the detected fluorescence549

signal. Data for our analysis were acquired with 100 µs550

resolution using a PCI-6602 acquisition card (National551

Instruments, Austin, TX).552

For the experimental data acquired with elliptical con-553

focal volumes, Cy3 dye and Cy3-labeled streptavidin so-554

lutions were prepared by suspending Cy3 or streptavidin555

in glycerol/buffer (pH 7.5, 10 mM Tris-HCl,100 mM NaCl556

and 10 mM KCl, 2.5 mM CaCl2) at different v/v, to a fi-557

nal concentration of either 100 pM or 1 nM. The solutions558

were added onto a glass-bottomed fluid-cell, mounted on559

a custom designed single molecule fluorescence confocal560

microscope69,70 and a 532 nm laser beam was focused561

to a diffraction-limited spot on the glass coverslip of the562

fluid-cell using a 60x, 1.42 NA, oil-immersion objective563

(Olympus). the laser power was measured before the ob-564

jective and the beam is reflected by a dichroic and focused565

by the objective on to the sample. The dichroic reflected566

95% of the intensity on to the objective. Emitted fluo-567

rescence was collected by the same objective and focused568

onto the detection face of a Single Photon Avalanche569

Diode (SPAD, Micro Photon Devices) that has a max-570

imum count rate of 11.8 Mc/s. A bandpass filter was571

placed in front of the detector to transmit only the flu-572

orescence from Cy3 and to block the back-scattered ex-573

citation light. TTL pulses, triggered by the arrival of574

individual photons on the SPAD, were timestamped and575

recorded at 80 MHz by a field programmable gated array576

(FPGA, NI Instruments) using custom LabVIEW soft-577

ware and initially binned at 100 µs70.578
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32I. Sgouralis and S. Pressé, “Icon: an adaptation of infinite hmms684

for time traces with drift,” Biophysical journal 112, 2117–2126685

(2017).686

33I. Sgouralis, M. Whitmore, L. Lapidus, M. J. Comstock, and687
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Here we provide supplementary materials and technical details that complement the main text.16

These include: (i) Additional analysis results that demonstrate the estimation of molecular bright-17

ness and background photon emission rates, joint posterior probability distributions, molecule loca-18

tions, and additional results for multiple diffusive species. These results are repeated for simulated19

and experimental data. (ii) Additional details of the methods used including descriptions of the mo-20

tion model, the Stokes-Einstein model, point spread functions (PSFs), and time trace preparation.21

(iii) A complete description of the inference framework developed that includes choices for the prior22

probability distributions and a computational implementation. (iv) A description of the modifica-23

tions necessary for the model with multiple diffusive species. (v) Summary of notation and other24

conventions used throughout this study as well as detailed parameter choices for the simulations25

and analyses.26
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FIG. S1. Estimated joint posterior probability distribution. (a) Synthetic fluorescent intensity trace used in Fig. 1a1
with a length of 1000 data points and time step 100 µs. The true values of the diffusion coefficient, molecular brightness
and background emission rates are, 10 µm2/s, 5 × 104 photons/s and 103 photons/s (shown by green dashed lines). (b1)
The posterior of the diffusion coefficient. (b2) The joint probability distribution of the diffusion coefficient and molecular
brightness. (b3) The posterior probability distribution of the molecular brightness. (b4) The joint probability distribution
of the diffusion coefficient and molecular brightness. (b5) The joint probability distribution of the molecular brightness and
background photon emission rates. (b6) The posterior probability distribution of the background photon emission rate. The
95% confidence intervals are shown with pink highlighted regions.
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FIG. S2. Estimated joint posterior probability distribution. (a) Synthetic fluorescent intensity trace used in Fig. 1a2
with a length of 1000 data points and time step 100 µs. The true values of the diffusion coefficient, molecular brightness and
background emission rates are, 10 µm2/s, 5 × 104 photons/s and 103 photons/s (shown by green dashed lines). (b1) The
posterior of the diffusion coefficient. (b2) The joint probability distribution of diffusion coefficient and molecular brightness.
(b3) The posterior probability distribution of the molecular brightness. (b4) The joint probability distribution of the diffusion
coefficient and molecular brightness. (b5) The joint probability distribution of the molecular brightness and background photon
emission rates. (b6) The posterior probability distribution of the background photon emission rate. The 95% confidence
intervals of the posterior over the number of molecules is highlighted in cyan.
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FIG. S3. Estimated number of molecules/concentrations. (a) Synthetic fluorescent intensity trace produced with a
molecular brightness of 5 × 104 photons/s and a background photon emission rate of 103 photons/s, diffusion coefficient of
10 µm2/s and 50 molecules. (b1)–(b4) Number of molecules estimated from the trace in (a) corresponding to normalized
distances from the confocal center of ` = 0.5, 1, 1.5, 2. The exact number of molecules is shown by the green lines, the median
of the posterior over the number of the molecules is shown by the blue lines, and the 95% confidence intervals of the posteriors
over the number of the molecules are highlighted in pink. For details of the definition of number of molecules N `

k and the
normalized distance `, see Eq. (S23), below.
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FIG. S4. Comparison of estimated photon emission rates and concentration with FCS and PCH. (a) Targeted
synthetic fluorescent intensity trace. The time step is 10 µs and the total duration of the trace is 100 s. (b) PCH curve and the
theoretical fit. (c) FCS curve and best theoretical fit. (d) The portion of the trace analyzed by our method rebinned at 100 µs.
(e) The number of molecules in the effective volume with ` =1, arising from the trace in (d). Exact value of the number of
molecules is shown by the green line and the PCH and FCS estimates are shown by the dashed and solid pink lines. (g) On
the posterior probability distribution of the molecular brightness we superpose the PCH estimate of the molecular brightness
(pink dashed line) and the true value (green dashed line). (h) On the posterior probability distribution of the background
photon emission rate we superpose the PCH estimate of the background photon emission rate (pink dashed line) and the true
value (green dashed line). (f) The posterior probability distribution of the diffusion coefficient obtained by analyzing the trace
in (d). The FCS estimate of the diffusion coefficient obtained by analyzing the total trace, shown in (a), illustrated by a pink
dashed line with the exact value (green dashed line). The targeted synthetic trace is generated by freely diffusive molecules
with diffusion coefficient, molecular brightness and background photon emission rates of of 10 µm2/s, 5 × 104 photons/s and
103 photons/s, respectively.
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FIG. S5. Comparison of the posterior on the diffusion coefficient obtained from synthetic fluorescent intensity
traces under different PSF models. (a1) Synthetic fluorescent intensity trace produced with a 3DG PSF, Eq. (S16). (a2)
Synthetic fluorescent intensity trace produced with a 2DGL PSF, Eq. (S18). (a3) Synthetic fluorescent intensity trace produced
with a 2DGC PSF, Eq. (S17). (b1) Posterior of the diffusion coefficient using a 3DG PSF model on the trace in (a1). (b2)
Posterior of the diffusion coefficient using a 2DGL PSF model on the trace in (a2). (b3) Posterior of the diffusion coefficient
using a 2DGC PSF model on the trace in (a3). To facilitate the comparison both traces analyzed are generated using the same
underlying molecule trajectories with molecular brightness and background photon emission rates of 5 × 104 photons/s and
103 photons/s, diffusion coefficient of 1 µm2/s (shown by green dashed lines).
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S1.2. Analysis of additional experimental data60
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FIG. S6. Estimated joint posterior probability distribution. (a) Experimental fluorescent intensity trace used in
Fig. 5b3 with a length of 1000 data points and time step 100 µs. (b1) The posterior of the diffusion coefficient. The FCS
estimate is shown by a magenta dashed line.(b2) The joint probability distribution of the diffusion coefficient and the molecular
brightness. (b3) The posterior probability distribution of the molecular brightness. (b4) The joint probability distribution
of the diffusion coefficient and molecular brightness. (b5) The joint probability distribution of the molecular brightness and
background photon emission rates. (b5) The posterior probability distribution of the background photon emission rate and the
95% confidence intervals of the posteriors are highlighted in cyan. The experimental fluorescent intensity trace was produced
with a concentration of 100 pM of Cy3 in a 94% glycerol/water mixture.
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FIG. S7. Estimated joint posterior probability distribution. (a) Experimental fluorescent intensity trace used in Fig. 5b4
with a length of 1000 data points and time step 100 µs. (b1) The posterior of the diffusion coefficient. The FCS estimate
is shown by a magenta dashed line. (b2) The joint probability distribution of the diffusion coefficient and the molecular
brightness. (b3) The posterior probability distribution of the molecular brightness. (b4) The joint probability distribution of
the diffusion coefficient and the molecular brightness. (b5) The joint probability distribution of the molecular brightness and
background photon emission rates. (b5) The posterior probability distribution of the background photon emission rate and
the 95% confidence intervals of the posteriors are highlighted in cyan. The experimental fluorescent intensity trace produced is
with a concentration of 1 nM of Cy3 in a 94% glycerol/water mixture.
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FIG. S8. Estimated number of molecules/concentrations. (a) Experimental fluorescent intensity trace produced with
a concentration of 1 nM of Cy3 in a 94% glycerol/water mixture. (b1)–(b4) Number of molecules estimated from the trace
in (a) with ` = 0.5, 1, 1.5, 2, respectively. The FCS estimate of the average number of molecules in the effective volume (∼1.68
molecules) by analyzing a 3 minutes long time trace, is shown by the magenta dashed lines and the median of the posterior
over the number of the molecules is shown by a blue line. The 95% confidence interval of the posterior over the number of the
molecules is highlighted in pink. For details of the definition of number of the molecules N `

