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 2 

Abstract 22 

Commensal microbes in the gut do not act alone but instead as cooperative consortia to 23 

conduct their myriad functions. Cooperative interactions and feedback mechanisms are 24 

key to consortia performance, yet are often ignored in current synthetic biology efforts to 25 

engineer the microbiota. To this end, we engineered mutual metabolic dependencies 26 

between four heterogeneous gut-dwelling bacterial species. Each species was made 27 

auxotrophic for three amino acids and an overproducer for one amino acid to share with 28 

the other species. By performing dynamical systems inference from time-series 29 

measurements, we show that our engineering introduced positive interactions that either 30 

reversed or neutralized pre-existing competitive interactions and improved stability of 31 

the consortium. We further demonstrate that we can induce population balance in the 32 

engineered consortia, both in vitro and in the mouse gut, through nutrient and dietary 33 

manipulations. Our findings indicate that induced cooperation can introduce evenness 34 

and stability in a synthetic microbial ecosystem, and have implications for development 35 

of synthetic approaches to manipulate the microbiome.   36 

 37 
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Introduction 53 

In nature, microbes occur as conglomerates of various species with diverse sets of 54 

genomes and metabolic capabilities, allowing for division of labor and increased 55 

robustness (Hays et al., 2015a). For example, microbial consortia have been shown to 56 

withstand external perturbations such as invasion of other species, toxic compounds 57 

and nutrient sparseness (Burmølle et al., 2006; Lapara et al., 2002). A major driver for 58 

microbial consortia robustness is cooperative behavior through production of public 59 

goods and metabolic cross-feeding (Cavaliere et al., 2017). Consortia robustness is 60 

correlated with population balance among the microbes and an extensive network of 61 

interactions between species (Stelling et al., 2004; Stenuit and Agathos, 2015). 62 

  63 

Metagenomic analyses reveal nutrient auxotrophies as a prevalent feature of microbial 64 

communities, suggesting that cross-feeding might be a common mode of interaction in 65 

natural consortia (Mee et al., 2014; Pande et al., 2014). Examples of such natural 66 

microbial consortia include metabolically interacting communities in soil (Venail and 67 

Vives, 2013) and in the mammalian gut (Rakoff-Nahoum et al., 2016). Distributing 68 

metabolic capabilities over multiple species, a form of functional complementarity, can 69 

increase productivity of the consortium through more efficient resource utilization 70 

((Pande et al., 2014; Savage et al., 2007). 71 

 72 

Amino acid cross-feeding is an attractive means to introduce cooperation into synthetic 73 

microbial consortia. These metabolites are more readily secreted than others, e.g., E. 74 

coli secretes certain amino acids upon starvation (Burkovski et al., 1995; Kaderbhai et 75 

al., 2003; Valle et al., 2008). Indeed, amino acids have been shown to play important 76 

roles in inter-species communication in natural systems (McCutcheon and Von Dohlen, 77 

2011). For instance, amino acids are used by S. cerevisiae to regulate nitrogen 78 

overflow, which leads to natural cross-feeding to lactic acid bacteria (Ponomarova et al., 79 

2017). Numerous studies have engineered pairwise amino acid cross-feeding in E. coli 80 

producing normal amino acid levels and generated quantitative models to describe their 81 

behavior (Estrela and Gudelj, 2010; Kerner et al., 2012; Pande et al., 2014; Stolyar et 82 

al., 2007; Wintermute and Silver, 2010a). 83 
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 84 

Engineering cooperative microbial consortia has been of longstanding interest in 85 

synthetic biology; studies were performed to gain basic scientific insights, or as 86 

engineering proofs-of-principles (Mee et al., 2014; Wintermute and Silver, 2010b). With 87 

recent advances in our understanding of the human microbiota, there is increasing 88 

interest in applying synthetic biology approaches to construct a well-defined gut 89 

microbiome, living bacterial diagnostics and therapeutics (Riglar and Silver, 2018). 90 

Creating such diagnostics and treatments in the context of cooperative consortia has 91 

numerous potential advantages, including the aforementioned capability of consortia to 92 

carry out more complex functions in a more stable manner (Cavaliere et al., 2017), with 93 

stability in this context defined as the ability to withstand external disturbances. 94 

Additionally, consortia can potentially allow for greater safety and control. For instance, 95 

a consortium that maintains population balance through cooperativity could be used to 96 

control dosing of a therapeutic compound in the gut. 97 

 98 

However, almost all prior synthetic biology studies that have engineered cooperativity in 99 

bacterial communities have used a single species (Kong et al., 2018; Mee et al., 2014; 100 