k and the normalized distance `, see
Eq. (S23), below.
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FIG. S9. Comparison of estimated photon emission rates and concentration with FCS and PCH. (a) Targeted
experimental fluorescent intensity trace. The time step is 10 µs with a total time of 5 min. (b) PCH curve and the theoretical
fit. (c) FCS curve and the best theoretical fit. (d) The portion of the trace analyzed by our method rebinned at 100 µs. (e)
The concentration of Cy3 in the effective volume with ` =1, arising from the trace in (d). The experimental concentration
is shown by the green line and the PCH estimated is shown by the pink line. (g) The posterior probability distribution of
the molecular brightness with the PCH estimated of the molecular brightness shown by a solid green line. (h) The posterior
probability distribution of the background photon emission rate with the PCH estimate of the background photon emission
rate shown by a solid green line. (f) The posterior probability distribution of the diffusion coefficient obtained by analyzing the
trace in (d). The FCS estimate of the diffusion coefficient obtained by analyzing the total time trace, shown in (a), is denoted
by a pink solid line. The targeted experimental trace is generated by free diffusive Cy3 in a mixture of water and glycerol with
75% glycerol, a laser power of 100 µW and a concentration of Cy3 at 1 nM, excitation wavelength, NA and refractive index
used are 532 nm, 1.42 and 1.4, respectively.
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FIG. S10. Testing diffusion coefficient estimates in experimental traces of free Cy3B dyes using an elongated
confocal volume. (a) Experimental fluorescent intensity trace used in FCS. The time trace is generated by 2.5 nM Cy3B
dyes in glycerol/water mixture with 70% glycerol and laser power of 100 µW . (b) Auto-correlation curve of the trace in (a) and
best theoretical fit. (c) Portion of the trace in (a) to be used as the input to FCS and our method. (d) Auto-correlation curve
of trace in (c). (e) Posterior probability distribution over diffusion coefficient estimated from the trace in (c). Traces shown
in (a) and (c) are acquired at 100 µs for a total of 10 second and 0.1 second respectively. The laser power use to generate the
signal (a) is 100 µW measured before the beam enters the objective. The estimation of the diffusion coefficient as the results
of autocorrelation fitting in (a) matched with Stokes-Einstein prediction, equal to 18.79 µm2/s and in (d) is 145.75 µm2/s.
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S1.3. Analysis of additional data for multiple diffusive species61
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FIG. S11. Estimated joint posterior probability distribution of multiple diffusive species. (a) A mixed fluores-
cent intensity trace was obtained by combining the traces from two different synthetic signals with molecular brightness and
background emission rates of 5× 104 and 103 photons/s, respectively, and diffusion coefficients of 1 and 10 µm2/s. (b1) The
posterior probability distribution of the diffusion coefficient of diffusive species 1. (b2) The joint probability distribution of the
diffusion coefficient for diffusive species 1 and diffusive species 2. (b3) The posterior probability distribution of the diffusion
coefficient of diffusive species 2. (b4) The joint probability distribution of diffusion coefficient of diffusive species 1 along
with the molecular brightness. (b5) The joint probability distribution of diffusion coefficient of diffusive species 2 along with
the molecular brightness. (b6) The posterior probability distribution of the molecular brightness. (b7) The joint probability
distribution of diffusion coefficient for diffusive species 1 along with the background photon emission rate. (b8) The joint prob-
ability distribution of the diffusion coefficient of diffusive species 2 and the background photon emission rate. (b9) The joint
probability distribution of the molecular brightness and background photon emission rate. (b10) The posterior probability
distribution of the background photon emission rate. The trace is binned at 100 µs with a total trace duration of 1 s. The exact
values of the parameters are shown by green dashed lines and the 95% confidence intervals of the posteriors are highlighted in
cyan.
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FIG. S12. Estimated joint posterior probability distribution of multiple diffusive species. (a) Experimental fluores-
cent intensity trace used in Fig. 7 a3 with length 104 data points and step 100µs. (b1) The posterior probability distribution of
the diffusion coefficient of diffusive species 1. (b2) The joint probability distribution of diffusion coefficient of diffusive species
1 and diffusive species 2. (b3) The posterior probability distribution of the diffusion coefficient of diffusive species 2. (b4) The
joint probability distribution of diffusion coefficient of diffusive species 1 along with the molecular brightness. (b5) The joint
probability distribution of diffusion coefficient of diffusive species 2 along with the molecule photon emission rate. (b6) The
posterior probability distribution of the molecular brightness. (b7) The joint probability distribution of diffusion coefficient
of diffusive species 1 and background photon emission rate. (b8) The joint probability distribution of diffusion coefficient of
diffusive species 2 and background photon emission rate. (b9) The joint probability distribution of the molecular brightness
and background photon emission rate. (b10) The posterior probability distribution of the background photon emission rate.
The trace is generated by mixing two experimental traces of concentration 1 nM of freely diffusive Cy3 in a water/glycerol
mixtures with 94% and 75% glycerol each. The laser power, wavelength, NA and refractive index are 100 µW, 532 nm, 1.42 and
1.4, respectively. The FCS estimates are shown by a magenta dashed lines and the 95% confidence intervals of the posteriors
are highlighted in cyan.
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S2. Summary of point estimates62

TABLE S1. Here we list characteristic values (point estimates) summarizing the posterior probability distributions of this
study. Mean and std refer to posterior mean value and standard deviation (i.e. square root of variance). Values are listed
according to figures.

D µmol µback
mean std mean std mean std
µm2/s µm2/s photons/s photons/s photons/s photons/s

Fig. 1(b1) 25.07 20.61 5.06 ×104 1.35×104 1.52 ×103 0.40 ×103

Fig. 1(b2) 9.21 2.82 5.96 ×104 1.49×104 2.32 ×103 0.79 ×103

Fig. 2(a) 1.07 ×10−2 0.48 ×10−2 4.69 ×104 1.31 ×104 1.11 ×103 0.79 ×103

1.23 ×10−1 0.64×10−1 4.11 ×104 2.01 ×104 1.46 ×103 1.13 ×103

1.41 0.67 6.53 ×104 1.50 ×104 3.85 ×103 0.96 ×103

9.27 2.82 5.96 ×104 1.35 ×104 5.63 ×103 1.48 ×103

180.45 173.25 6.11 ×104 5.18 ×104 3.87×103 0.31 ×103

Fig. 2(b) 8.75 7.04 3.64 ×104 8.14 ×103 4.64 ×103 2.17 ×103

10.22 2.98 3.55 ×104 5.54 ×104 4.16 ×103 1.13 ×103

9.73 1.97 5.64 ×104 8.36 ×103 6.12 ×103 0.56 ×103

10.53 1.18 5.08 ×104 4.53 ×103 4.87 ×103 0.37 ×103

10.05 0.42 4.89 ×104 2.13 ×103 1.35 ×103 0.23×103

Fig. 3(a1) 10.65 1.68 9.85 ×104 1.36 ×104 2.17 ×103 0.91 ×103

Fig. 3(a2) 10.04 2.38 5.48 ×104 6.47×103 2.09 ×103 0.53 ×103

Fig. 3(a3) 11.29 4.14 1.02 ×104 6.97 ×103 2.66×103 0.19 ×103

Fig. 4(c) 10.17 3.09 1.46 ×104 1.42 ×103 2.87 ×103 0.43 ×103

Fig. 5(a) 0.55 0.16 2.18 ×104 1.44 ×104 1.79 ×103 2.21 ×103

2.28 1.03 3.51 ×104 9.21×103 3.55 ×103 1.85×103

12.80 4.51 1.30 ×105 5.17 ×104 1.00×104 1.96×103

27.96 10.30 9.15 ×104 2.37 ×104 7.01×103 0.46×103

Fig. 5(b1) 7.50 6.82 2.20 ×104 9.55 ×103 1.06×103 0.22 ×103

Fig. 5(b2) 3.68 2.73 4.32 ×104 2.13 ×104 2.59 ×103 0.52 ×103

Fig. 5(b3) 2.70 2.68 2.31 ×104 5.47×103 2.94×103 2.14×103

Fig. 5(b4) 2.28 1.03 3.51 ×104 9.21×103 3.55 ×103 1.85×103

Fig. 6(a) 0.36 0.22 7.19 ×103 2.31 ×103 1.42 ×103 1.98 ×103

4.48 1.35 2.75 ×104 3.03×103 0.98 ×103 0.94×103

10.66 4.06 6.61 ×104 1.33 ×104 2.33×103 1.51×103

102.26 27.74 2.36 ×105 5.70 ×104 9.33×103 0.77×103

Fig. 6(b1) 10.86 4.91 3.42 ×104 2.35 ×104 2.59×103 0.59 ×103

Fig. 6(b2) 10.54 4.22 5.03 ×104 2.03 ×104 3.78 ×103 0.62 ×103

Fig. 6(b3) 11.76 6.42 3.12 ×104 6.09×103 8.41×103 1.21×103

Fig. 6(b4) 10.66 4.06 6.61 ×104 1.33 ×104 2.33×103 1.51×103

Fig. 7(a1) 1.98 0.90 2.09 ×105 2.10 ×104 1.06×104 1.64 ×103

Fig. 7(a2) 12.65 3.22 4.22 ×104 1.54 ×104 2.57 ×103 0.49 ×103

Fig. 7(a3) - - 6.79 ×104 4.58 ×103 1.46 ×104 0.71 ×103

Fig. S4 9.44 3.97 4.62 ×104 1.59 ×104 0.98 ×103 0.25 ×103

Fig. S5(a1) 10.16 2.81 2.71 ×104 3.63 ×103 2.26 ×103 0.62 ×103

Fig. S5(a2) 11.71 4.04 4.89 ×104 1.06 ×104 6.78 ×103 1.79 ×103

Fig. S5(a3) 12.93 2.95 6.05 ×104 1.31 ×104 3.34 ×103 0.98 ×103

Fig. S9 15.73 10.43 1.29 ×105 5.17 ×104 7.21×103 1.15 ×103

Fig. S10 18.72 7.18 2.63 ×104 5.93 ×103 7.26×103 6.46 ×103

Fig. S11 - - 4.14 ×104 3.38 ×103 1.55 ×103 0.13 ×103
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S3. Detailed methods description63

S3.1. Representation of molecular diffusive motion64

Consider a particle moving in 1D diffusion. The probability distribution p(x, t) of the particle’s location obeys65

Fick’s second law [1–3] and is given by the diffusion equation66

∂p

∂t
= D

∂2p

∂x2
(S1)67

where D is the particle’s diffusion coefficient. Assuming the particle is located at xk−1 at a time tk−1, i.e. assuming68

the initial condition p(x, tk−1) = δ(x− xk−1), and a free space boundary, i.e. limx→±∞ p(x, t) = 0, we can solve this69

equation to obtain p(x, t) for any later time t. The solution is70

p(x, t) =
exp

(
− (x−xk−1)

2

4(t−tk−1)D

)
√

4π(t− tk−1)D
(S2)71

which equals to the probability density of a normal random variable with mean xk−1 and variance 2(t− tk−1)D, see72

Table S5. At time t = tk, we therefore have73

xk|xk−1 ∼ Normal (xk−1, 2(tk − tk−1)D) . (S3)74

Similarly, solving the diffusion equation for particles following isotropic 3D diffusion in free space, we have75

xk|xk−1 ∼ Normal (xk−1, 2(tk − tk−1)D)

yk|yk−1 ∼ Normal (yk−1, 2(tk − tk−1)D)

zk|zk−1 ∼ Normal (zk−1, 2(tk − tk−1)D)

(S4)76

which constitute the molecular motion model used throughout this study.77

S3.2. Description of Stokes-Einstein model78

For the experimental data, we benchmark our estimates of the diffusion coefficient against the Stokes-Einstein
prediction [2, 3]. Namely, for a spherical particle in a quiescent fluid at uniform temperature

D =
kT

6πrη
(S5)

where, D is the diffusion coefficient, k is Boltzmann’s constant, T is the solution’s absolute temperature, r is the79

hydrodynamic radius of the particle [4] and η is the solution’s dynamic viscosity [5].80

S3.3. FCS formulation81

The formulation we used in this study to autocorrelate the synthetic and experimental time traces is82

Gex(τ) =
〈δI(t+ τ)δI(t)〉
〈δI(t)〉2

=
〈I(t+ τ)I(t)〉
〈I(t)〉2

− 1 (S6)83

where the I(t) is the number of detected photons at time t. The computational implementation uses the Wiener-84

Khinchin Theorem [6].85

Also, the theoretical function [7–10] used to fit the autocorrelation curves (using a 3DG PSF) is86

Gth(τ) =
1

〈N〉
1− F + Fe

− τ
τF

(1− F )

1

1 + 4Dτ
ω2
xy

1

(1 + 4Dτ
ω2
z

)
1
2

(S7)87
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and for the 2DGL PSFs is88

Gth(τ) =
1

〈N〉
1− F + Fe

− τ
τF

(1− F )

1

1 + 4Dτ
ω2
xy

+ 1 (S8)89

where, 〈N〉 is the average number of molecule in the effective volume, D is the diffusion coefficient, τF is the triplet90

state relaxation time and F is the fraction molecules populating the triplet state.91

To find the best fit, we use χ2 minimization92

χ2 =
∑
τ

(Gth(τ)−Gex(τ))2. (S9)93

94

S3.4. Definition of molecular brightness95

As the definition of molecular brightness, we use the emission rate of detected photons of a single fluorophore, for96

example Eq. (2). For a fluorophore located at (x, y, z) this is formulated as97

µ(x, y, z) = µ0 ϕd ϕqe ϕf σ EXC(x, y, z) CEF(x, y, z) (S10)98

where, µ0 is the maximum excitation intensity which occurs at the center of the confocal volume, ϕd is the efficiency99

of the photon collection at the center of the confocal volume, ϕqe is the quantum efficiency of the detector, ϕf is100

the quantum efficiency of the fluorophore (i.e. quantum yield), σ is the absorption cross-section of the fluorophore,101

EXC(x, y, z) is the excitation profile and CEF(x, y, z) is the detection profile, i.e. collection efficiency function, which102

equals the fraction of the detected photons to the total photons emitted by a point source [11].103

To obtain Eq. (2), we cast Eq. (S10) in the simplified form104

µ(x, y, z) = µmolPSF(x, y, z) (S11)105

where µmol = µ0 ϕd ϕqe ϕf σ, which we term molecular brightness at the center of the confocal volume [12], and106

PSF(x, y, z) = EXC(x, y, z) CEF(x, y, z), which we term the PSFPSF.107

To relate the parameter µmol to the average photon count rate, which is commonly estimated in bulk experiments108

[13? , 14], we consider the spatial average of µ(x, y, z) as follows109

〈µ(x, y, z)〉 = µmol〈PSF(x, y, z)〉. (S12)110

For the specific choice of a 3DG PSF (see below), the average is computed as follows111

〈PSF(x, y, z)〉 =

∫ +∞
−∞

∫ +∞
−∞

∫ +∞
−∞ exp

(
−2 x2

ω2
xy
− 2 y2

ω2
xy
− 2 z

2

ω2
z

)
dxdydz

Veff
=

√
π

2
ω2
xy

√
π

2
ω2
xy

√
π

2
ω2
z

1

Veff
(S13)112

where Veff denotes the effective volume of 3DG PSF [9, 15] and it is given by113

Veff = π
3
2ω2

xyωz. (S14)114

Consequently, Eq. (S13) implies115

µmol =
√

8 〈µ(x, y, z)〉. (S15)116

In other words, the molecular brightness is, by definition, approximately 2.8 times larger than the average photon117

count rate of single molecule [13? , 14].118

S3.5. Definition of point spread function models119

In this study we use three different point spread functions as approximations to the more realistic Airy function [16–120

18], namely a 3D-Gaussian (3DG) [19], a 2D-Gaussian-Cylindrical (2DGC) [19] and a 2D-Gaussian-Lorentzian (2DGL)121

[20–23].122
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The definition of the PSF for the 3DG case is123

PSF3DG(x, y, z) = exp

(
−2

x2 + y2

ω2
xy

− 2
z2

ω2
z

)
(S16)124

while, the definition of the PSF for the 2DGC case is125

PSF2DGC (x, y, z) = exp

(
−2

x2

ω2
xy

− 2
y2

ω2
xy

)
. (S17)126

For both cases, ωxy and ωz are the semi-axes lateral and parallel to the optical axis. These are represented in terms127

of the excitation wavelength λexc, solution refraction index nsol, and numerical aperture NA of the microscope as128

ωxy = 0.61λexc/NA and ωz = 1.5nsolλexc/NA2; for example see [24, 25]. For more realistic representations, ωxy and129

ωz can be estimated directly based on calibration experiments with known diffusion coefficients; for example see [26].130

The definition of the PSF for the 2DGL case is131

PSF2DGL (x, y, z) =
1

1 +
(
z
zR

)2 exp

 −2x
2+y2

ω2
xy

1 +
(
z
zR

)2
 (S18)132

where ωxy, λexc, and nsol are similar to the 3DG cas or 2DG cases and zR = nsolπω
2
xy/λexc.133

S3.6. Description of the data simulation134

To generate fluorescence intensity time traces that mimic a realistic confocal setup, we simulate molecules mov-135

ing [1? ] through an illuminated 3D volume. The number of moving molecules N is prescribed in each simulation.136

To maintain a relatively stable concentration of molecules near the confocal volume, and so to avoid generating traces137

where every molecule eventually strays into un-illuminated regions, we impose periodic rectangular boundaries to our138

volume. The boundaries are placed at ±Lxy perpendicular to the focal plane and ±Lz perpendicular to the optical139

axis.140

We assess the locations of the molecules xnk , ynk , znk , where k = 1, . . . ,K label time levels and n = 1, . . . , N label141

molecules, at equidistant time intervals t1, t2, . . . , tK . The time interval between successive assessments δt = tk−tk−1,142

as well as the total trace duration Ttotal = tK − t0, are prescribed.143

Molecule locations at the first assessment xn1 , yn1 , zn1 are sampled randomly from a uniform distribution with limits144

equal to the boundaries ±Lxy and ±Lz of our pre-specified volume. Subsequent locations are generated according to145

the diffusion model described above under a prescribed diffusion coefficient D.146

Finally, we obtain individual photon emissions wk by simulating Bernoulli random variables of success probability147

qk = 1− e−µkδt, where the rate µk gathers single photon contributions from the background and the entire molecule148

population according to149

µk = µback + µmol

N∑
n=1

PSF(xnk , y,
n
k z

n
k ) (S19)150

where both background and molecular brightness, µback and µmol, are prescribed.151

The PSF model is also prescribed. To avoid artifacts induced by the periodic boundaries we impose in our volume,152

we ensure that Lxy � ωxy, Lz � ωz, or Lz � zR, where ωxy, ωz and zR characterize the geometry of the confocal153

volume, see Eqs. (S16)–(S18), above.154

Detailed parameter choices for all simulations performed are listed in Table S6.155

S3.7. Definition of normalized distance and numbers of molecules156

As we need to estimate the positions of the molecules with respect to the center of the confocal volume, which is157

the point of origin, in order to ultimately estimate the number of molecules as a proxy for molecule concentration, for158

example Figs. S3 and S8, we must address difficulties associated with symmetries of the confocal PSF with respect to159
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rotations around the optical axis or the focal plane. [27] For this, for a molecule at (xnk , y
n
k , z

n
k ), when the 3DG PSF160

is used, Eq. (S16), we rely on161

dnk =

√(
xnk
ωxy

)2

+

(
ynk
ωxy

)2

+

(
znk
ωz

)2

(S20)162

while, when the 2DGL PSF is used, Eq. (S18), we rely on163

dnk =

√√√√√√1

2
log

(
1 +

(
znk
zR

)2
)