Wintermute and Silver, 2010b). However, natural microbial ecosystems contain a 101 

diversity of interacting species. In advancing synthetic biology to real applications in 102 

complex environments, it will be essential to expand engineering capabilities to diverse, 103 

multi-species consortia. Importantly, bacteria from naturally occurring ecosystems are 104 

likely to have pre-existing interactions, which are often competitive. These interactions 105 

must be considered and often overcome to achieve cooperative consortia.  106 

 107 

As a step toward developing multi-species consortia, we have constructed a synthetic 108 

consortium of four different bacterial species, each derived from the mammalian gut, 109 

and engineered mutual interactions by cross-feeding of four amino acids. Using several 110 

experimental approaches, combined with statistical inference from data and 111 

computational modeling, we demonstrate our ability to engineer cooperativity in the 112 

consortium that overcomes pre-existing competitive interactions. Further, we show that 113 

this cooperativity is inducible through nutrient or dietary manipulations, and that the 114 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted September 25, 2018. ; https://doi.org/10.1101/426171doi: bioRxiv preprint 

https://doi.org/10.1101/426171


 5 

engineered consortium exhibits population balance that is stable when subjected to 115 

perturbations in vitro and when introduced into the mammalian gut.  116 

 117 

Results 118 

Cooperative Consortia Design and Engineering 119 

To gain intuition into synthetic consortia designs, we simulated behavior of non-120 

interacting collections of four bacterial species versus consortia linked by 121 

positive/cooperative interactions (Figure 1A). Our simulations demonstrate that while a 122 

collection of non-interacting bacteria can exhibit population balance, it is highly 123 

susceptible to external disturbances that can drastically change the composition of the 124 

community. In particular, disturbances can readily cause a species to die out in the 125 

community. However, when we linked bacterial species through cooperative 126 

interactions, the resulting consortia can withstand much higher levels of external 127 

disturbances without dramatically altering its composition. Thus, our simulations 128 

suggest that engineering a network of positive interactions within a bacterial consortium 129 

could introduce stability towards environmental disturbances. 130 

 131 

To construct our synthetic consortium, we selected four bacterial species, Escherichia 132 

coli NGF-1, Salmonella enterica subsp enterica serovar Typhimurium LT2, Bacteroides 133 

thetaiotaomicron VPI-5482, and Bacteroides fragilis 638R. These species are not only 134 

genetically tractable, but also able to survive in the mammalian gut in diverse niches 135 

and have varied abundances within the total microbiota. These characteristics allow us 136 

to investigate key synthetic biology engineering principles in a controlled, but more 137 

realistic context, and also maximize potential for downstream applications, for example 138 

for bacterial therapeutics and diagnostics in the gut. 139 

 140 

E. coli NGF-1 was isolated from BALB/c mice, has been shown to stably colonize the 141 

mouse gut, and can be engineered with standard genetic tools (Kotula et al., 2014; 142 

Riglar et al., 2017). S. Typhimurium LT2 was further attenuated by removing the 143 

pathogenicity islands SPI1 and SPI2, and thus did not cause any disease phenotype 144 

when administered to mice. The two Bacteroides species, Bacteroides thetaiotaomicron 145 
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and Bacteroides fragilis, are human commensals that can achieve high abundance in 146 

the mammalian gut, and are also genetically tractable. 147 

 148 

We engineered each of the constituent species to depend on the other three by cross-149 

feeding of the four metabolites L-methionine, L-histidine, L-tryptophan and L-arginine 150 

(hereafter referred to as Met, His, Trp and Arg) (Figure 1B). Auxotrophies for three of 151 

these amino acids were generated in each strain (E. coli: His, Trp and Arg; 152 

S.Typhimurium: Met, Trp, Arg; B. theta: Met, His, Arg; B.fragilis: Met, His, Trp), along 153 

with the ability to overproduce one amino acid in each strain (E. coli: Met; S. 154 

Typhimurium: His; B. theta: Trp; B. fragilis: Arg) (Table 1). E. coli and S. Typhimurium 155 

were engineered by sequential phage transduction from three single auxotroph strains. 156 

E. coli was transduced with genome fragments from BW25113 that contained insertions 157 

in argA, trpC, hisA (see Methods) and S. Typhimurium with genome fragments of the 158 

same parent strain with insertions in argA, trpC, metA. Bacteroides spp. triple knockout 159 

generation utilized the pExchange-tdk vector to precisely delete metA, hisG and argF in 160 