+

(
xnk
ωxy

)2
+
(
ynk
ωxy

)2
1 +

(
znk
zR

)2 (S21)164

where dnk is the normalized distance with respect to the center of the confocal volume of molecule n at time k.165

Similarly, when a 2DGC PSF is used, Eq. (S17), we rely on166

dnk =

√(
xnk
ωxy

)2

+

(
ynk
ωxy

)2

(S22)167

where dnk is the normalized distance with respect to the optical axis of molecule n at time k.168

These distances are obtained by setting the respective PSFs equal to exp(−(dnk )2) and are unaffected by the169

aforementioned symmetries, i.e. xnk 7→ −xnk , ynk 7→ −ynk , and znk 7→ −znk .170

For a given normalized distance `, we define the number of molecules N `
k as the number of estimated (active)171

molecules within the corresponding distance. That is172

N `
k =

∑
n

bnH

(
1− dnk

`

)
(S23)173

where H is the Heaviside step function, bn is the load of molecule n, and V` is the volume of a designated effective174

region chosen to agree with the effective volume Veff used in FCS [9].175

S3.8. Description of the time trace preparation176

The initial time trace consists of single photon arrival times which are computationally too expensive to analyze.177

Our method instead operates on photon intensity traces which are either obtained directly during an experiment or178

obtained from individual photon arrival time traces after binning. To transform single photon arrival time traces into179

intensity time traces, we use time bins of fixed size (main size) that typically span multiple photon arrival times. To180

speed up the computations further, as some bins have none of very few photons, over certain portions of the trace we181

use larger bins (auxiliary size).182
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FIG. S13. Illustration of time trace preparation. (a) Initial trace of single photon arrivals. Here, each vertical line
represents the arrival time of a single photon. (b) Time trace of photon intensities provisionally binned at the main bin size.
The horizontal line denotes the imposed lower threshold on the minimum number of photons in the individual bins. (c) Time
trace of photon intensities after bin size adaptation. Here, bins, preselected at the main size, with intensities below the imposed
threshold are uniformly readjusted to achieve an average intensity similar to the threshold.

Briefly, the user specifies a minimum number of photons per bin as a lower threshold. As illustrated in Fig. S13,183

those bins, preselected at the main size, containing fewer photons than the specified threshold are enlarged uniformly184

in order to achieve an average of at least as many photons as specified by the threshold. This occasional adaptation,185

from the main to the auxiliary bins, becomes important in the analysis of traces from experiments held near single186

molecule resolution where molecule concentrations are low so that on average only one molecular passage through187

the confocal volume happens. Consequently, photon intensities are low, and thus the bulk of computational time188

otherwise would had been spent processing trace portions of poor quality (i.e. with few or no photons).189

To carry our the necessary computations, as we detail shortly, we use the Anscombe transformation [28] to ap-190

proximate the Poissonian likelihoods of photon intensities (see below). This approximation is robust as long as bins191

contain on average 4 photons or more. Thus, as a minimum requirement, we also use the aforementioned threshold192

to ensure the validity of the approximations.193
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S4. Detailed description of the inference framework194

FIG. S14. Graphical summary of the framework developed. A population of model molecules, labeled by n = 1, 2, . . . ,
evolves during the measurement period which is marked by k = 1, 2, . . . ,K. Here, xnk , ynk and znk denote the position of molecule
n at time tk and µmol, µback denote the molecular brightness and background photon emission rates. The diffusion coefficient
D determines the evolution of the molecule locations which, in turn, determines the instantaneous photon emission rates and
ultimately the recorded photon intensities wk. Load variables bn, with prior weights qn, are introduced to model a molecule
population of a priori unknown size. Following common machine learning convention, the measurements wk are dark shaded.
Additionally, model variables requiring prior probability distributions are highlighted in blue.

S4.1. Description of prior probability distributions195

The model parameters in our framework that require priors are: the diffusion coefficient D; the molecular brightness196

and background photon emission rates µmol and µback; the initial molecule locations xn1 ,yn1 ,zn1 ; and load prior weights197

qn. As we already mentioned in the main text, a prior on the population of diffusing molecules is implicitly defined198

by the prior on both bn and qn. Our choices are described below.199

S4.1.1. Prior on the diffusion coefficient200

To ensure that the D sampled in our formulation attains only positive values, we place an inverse-Gamma prior201

D ∼ InvGamma (αD, βD) . (S24)202

Besides ensuring a positive D, this prior is also conjugate to the motion model we use which facilitates the computations203

(see below).204

S4.1.2. Priors on molecular brightness and background photon emission rates205

To ensure that µmol and µback sampled in our formulation attain only positive values, we place Gamma priors on206

both207

µmol ∼ Gamma (αmol, βmol)

µback ∼ Gamma (αback, βback) .
(S25)208

Due to the specific dependencies of the likelihood (that we will discuss shortly) on the photon emission rates, conjugate209

priors cannot be achieved for µmol and µback. So, the above choice offers no computational advantage (see below) and210
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could be readily replaced with more physically motivated choices if additional information on molecular brightness211

becomes available.212

S4.1.3. Priors on initial molecule locations213

Due to the symmetries in the confocal PSF, i.e. a molecule at a location (x, y, z) emits the same average number214

of photons as a molecule at locations (±x,±y,±z), we are unable to gain insight regarding the octant of the 3D215

Cartesian space in which each molecule is located. To avoid imposing further assumptions on our framework that216

may determine each molecule’s octant uniquely, but may limit the framework’s scope to specific experimental setups,217

we place priors on the initial locations that respect these symmetries. Accordingly, in our framework, at the onset of218

the measuring period, molecules are equally likely to be located at any of the positions (±xn1 ,±yn1 ,±zn1 ).219

To facilitate the computations (see below), we place independent symmetric normal distributions, see Table S5, on220

each Cartesian coordinate of the model molecules221

xn1 ∼ SymNormal
(
µxy, σ

2
xy

)
yn1 ∼ SymNormal

(
µxy, σ

2
xy

)
zn1 ∼ SymNormal

(
µz, σ

2
z

)
.

(S26)222

We want to emphasize that the symmetric priors above do not affect our estimates. According to the motion model223

we employ, no matter where molecules are initiated, they may subsequently move freely and eventually switch to a224

different octant if warranted by the data. Our symmetric priors merely indicate that for each individual molecular225

trajectory considered, there are another 7 symmetric trajectories that are equally likely to have occurred.226

S4.1.4. Priors and hyperpriors for molecule loads227

To facilitate the computations (described next), we use a finite, but large, model population consisting of N228

molecules containing both active and inactive molecules. These model molecules are collectively indexed by n =229

1, 2, . . . , N . As explained in the main text, estimating how many molecules are actually warranted by the data under230

analysis is equivalent to estimating how many of those N molecules are active, i.e. bn = 1, while the remaining inactive231

ones, i.e. bn = 0, have no impact whatsoever and are instantiated only for computational purposes.232

To ensure that each load bn takes only values 0 or 1, we place a Bernoulli prior of weight qn. In turn, on each
weight qn, we place a conjugate Beta hyperprior

bn|qn ∼ Bernoulli(qn) (S27)

qn ∼ Beta (Aq, Bq) . (S28)

To ensure that the resulting formulation avoids overfitting, we make the specific choices Aq = αq/N and Bq =233

βq(N − 1)/N . Under these choices [29–32], and in the limit that N → ∞; that is, when the assumed molecule234

population is allowed to be large, this prior/hyperprior converge to a Beta-Bernoulli process. Consequently, for235

N � 1, the posterior remains well defined and becomes independent of the chosen value of N . In other words,236

provided N is large enough, its impact on the results is insignificant; while its precise value has only computational237

implications (see below).238
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S4.2. Summary of model equations239

For concreteness, below we summarize the entire set of equations used in our framework, including a complete list
of priors and hyperpriors

D ∼ InvGamma (αD, βD) (S29)

µmol ∼ Gamma (αmol, βmol) (S30)

µback ∼ Gamma (αback, βback) (S31)

qn ∼ Beta

(
αq
N
, βq

N − 1

N

)
(S32)

bn|qn ∼ Bernoulli(qn) (S33)

xn1 ∼ SymNormal
(
µxy, σ

2
xy

)
(S34)

yn1 ∼ SymNormal
(
µxy, σ

2
xy

)
(S35)

zn1 ∼ SymNormal
(
µz, σ

2
z

)
(S36)

xnk |xnk−1, D ∼ Normal
(
xnk−1, 2(tk − tk−1)D

)
, k = 2, . . . ,K (S37)

ynk |ynk−1, D ∼ Normal
(
ynk−1, 2(tk − tk−1)D

)
, k = 2, . . . ,K (S38)

znk |znk−1, D ∼ Normal
(
znk−1, 2(tk − tk−1)D

)
, k = 2, . . . ,K (S39)

wk|{xnk , ynk , znk , bn}n, µmol, µback ∼ Poisson (µk) , k = 1, . . . ,K (S40)

µk = (tk − tk−1)

(
µback + µmol

∑
n

bn PSF(xnk , y
n
k , z

n
k )

)
. (S41)

For molecules diffusing in a confocal volume that is extremely elongated over the optical axis, the PSF approaches
a cylindrical one. In this case, it is safe to eliminate the znk positions from the motion model and simplify Eqs. (S40)
and (S41) to

wk|{xnk , ynk , bn}n, µmol, µback ∼ Poisson (µk) , k = 1, . . . ,K (S42)

µk = (tk − tk−1)

(
µback + µmol

∑
n

bn PSF(xnk , y
n
k )

)
. (S43)