B. theta and metA, hisG and trpC in B. fragilis. To engineer overproduction of amino 161 

acids, we selected for bacterial strains that showed resistance to specific 162 

antimetabolites.  163 

 164 

Characterization of Auxotrophies and Overproduction 165 

To assess the auxotrophic strains’ amino acid requirements, we measured growth on 166 

varying concentrations of each metabolite in the presence of non-limiting concentrations 167 

of all the other metabolites (Figure 2A). Each strain had a requirement for specific and 168 

differing levels of the amino acids. Overproduction of metabolites was measured in 169 

comparison to a defined amino acid standard using LC-MS (Figure 2A, horizontal bars). 170 

In order to compare overproduction with each species’ amino acid requirements, we fit a 171 

sigmoidal curve to the growth response data (Figure 2A), to produce an expected 172 

concentration (OD600) for the species for a given overproduction rate. This comparison 173 

of requirements and overproduction levels provides information about the expected 174 

relative strengths of the engineered interactions.  175 

 176 
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B. fragilis was the highest overproducer (Arg at 362 uM). Corresponding 177 

supplementation would allow growth of E. coli to OD 0.144, S. Typhimurium to OD 178 

0.166 and B. theta to OD 0.154. B. theta overproduced Trp at 34 uM, allowing expected 179 

growth for E. coli to OD 0.411, S. Typhimurium to OD 0.156 and B. fragilis to OD 0.128. 180 

E. coli overproduced Met at 5.3 uM, allowing expected growth of S. Typhimurium to OD 181 

0.032, B. theta to 0.017 and B. fragilis to OD 0.027. S. Typhimurium overproduces His 182 

at 16 uM, allowing for expected growth of E. coli to OD 0.028, but not supporting 183 

Bacteroides spp. growth, which required concentrations higher than 100 uM. 184 

Interestingly, the unengineered Bacteroides spp. also produced detectable amounts of 185 

some amino acids, whereas the other wild-type species did not. In the case of B. theta, 186 

the detected levels of Trp would, in principle, be high enough to support growth of other 187 

consortium members. Overall, our findings suggest relatively strong engineered 188 

cooperation from Bacteroides spp to other strains, moderate cooperation from E. coli to 189 

other strains, and the weakest cooperation from S. Typhimurium to other strains.  190 

 191 

Amino Acid Overproducers can Rescue Growth Defects of Corresponding  192 

Auxotrophs 193 

Having established amino acid requirements and overproduction levels for each strain, 194 

we assessed pairwise cross-feeding using culture supernatants from the overproducing 195 

and wild-type strains to test for growth of the corresponding auxotrophs (Figure 2b). 196 

Cells were grown for 24 hr before supernatant was collected (Figure 2c). Notably, three 197 

out of the four engineered species did not show any growth defect compared to the WT; 198 

B. theta growth was decreased by 3-fold. Extent of rescue was determined by OD600 199 

values after 24 hr of growth in supernatant that was diluted 1:1 with fresh media lacking 200 

the tested amino acid (Figure 2d). As another comparator, we grew the auxotrophic 201 

strains without amino acid supplementation and with full supplementation (1 mM of each 202 

amino acid). As expected, we detected no growth in any of the auxotrophs when no 203 

amino acid was supplied, and growth with full supplementation.  204 

 205 

Consistent with our design, and our amino acid requirement and overproduction data, E. 206 

coli grew well in supernatant from engineered B. theta (180% of fully supplemented 207 
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growth) and B. fragilis (130%), and somewhat in supernatant from engineered S. 208 

Typhimurium (13%). Interestingly, E. coli grew better in Bacteroides spp. supernatant 209 

than in fully supplemented media, suggesting that these Bacteroides spp. may produce 210 

other beneficial metabolites for E. coli. S. Typhimurium grew relatively well in E. coli 211 

supernatant (88%), and also showed enhanced growth in the Bacteroides spp. 212 

supernatants (330% in B. theta supernatant, and 227% in B. fragilis supernatant). As 213 

expected from our requirement and overproduction data, B. theta is only marginally 214 

rescued by engineered E. coli (3%). Overall, these experiments indicate cross-feeding 215 

between the engineered bacterial strains. 216 

 217 

However, in some cases the supernatants did not perform as well as predicted or in 218 

comparison to co-cultures.  B. fragilis rescued B. theta growth much less than expected 219 