240

S4.3. Description of the computational scheme241

The joint probability distribution of our framework is p(D,µmol, µback, {qn, bn, xn, yn, zn}n|w), where molecular
trajectories and intensities (measurements) are gathered in

xn = (xn1 , x
n
2 , . . . , x

n
K) (S44)

yn = (yn1 , y
n
2 , . . . , y

n
K) (S45)

zn = (zn1 , z
n
2 , . . . , z

n
K) (S46)

w = (w1, w2, . . . , wK). (S47)

Due to the non-linearities in the PSF and the non-parametric prior on qn and bn, analytic evaluation or direct242

sampling of this posterior is impossible. For this reason, we develop a specialized Markov chain Monte Carlo (MCMC)243

scheme that can be used to generate pseudo-random samples [33–37]. This scheme is explained in detail below.244

In order to terminate the MCMC sampler, we need to determine when a representative number of samples has been245

computed. To do so, we divide the samples already computed into four portions and compare the mean values of the246

diffusion coefficient of the two last ones247

η1 =

∑3I/4
i=2I/4Di

I/4
, η2 =

∑I
i=3I/4Di

I/4
(S48)248
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FIG. S15. A working implementation of the framework described in this study is available through the Sup-
porting Material. Along with this implementation, we provide a graphical user interface (GUI) that can be used to analyze
intensity traces from confocal microscopy.

where, η1 and η2 are the mean values of the two last portion of the sampled diffusion coefficients denoted Di and I is the249

total number of computed MCMC samples thus far. Following [33, 34], we terminate the sampler when |η1−η2| < εthr,250

where εthr is a pre-specified threshold. Also, to avoid incorporating burn-in samples in the calculations, we ensure a251

minimum number of iterations I of no less than 104.252

A working implementation of the resulting scheme in source code and GUI forms, see Fig. S15, are available through253

the Supporting Material.254

S4.3.1. Overview of the sampling updates255

Our MCMC exploits a Gibbs sampling scheme [33–35]. Accordingly, posterior samples are generated by updating256

each one of the variables involved sequentially by sampling conditioned on all other variables and measurements w.257

Conceptually, the steps involved in the generation of each posterior sample (D,µmol, µback, {qn, bn, xn, yn, zn}n)258

are:259

(1) For each n in the molecule population260

(i) Update trajectory xn of molecule n261

(ii) Update trajectory yn of molecule n262

(iii) Update trajectory zn of molecule n263

(2) Update the diffusion coefficient D264

(3) Update jointly the prior weights qn for all molecules265

(4) Update jointly the loads bn for all molecules266

(5) Update jointly the molecular brightness and background photon emission rates µmol and µback, respectively267

Since the locations of the inactive molecules are not associated with the measurements w, see Fig. S14, and those are268
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updated independently of the locations of the active ones, to make the algorithm computationally more efficient we269

carry out the above scheme in the equivalent order270

(1) For each n of the active molecules271

(i) Update trajectory xn of active molecule n272

(ii) Update trajectory yn of active molecule n273

(iii) Update trajectory zn of active molecule n274

(2) Update jointly the trajectories xn, yn, zn for all n of the inactive molecules275

(3) Update the diffusion coefficient D276

(4) Update jointly the prior weights qn for all model molecules277

(5) Update jointly the loads bn for all model molecules278

(6) Update jointly the molecular brightness and background photon emission rates µmol and µback, respectively279

These steps are described in detail below.280

S4.3.2. Sampling of active molecule trajectories281

For a given active molecule n, we update the trajectory xn by sampling from the correspond-282

ing conditional p(xn|D,µmol, µback, {bn
′
, yn

′
, zn

′
}n′ , {xn

′
}n′ 6=n, w), which we achieved through backward sam-283

pling [38–40]. To be able to sample a trajectory xn in backward sampling, we factorize the density284

p(xn|D,µmol, µback, {bn
′
, yn

′
, zn

′
}n′ , {xn

′
}n′ 6=n, w) as285

p(xn|D,µmol, µback, {bn
′
, yn

′
, zn

′
}n′ , {xn

′
}n′ 6=n, w)

= p(xn1 |xn2 , D, µmol, µback, {bn
′
, yn

′

1 , z
n′

1 }n′ , {xn
′

1 }n′ 6=n, w)

× p(xn2 |xn3 , D, µmol, µback, {bn
′
, yn

′

2 , z
n′

2 }n′ , {xn
′

2 }n′ 6=n, w)

. . .

× p(xnK−1|xnK , D, µmol, µback, {bn
′
, yn

′

K−1, z
n′

K−1}n′ , {xn
′

K−1}n′ 6=n, w)

× p(xnK |D,µmol, µback, {bn
′
, yn

′

K , z
n′

K }n′ , {xn
′

K}n′ 6=n, w).

(S49)286

According to this factorization, we sample xn, starting from xnK and move backward towards xn1 . To start the sampling287

steps, we need to determine each one of the individual densities p(xnK |D,µmol, µback, {bn
′
, yn

′

K , z
n′

K }n′ , {xn
′

K}n′ 6=n, w)288

and p(xnk |xnk+1, D, µmol, µback, {bn
′
, yn

′

k , z
n′

k }n′ , {xn
′

k }n′ 6=n, w). We do this in a forward filtering approach [27, 38–42]289

which is described in detail below.290

S4.3.2.a. Forward filtering291

By applying Bayes’ rule, each one of the individual densities in Eq. (S49) factorizes as292

p(xnk |xnk+1, D, . . . , w) ∝ p(xnk+1|xnk , D)p(xnk |D, . . . , w1:k) (S50)293

where w1:k is an abbreviation for w1, . . . , wk and excess parameters are shown by dots. Since the density p(xnk+1|xnk , D)294

is already known, to sample xnk in backward sampling, we only need to determine the filter density p(xnk |D, . . . , w1:k).295

To be able to apply forward filtering and compute p(xnk |D, . . . , w1:k) efficiently [43], we use an approximate
model [44], where Eq. (S40), is replaced with

Tdata(wk)|{xn
′

k , y
n′

k , z
n′

k , b
n′}n′ , µmol ∼ Normal (Tmean(µk), 1) , k = 1, . . . ,K. (S51)

Here, µk stems from Eq. (S41) for 3D models and Eq. (S43) for 2D models; while, Tdata(w) and Tmean(µ) denote
Anscombe transformed [28] variables defined as follows

Tdata(w) = 2

√
w +

3

8
(S52)

Tmean(µ) = 2

√
µ+

3

8
− 1

4
√
µ
. (S53)
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The Anscombe transform exploited here offers a way of transforming Poisson random variables into (approximately)296

normal ones [28] which facilitates the filtering process described next. The approximation we employ is highly accurate297

for µ� 1, while acceptable accuracy is maintained so long as µ > 4 photons.298

Under the Anscombe transform, the densities of both the dynamics, Eq. (S37), and observations, Eq. (S51), are299

normally distributed. So, we can compute the filter distribution p(xnk |D, . . . , w1:k) of the approximate model similar300

to the standard theory underlying nonlinear Kalman filters [27, 45–51].301

More specifically, because the mean of the transformed observation distribution, Tmean(µk) is a nonlinear function302

of the location xnk , to apply the Kalman filters we need to approximate the transformed observation distribution in303

such a way that its mean becomes a linear function of the location xnk . To do so, we use two common approaches:304

(i) extended Kalman filter (EKF) [45, 52–55], which locally approximate the transformed observation distribution305

around selected values; and (ii) unscented Kalman filter (UKF) [46–48], which globally approximate the transformed306

observation distribution.307

As explained in detail in [27], the linearization alone is not sufficient to properly approximate the filter. This is308

because both EKF and UKF assume that the filter is a normal density. This assumption is problematic for our309

particular case which is symmetric across the origin, i.e. observations provide equal probabilities for the molecule to310

be in negative or positive side of the center of the PSF, i.e. ±xnk . Due to this symmetry across the yz-plane, the311

filtering distribution consists of two modes centered symmetrically across the origin [27]. Therefore, we compute an312

approximate filter distribution of the form313

p (xnk |D, . . . , w1:k) ≈ SymNormal (xnk ;mn
k , c

n
k ) (S54)314

where SymNormal (mn
k , c

n
k ) denotes the symmetric normal distribution (see Table S5). The filter’s parameters mn

k315

and cnk can be computed recursively according to316

p (xnk |D, . . . , w1:k) ∝ p
(
wk|xnk , ynk , znk , µmol, µback, {bn

′
, xn

′
, yn

′
, zn

′
}′n
)

×
∫
xnk−1

p
(
xnk−1|D, . . . , w1:k−1

)
p
(
xnk |xnk−1, D

)
dxnk−1

(S55)317

which, for our model, reduces to318

p (xnk |D, . . . , w1:k) ∝ Normal (Tdata(wk);Tmean(µk), 1) SymNormal
(
xnk ;mn

k−1, c
n
k−1 + 2D (tk − tk−1)

)
(S56)319

and, in turn, is approximated as320

p (xnk |D, . . . , w1:k) ≈ SymNormal (xnk ;mn
k , c

n
k ) . (S57)321

322

To summarize, in the forward pass of the FFBS, we compute mn
k and cnk of the filter of the molecule n, for all323

time levels k = 1, . . . ,K, by linearizing the approximate model around xn1 = µxy for k = 1, and around xnk = mn
k−1324

for k = 2, . . . ,K. Since our observation is nonlinear, to calculate the filter, we opt between two different methods:325

(i) Extended Kalman filter (EKF) and (ii) Unscented Kalman filter (UKF).326

In the EKF, we linearize the observations to obtain a closed form for the filter (local approximation) and in the UKF327

we approximate the joint probability distribution of observations and locations with a multivariate normal distribution328

(global approximation). The reason to use either of these filters is that the EKF is computationally cheaper but less329

accurate. According to our analysis it may fail to provide unbiased estimates of the background photon emission rate.330

On the other hand, the UKF is more robust and provides background emission rate estimates, but these benefits come331

at an increased computational cost.332

In this study, we provide both filters and allow the user to choose between them.333

Extended Kalman filter334

Within the EKF approximation, the normal probability distribution preceding the symmetric normal of Eq. (S56) is335

linearized in order for their product to become a symmetric normal one. In this case, we linearize the mean of the336

observation density Normal (Tdata(wk);Tmean(µk), 1), around the modes of the filter in the previous time step337

Tmean (µk (xnk )) ≈ Tmean
(
µk
(
−mn

k−1
))

+
∂Tmean (µk (xnk ))

∂xnk

∣∣∣
xnk=−m

n
k−1

(
xnk +mn

k−1
)

Tmean (µk (xnk )) ≈ Tmean
(
µk
(
+mn

k−1
))

+
∂Tmean (µk (xnk ))

∂xnk

∣∣∣
xnk=+mnk−1

(
xnk −mn

k−1
) (S58)338
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where the first term linearizes around xnk = −mn
k−1 and the second term linearizes around xnk = +mn

k−1. Under these339

approximations, (S56) attains an analytical solution. In detail340

Normal (Tdata(wk);Tmean(µk), 1) SymNormal
(
xnk ;mn

k−1, c
n
k−1 + 2D (tk − tk−1)

)
= Normal (Tdata(wk);Tmean(µk), 1) Normal

(
xnk ;−mn

k−1, c
n
k−1 + 2D (tk − tk−1)

)
+ Normal (Tdata(wk);Tmean(µk), 1) Normal

(
xnk ; +mn

k−1, c
n
k−1 + 2D (tk − tk−1)

)
= Normal

(
xnk ;−mn

k−1 +
enk
dnk
,

1

(dnk )2

)
Normal

(
xnk ;−mn

k−1, c
n
k−1 + 2D (tk − tk−1)

)
+ Normal

(
xnk ; +mn

k−1 −
enk
dnk
,

1

(dnk )2

)
Normal

(
xnk ; +mn

k−1, c
n
k−1 + 2D (tk − tk−1)

)
=

1

2
Normal (xnk ;−mn

k , c
n
k ) +

1

2
Normal (xnk ; +mn

k , c
n
k )

= SymNormal (xnk ;mn
k , c

n
k ) .

(S59)341

The same calculations apply also for k = 1, where the starting density is replaced with the prior of (S26). In this case342

343

cn1 =
σ2
xy

S(µ1)2 + σ2
xy(dn1 )2

mn
1 = µxy + cn1d

n
1 e
n
1

dn1 =
∂Tmean(µ1(xn1 ))

∂xn1

∣∣∣
xn1 =µxy

en1 = Tdata(w1)− Tmean(µ1(xn1 ))
∣∣∣
xn1 =µxy

(S60)344

while for k = 2, . . . ,K are345

cnk =

(
cnk−1 + 2D (tk − tk−1)

)
1 +

(
cnk−1 + 2D (tk − tk−1)

)
(dnk )2

mn
k = mn

k−1 + cnkd
n
ke
n
k

dnk =
∂Tmean(µk(xnk ))

∂xnk

∣∣∣
xnk=m

n
k−1

enk = T(wk)− T(µk(xnk ))
∣∣∣
xnk=m

n
k−1

.

(S61)346

Unscented Kalman filter347

The unscented Kalman filter [46, 47] tries to fit the joint probability distribution of the observations and locations348

globally with a multivariate normal distribution to cope with the nonlinearity in Eq. (S56). Specifically the product349

of Eq. (S56) is approximated as follows350

Normal (Tdata(wk);Tmean(µk), 1)SymNormal
(
xnk ;mn

k−1, c
n
k−1 + 2D (tk − tk−1)

)
≈ 1

2
BNormal

([
xnk
Tdata(wk)

]
;

[−Xn
k

Wn
k

]
,

[
xxΣnk , −xwΣnk
−wx Σnk , wwΣnk

])
+

1

2
BNormal

([
xnk
Tdata(wk)

]
;

[
+Xn

k

Wn
k

]
,

[
xxΣnk , +xwΣnk
+wx Σnk , wwΣnk

])
∝ 1

2
Normal (xnk ;−mn

k , c
n
k ) +

1

2
Normal (xnk ; +mn

k , c
n
k )

= SymNormal (xnk ;mn
k , c

n
k )

(S62)351

Since we are faced with a filter which has two symmetric modes, we calculate the filter’s mean mn
k and variance cnk352

for one of the modes only, while we recover the other mode’s mean and variance by reflection.353
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TABLE S2. Sigma points and corresponding weights for a standard normal according to [59]

i 1 2 3 4 5 6 7 8 9 10 11
xsni -5.1880 -3.9362 -2.8651 -1.8760 -0.9289 0 0.9289 1.8760 2.8651 3.9362 5.1880
g∗i < 10−5 0.0002 0.0067 0.0661 0.2422 0.3694 0.2422 0.0661 0.0067 0.0002 < 10−5

The means, auto- and cross-covariances in one mode of the (S62) are given by354

Xn
k =

∫ +∞

−∞
xq(x)dx

Wn
k =

∫ +∞

−∞
Tmean (µk (x)) q(x)dx

xxΣnk =

∫ +∞

−∞
(x−Xn

k )T (x−Xn
k )q(x)dx

wwΣnk =

∫ +∞

−∞
(Tdata(µk)−Wn

k )T (Tdata(µk)−Wn
k )q(x)dx+ 1

xwΣnk =

∫ +∞

−∞
(x−Xn

k )
T

(Tdata(µk)−Wn
k ) q(x)dx

wxΣnk =

∫ +∞

−∞
(Tdata(µk)−Wn

k )
T

(x−Xn
k ) q(x)dx

(S63)355

where q(x) = Normal
(
x;mn

k−1, c
n
k−1 + 2D (tk − tk−1)

)
is the probability density of one mode of the filter. The same356

formula applies to the other mode too.357

To calculate the mean value mn
k and variance cnk of each normal contributing to the symmetric normal shown above,358

we need to specify a set of sample points, termed sigma points in the UKF literature [46–48, 56–58], to estimate the359

mean values and covariance matrix of the bivariate normal on which mn
k and cnk depend. To specify sigma points, we360

first calculate sigma points xsni and their weights g∗i for a standard normal Normal(x; 0, 1) in Table. S2 according361

to [59]. We then transform xsni that will be used in this Normal(x;mk−1, ck−1 + 2D(tk − tk−1)). The transformed362

sigma points are363

x∗i = mk−1 + xsni
√
ck−1 + 2D (tk − tk−1). (S64)364

365

Finally, given g∗i , x
∗
i , we calculate the mean and covariance of the bivariate normal previously introduced by

Xn
k =

∫ ∞
−∞

xq(x)dx ≈
∑
i

g∗i x
∗
i

Wn
k =

∫ ∞
−∞

Tx (x) q(x)dx ≈
∑
i

g∗i Tx (x∗i )

xxΣnk =

∫ ∞
−∞

(x−xMk)T (x−xMk)q(x)dx ≈
∑
i

g∗i (xMk − x∗i )
T

(xMk − x∗i )

wwΣnk =

∫ ∞
−∞

(Tx (x)−w Mk)
T

(Tx (x)−w Mk) q(x)dx ≈
∑
i

g∗i (wMk − Tx (x∗i ))
T

(wMk − Tx (x∗i ))

xwΣnk =

∫ ∞
−∞

(x−xMk)T (Tx (x)−w Mk)q(x)dx ≈
∑
i

g∗i (wMk − Tx (x∗i ))
T

(xMk − x∗i )

wxΣnk =

∫ ∞
−∞

(Tx (x)−w Mk)T (x−xMk)q(x)dx ≈
∑
i

g∗i (xMk − x∗i )
T

(wMk − Tx (x∗i )) .

(S65)

After computing the means Xn
k and Wn

k and auto-covariances and cross-covariances xxΣk, wwΣk, xwΣk, wxΣk, the
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mean and variance of each mode of the filter are given by

mn
k = Xn

k +Kn
k (Tdata(wk)−Wn

k ) (S66)

cnk =xx Σnk −Kn
k (wwΣnk )Kn

k
T (S67)

Kn
k =

xwΣnk
wwΣnk

. (S68)

366

S4.3.2.b. Backward sampling367

After we compute the filter densities p (xnk |D, . . . , w1 : k) in the forward filtering step, through the EKF or UKF, we
are able to sample the location xnk by using backward sampling as in Eq. (S50). Specifically, given a computed filter,
we sample sequentially xnk according to

xnK ∼ p
(
xnK |{xnk′}k′<K , D, µmol, µback, {bn

′
, yn

′
, zn

′
}n′ , {xn

′
}n′ 6=n, w

)
(S69)

xnk ∼ p
(
xnk |xnk+1, {xnk′}k′<k, D, µmol, µback, {bn

′
, yn

′
, zn

′
}n′ , {xn

′
}n′ 6=n, w

)
, k = 1, . . . ,K − 1. (S70)

Due to the specific choices of our problem these reduce to

xnK ∼ SymNormal (mn
K , c

n
K) (S71)

xnk ∼ SymNormal (mn
k , c

n
k )×Normal

(
xnk+1, 2D(tk+1 − tk)

)
, k = 1, . . . ,K − 1 (S72)

where mn
k and cnk are the parameters of the filter which are calculated in the forward filtering step.368

S4.3.3. Sampling of inactive molecule trajectories369

After updating the trajectories of the active molecules, we update the trajectories of the inactive ones. For this, we370

sample from the corresponding conditionals p({xn, yn, zn}n:bn=0|D,µmol, µback, {qn, bn}n, w). Since the locations of371

inactive molecules are not associated with the observations in w and hyper-priors {qn}n, these conditionals simplify372

to p({xn, yn, zn}n:bn=0|D, {bn}n) which can be readily simulated jointly in the same manner as standard 3D Brownian373

motion.374

S4.3.4. Sampling of the diffusion coefficient375

Now that we have updated the locations of active and inactive molecules, we update the diffusion coefficient D by376

sampling from the corresponding conditional p(D|µmol, µback, {qn, bn, xn, yn, zn}n, w), which, due to the specific de-377

pendencies of the variables in our formulation, e.g. Eqs. (S24), (S37), (S38) and (S39), simplifies to p(D|{xn, yn, zn}n).378

Because of conjugacy, the latter reduces to379

D|{xn, yn, zn}n ∼ InvGamma (α′, β′) (S73)380

where α′ and β′ are given by381

α′ = αD +
3N(K − 1)

2
, β′ = βD +

1

4

N∑
n=1

K−1∑
k=1

(
xnk+1 − xnk

)2
+
(
ynk+1 − ynk

)2
+
(
znk+1 − znk

)2
tk+1 − tk

(S74)382

S4.3.5. Sampling of the molecule prior weights and loads383

We update the load prior weights qn by sampling from the corresponding conditional
p({qn}n|D,µmol, µback, {bn, xn, yn, zn}n, w), which simplifies to p({qn}n|{bn}n). For this, we use Eqs. (S33)
and (S32), and because of conjugacy, the latter distribution is sampled by sampling each qn separately according to

p(qn|bn) ∝ p(bn|qn)p(qn) = Beta

(
qn;

αq
N

+ bn,
βq(N − 1)

N
+ 1− bn

)
. (S75)
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Once the weights qn are updated, we update the loads bn by sampling from the corresponding conditional
p({bn}n|D,µmol, µback, {qn, xn, yn, zn}n, w). We perform this sampling using a Metropolis-Hastings update with pro-
posals of the form

(bn)prop ∼ Bernoulli(qn). (S76)

In this case, by choosing the proposal distribution similar to the prior distribution, the acceptance ratio becomes384

rb =
K∏
k=1

[(
µback + µmol

∑N
n=1 (bn)

prop
PSF (xnk , y

n
k , z

n
k )

µback + µmol
∑N
n=1 (bn)

old
PSF (xnk , y

n
k , z

n
k )

)wk

× exp

(
−(tk − tk−1)µmol

N∑
n=1

(
(bn)

old − (bn)
prop

)
PSF (xnk , y

n
k , z

n
k )

)] (S77)385

where (bn)old denotes the existing sample.386

S4.3.6. Joint sampling of the molecular brightness and background photon emission rates387

Finally, after we updated the locations of molecules, and loads, we update the molecular brightness388

and background photon emission rates µmol and µback by sampling from the corresponding conditional389

p(µmol, µback|D, {qn, bn, xn, yn, zn}n, w), which simplifies to p(µmol, µback|{bn, xn, yn, zn}n, w). We carry over this390

sampling using a Metropolis-Hastings update where proposals for µmol and µback are computed according to391

µpropmol ∼ Gamma

(
αpropmol ,

µoldmol
αpropmol

)
µpropback ∼ Gamma

(
αpropback ,

µoldback
αpropback

) (S78)392

where µoldmol and µoldback denote the existing samples. The acceptance ratio is393

rµ =
K∏
k=1

[(
µpropback + µpropmol

∑N
n=1 b

nPSF (xnk , y
n
k , z

n
k )

µoldback + µoldmol
∑N
n=1 b

nPSF (xnk , y
n
k , z

n
k )

)wk

× exp

(
(tk − tk−1)

((
µoldback − µ

prop
back

)
+
(
µoldmol − µ

prop
mol

) N∑
n=1

bnPSF (xnk , y
n
k , z

n
k )

))]

×
(
µoldmol
µpropmol

)2αpropmol −αmol
exp

(
µoldmol − µ

prop
mol

βmol
+ αpropmol

(
µpropmol

µoldmol
− µoldmol
µpropmol

))
×
(
µoldback
µpropback

)2αpropback−αback
exp

(
µoldback − µ

prop
back

βback
+ αpropback

(
µpropback

µoldback
− µoldback
µpropback

))
.

(S79)394

We should emphasize, due to the weakness of the extended Kalman filter as compared to the unscented Kalman filter,395

we consider the background photon emission rate is fixed for EKF. So, in this case we update the molecular brightness396

µmol only by sampling from the corresponding conditional p(µmol|D, {qn, bn, xn, yn, zn}n, w), which simplifies to397

p(µmol|{bn, xn, yn, zn}n, w). Again, we carry over this sampling using a Metropolis-Hastings update where proposals398

for µmol are computed according to399

µpropmol ∼ Gamma

(
αpropmol ,

µoldmol
αpropmol

)
(S80)400
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and the acceptance ration will reduces to401

rµ =
K∏
k=1

[(
µback + µpropmol

∑N
n=1 b

nPSF (xnk , y
n
k , z

n
k )

µback + µoldmol
∑N
n=1 b

nPSF (xnk , y
n
k , z

n
k )

)wk

× exp

(
(tk − tk−1)

((
µoldmol − µ

prop
mol

) N∑
n=1

bnPSF (xnk , y
n
k , z

n
k )

))]

×
(
µoldmol
µpropmol

)2αpropmol −αmol
exp

(
µoldmol − µ

prop
mol

βmol
+ αpropmol

(
µpropmol

µoldmol
− µoldmol
µpropmol

))
.

(S81)402
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S5. Extension for multiple diffusive species404

In the case of more than one diffusive species, we can readily modify the model to capture multiple diffusion
coefficients. To show that our method can be extended, we consider two diffusive species. Namely, the extended
formulation is

1D ∼ InvGamma (αD, βD) (S82)

2D ∼ InvGamma (αD, βD) (S83)

µmol ∼ Gamma (αmol, βmol) (S84)

µback ∼ Gamma (αback, βback) (S85)

1q
n ∼ Beta

(
αq

1N
, βq

1N − 1

1N

)
(S86)

1b
n|1qn ∼ Bernoulli(1q

n) (S87)

2q
n ∼ Beta

(
αq

2N
, βq

2N − 1

2N

)
(S88)

2b
n|2qn ∼ Bernoulli(2q

n) (S89)

1x
n
1 ∼ SymNormal

(
µxy, σ

2
xy

)
(S90)

1y
n
1 ∼ SymNormal

(
µxy, σ

2
xy

)
(S91)

1z
n
1 ∼ SymNormal

(
µz, σ

2
z

)
(S92)

1x
n
k |1xnk−1, 1D ∼ Normal

(
1x
n
k−1, 2(tk − tk−1)1D

)
, k = 2, . . . ,K (S93)

1y
n
k |1ynk−1, 1D ∼ Normal

(
1y
n
k−1, 2(tk − tk−1)1D

)
, k = 2, . . . ,K (S94)

1z
n
k |1znk−1, 1D ∼ Normal

(
1z
n
k−1, 2(tk − tk−1)1D

)
, k = 2, . . . ,K (S95)

2x
n
1 ∼ SymNormal

(
µxy, σ

2
xy

)
(S96)

2y
n
1 ∼ SymNormal

(
µxy, σ

2
xy

)
(S97)

2z
n
1 ∼ SymNormal

(
µz, σ

2
z

)
(S98)

2x
n
k |2xnk−1, 2D ∼ Normal

(
2x
n
k−1, 2(tk − tk−1)2D

)
, k = 2, . . . ,K (S99)

2y
n
k |2ynk−1, 2D ∼ Normal

(
2y
n
k−1, 2(tk − tk−1)2D

)
, k = 2, . . . ,K (S100)

2z
n
k |2znk−1, 2D ∼ Normal

(
2z
n
k−1, 2(tk − tk−1)2D

)
, k = 2, . . . ,K (S101)

wk|{1xnk ,1 ynk ,1znk ,2 xnk ,2 ynk ,2 znk , 1b
n, 2b

n}n, µmol, µback ∼ Poisson (µk) , k = 1, . . . ,K (S102)

405

µk = (tk − tk−1)

(
µback + µmol

∑
n

1b
nPSF(1x

n
k ,1 y

n
k ,1 z

n
k ) + µmol

∑
n

2b
nPSF(2x

n
k ,2 y

n
k ,2 z

n
k )

)
(S103)406

where pre-scripts 1 and 2 are used to distinguish the two species. A graphical summary is show on Fig. S16. We use407

this formulation for the estimates shown on Figs. S11 and S12.408
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FIG. S16. Graphical summary of the framework capturing two independent diffusion coefficients. A multi-
species population of model molecules, labeled by n = 1, 2, . . . , evolves during the measurement period which is marked by
k = 1, 2, . . . ,K. Here, 1x

n
k , 1y

n
k and 1z

n
k denote the location of molecule n at time tk of species 1, 2x

n
k , 2y

n
k and 2z

n
k denote the

location of molecule n at time tk of species 2, µmol and µback denote molecular brightness and background photon emission
rates. The diffusion coefficient 1D and 2D determine the evolution of the molecule locations of species 1 and 2 which, in turn,
determine the instantaneous photon emission rates and ultimately the recorded photon intensities wk. Load variables 1b

n and

2b
n, with prior weights 1q

n and 2q
n, respectively, are introduced to model molecule populations of the two species of a priori

unknown sizes. Following common machine learning convention, the measurements wk are dark shaded. Additionally, model
variables requiring prior probability distributions are highlighted in blue.
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S6. Summary of notation, abbreviations, parameters and other options409

TABLE S3. Summary of notation.

Description Variable Units
Diffusion coefficient D µm2/s
α parameter of the diffusion coefficient prior αD -
β parameter of the diffusion coefficient prior βD µm2/s
Total time trace duration Ttotal s
Molecular brightness at the center of the confocal volume µmol photons/s
α parameter of the molecular brightness’s prior αmol -
β parameter of the molecular brightness’s prior βmol photons/s
Proposal parameter of the molecule photon emission rate αpropmol -
Emission rate of molecule n at time tk µnk photons/s
Combined photon emission rates of all molecules at time tk µk photons/s
Background photon emission rate µback photons/s
α parameter of the background photon emission rate’s prior αback -
β parameter of the background photon emission rate’s prior βback photons/s
Proposal parameter of the background photon emission rate αpropback -
Minor semi-axis of confocal PSF (focal plane) ωxy µm
Major semi-axis of confocal 3DG PSF (optical axis) ωz µm
Major semi-axis of confocal 2DG-L PSF (optical axis) zR µm
Laser wavelength λexc µm
Numerical aperture NA -
Solution refractive index nsol -
Location of sigma points xsn µm
Location of molecule n at time tk in x-coordinate xnk µm
Location of molecule n at time tk in y-coordinate ynk µm
Location of molecule n at time tk in z-coordinate znk µm
Recorded photon intensity at time tk wk photons
Load variable for molecule n bn -
Prior weight for bn qn -
α parameter of prior weight qn αq -
β parameter of prior weight qn βq -
Upper bound for the number of model molecules N -
Mean value of initial molecule position’s prior in the xy-plane µxy µm
Mean value of initial molecule position’s prior on the z-axis µz µm
Variance of the initial molecule position’s prior in the xy-plane σxy µm
Variance of the initial molecule position’s prior on the z-axis σz µm
Normalized distance of molecule n at time tk dnk -
Normalized distance for the definition of effective volume ` -
Effective volume V` µm3

Heaviside function H -
Periodic boundary in the xy-plane (focal plane) Lxy µm
Periodic boundary on the z-axis (optical axis) Lz µm
Convergence threshold εthr µm2/s
Bin threshold εbin photons
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TABLE S4. List of abbreviations.

Phrase Abbreviation
Fluorescence correlation spectroscopy FCS
Point spread function PSF
Three dimensional Gaussian 3DG
Two dimensional Gaussian-Lorentzian 2DGL
Two dimensional Gaussian-Cylindrical 2DGC
Forward filtering backward sampling FFBS
Markov chain Monte Carlo MCMC
Graphical user interface GUI
Excitation profile EXC
Collection efficiency function CEF

TABLE S5. Probability distributions used and their densities. Here, the corresponding random variables are denoted by x.

Distribution Notation Probability density function Mean value Variance/Covariance

Normal Normal(µ, σ2) 1√
2πσ2

e
− (x−µ)2

2σ2 µ σ2

Symmetric Normal SymNormal(µ, σ2) 1
2
e
− (x+µ)2

2σ2√
2πσ2

+ 1
2
e
− (x−µ)2

2σ2√
2πσ2

0 µ2 + σ2

Bivariate Normal BNormal(µ,Σ) 1

2π
√
|Σ|
e−

1
2

(x−µ)TΣ−1(x−µ) µ Σ

Poisson Poisson(λ) λxe−λ

x!
λ λ

Gamma Gamma(α, β) 1
Γ(α)βα

xα−1e
− x
β αβ αβ2

Inverse Gamma InvGamma(α, β) βα

Γ(α)
x−α−1e−

β
x

β
α−1

β2

(α−1)2(α−2)

Beta Beta(α, β) Γ(α+β)
Γ(α)Γ(β)

xα−1(1− x)β−1 α
α+β

αβ
(α+β)2(α+β+1)

Bernoulli Bernoulli(q) (q − 1)δ0(x) + qδ1(x) q q(1− q)

TABLE S6. Parameter values used in the generation of the synthetic traces. Choices are listed according to figures.

PSF Lxy Lz ωxy ωz,zR N D µmol µback Ttotal δt
Units µm µm µm µm - µm2/s photons/s photons/s s s
Fig. 1(a1) 3DG 2 3 0.30 1.50 10 10 5× 104 103 0.1 10−4

Fig. 1(a2) 3DG 2 3 0.30 1.50 100 10 5× 104 103 0.1 10−4

Fig. 2(a) 3DG 2,2,2,2,4 3,3,3,3,7 0.30 1.50 102, 102, 102, 102, 103 10−2, 10−1, 1, 10, 102 5× 104 103 0.1 10−4

Fig. 2(c) 3DG 2 3 0.30 1.50 150 10 5× 104 103 10 10−4

Fig. 3(a) 3DG 2 3 0.30 1.50 150 1 105, 5×104, 104 103 0.1 10−4

Fig. S3 3DG 2 3 0.30 1.50 50 1 5× 104 103 0.1 10−4

Fig. S4(a) 3DG 2 3 0.30 1.50 50 10 5× 104 103 100 10−4

Fig. S5(a1) 3DG 2 3 0.30 1.50 50 10 5× 104 103 0.1 10−4

Fig. S5(a2) 2DGL 2 3 0.30 1.50 50 10 5× 104 103 0.1 10−4

Fig. S5(a3) 2DGC 2 3 0.30 - 50 10 5× 104 103 0.1 10−4

Fig. S11(a) 3DG 2 3 0.30 1.50 20, 20 1,10 5× 104 103 1 10−4
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TABLE S7. Parameter values used in the analyses of the traces. Choices are listed according to figures.

PSF ωxy ωz,zR N αD βD αmol βmol α
prop
mol αback βback αpropback αq βq µxy µz σ2

xy σ2
z εthr εbin

Units µm µm - - µm2/s - pht/s - - pht/s - - - µm µm µm2µm2µm2/s pht
Fig. 1(a1) 3DG 0.30 1.50 50 1 1 2 104 103 2 500 103 1 1 0.2 0.2 2 2 0.1 4
Fig. 1(a2) 3DG 0.30 1.50 50 1 1 2 104 103 2 500 103 1 1 0.2 0.2 2 2 0.1 4

Fig. 2(a) 3DG 0.30 1.50 50 1 1 2 104 103 2 500 103 1 1 0.2 0.2 2 2 0.1 4
Fig. 2(b) 3DG 0.30 1.50 50 1 1 2 104 103 2 500 103 1 1 0.2 0.2 2 2 0.1 4

Fig. 3 3DG 0.30 1.50 50 1 1 2 104 103 2 500 103 1 1 0.2 0.2 2 2 0.1 4

Fig. 4 2DGL 0.40 - 50 1 1 2 104 103 2 500 103 1 1 0.2 0.2 2 2 0.1 4

Fig. 5 3DG 0.27 4.51 50 1 1 2 104 103 2 500 103 1 1 0.2 0.2 2 2 0.1 4

Fig. 6 3DG 0.27 4.51 50 1 1 2 104 103 2 500 103 1 1 0.2 0.2 2 2 0.1 4
Fig. 7(a1) 3DG 0.27 4.51 50 1 1 2 104 103 2 500 103 1 1 0.2 0.2 2 2 0.1 4
Fig. 7(a2) 3DG 0.27 4.51 50 1 1 2 104 103 2 500 103 1 1 0.2 0.2 2 2 0.1 4
Fig. 7(a3) 3DG 0.27 4.51 50 1 1 2 104 103 2 500 103 1 1 0.2 0.2 2 2 0.1 4

Fig. S3 3DG 0.30 1.50 50 1 1 2 104 103 2 500 103 1 1 0.2 0.2 2 2 0.1 4

Fig. S4 3DG 0.23 0.55 50 1 1 2 104 103 2 500 103 1 1 0.2 0.2 2 2 0.1 4

Fig. S5(b1) 3DG 0.27 4.51 50 1 1 2 104 103 2 500 103 1 1 0.2 0.2 2 2 0.1 4
Fig. S5(b2) 2DGL 0.27 4.51 50 1 1 2 104 103 2 500 103 1 1 0.2 0.2 2 2 0.1 4
Fig. S5(b3) 2DGC 0.27 - 50 1 1 2 104 103 2 500 103 1 1 0.2 0.2 2 2 0.1 4

Fig. S8 3DG 0.27 4.51 50 1 1 2 104 103 2 500 103 1 1 0.2 0.2 2 2 0.1 4

Fig. S9 3DG 0.27 4.51 50 1 1 2 104 103 2 500 103 1 1 0.2 0.2 2 2 0.1 4

Fig. S10 2DGL 0.42 - 50 1 1 2 104 103 2 500 103 1 1 0.2 0.2 2 2 0.1 4

Fig. S11 3DG 0.3 1.5 50 1 1 2 104 103 2 500 103 1 1 0.2 0.2 2 2 0.1 4
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[39] O. Cappé, E. Moulines, and T. Rydén, in Proceedings of EUSFLAT Conference (Springer, 2009) pp. 14–16.457

[40] T. Rydén et al., Bayesian Analysis 3, 659 (2008).458

[41] L. Rabiner and B. Juang, ieee assp magazine 3, 4 (1986).459

[42] C. M. Bishop, Pattern recognition and machine learning (springer, 2006).460

[43] L. R. Rabiner, Proceedings of the IEEE 77, 257 (1989).461

[44] S. L. Scott, Journal of the American Statistical Association 97, 337 (2002).462

[45] M. Y. Byron, K. V. Shenoy, and M. Sahani, Technical report, Department of Electrical Engineering, Stanford University463

19, 25 (2004).464

[46] E. A. Wan and R. Van Der Merwe, in Adaptive Systems for Signal Processing, Communications, and Control Symposium465

2000. AS-SPCC. The IEEE 2000 (Ieee, 2000) pp. 153–158.466

[47] H. M. Menegaz, J. Y. Ishihara, G. A. Borges, and A. N. Vargas, IEEE Transactions on automatic control 60, 2583 (2015).467

[48] J. Stoer and R. Bulirsch, Introduction to numerical analysis, Vol. 12 (Springer Science & Business Media, 2013).468

[49] R. E. Kalman, Journal of Basic Engineering 82, 35 (1960).469

[50] R. E. Kalman and R. S. Bucy, Journal of Basic Engineering 83, 95 (1961).470

[51] H. W. Sorenson, in Advances in Control Systems, Vol. 3 (Elsevier, 1966) pp. 219–292.471
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