(12%) from our overproduction data. This finding suggests that B. fragilis may secrete 220 

factors that inhibit B. theta growth, but not E. coli or S. Typhimurium. Indeed, 221 

competitive interactions among more closely related species have previously been 222 

reported, possibly due to competition for similar niches (Bauer et al., 2018).  No growth 223 

by B. theta in S. Typhimurium supernatant was evident. B. fragilis was not rescued well 224 

by any of the strains (Figure 2d, blue panel). Taken together, these results may reflect 225 

production of toxic compounds that are enriched in supernatants of grown cultures but 226 

might play a lesser role in co-cultures.  227 

 228 

 229 

Cooperation and Population Balance of the Consortium in vitro is Inducible 230 

Based on Amino Acid Abundance 231 

Having investigated pairwise interactions in our consortium, we next sought to 232 

characterize properties of the entire consortium versus individual members. Using a 233 

medium that we specifically designed to accommodate the four bacterial species in a 234 

single batch culture, and without amino acid supplementation, we grew monocultures 235 

and co-cultures of WT and the engineered consortia and estimated bacterial abundance 236 

(cfu/mL) via qPCR after 24 hr (Figure 3A,B).  237 

 238 
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By comparing growth of strains in monoculture to the full consortium co-culture, we can 239 

assess the degree of cooperativity in the bacterial community. We quantify this behavior 240 

using a cooperation factor, defined as the total concentration of the co-culture divided 241 

by the sum of the concentrations of the monocultures. According to this definition, a 242 

cooperation factor <1 indicates competitive behavior, whereas a cooperation factor of 243 

>1 indicates cooperation. For the WT consortium, each of the strains grew better in 244 

monoculture than in co-culture (Figure 3B), with a cooperation factor of 0.14. This 245 

finding suggests pre-existing negative interactions among the WT species, e.g., 246 

competition for nutrients or production of compounds toxic to the other species. For the 247 

engineered consortia, the cooperation factor is 1.18, indicating that our engineering 248 

strategy has led to a net growth improvement when the complete consortium is able to 249 

interact. Note that much of the growth improvement is due to E. coli and S. 250 

Typhimurium growth, whereas B. theta and B. fragilis growth is essentially unchanged.  251 

This suggests that our engineering introduced net positive interactions for E. coli and S. 252 

Typhimurium, while neutralizing competitive effects on B. theta and B. fragilis present in 253 

the WT consortium.  254 

 255 

Since our engineering design is based on amino-acid cross-feeding, we hypothesized 256 

that by varying the concentrations of amino acids in the medium, we could control the 257 

degree of cooperativity among the consortium members. To test this hypothesis, we 258 

subjected the engineered bacteria in monoculture and co-culture to different 259 

concentrations of relative amino acid supplementation (Figure 3C). We measured 260 

bacterial abundance (cfu/mL) via qPCR after 24 hr and calculated cooperation factors 261 

for each condition. Overall, bacterial growth decreases for both monoculture and co-262 

culture conditions with decreasing supplementation, as expected. Interestingly, we were 263 

effectively able to ablate cooperativity with high amino acid supplementation; in this 264 

regime, the engineered consortium behaves like the WT consortium, with monoculture 265 

growth exceeding co-culture growth. As supplementation decreased, we found that the 266 

cooperativity factor consistently increased, with the factor exceeding 1 at a 267 

supplementation level of 3 uM. These findings are consistent with cross-feeding 268 
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behavior in naturally occurring microbial consortia, in which cooperativity only occurs 269 

during nutrient scarcity (Carlson et al., 2018).  270 

 271 

Our simulation studies showed that our engineering design could result in a consortium 272 

with a balanced population less susceptible to environmental changes. Thus, we were 273 

interested in how varying amino acid supplementation would affect population balance. 274 

To assess this, we measured relative abundances of each species in the engineered 275 

consortium (Figure 3C, lower panel) via strain-specific qPCR. We quantitated population 276 

balance using the normalized entropy measure (also called the evenness index) for the 277 

consortium. With this measure, a completely even (balanced) community would have a 278 

relative entropy of one.  279 

 280 

We found that the highest population evenness occurred with the highest 281 

supplementation (1000 uM.) This is likely because all the required amino acids are 282 

supplied, which reduces competition that would lower population evenness. When 283 

supplementation is decreased to intermediate levels (30 and 100 uM), the relative 284 

abundances of bacteria become less even, i.e. entropy decreases. Specifically, 285 

Bacteroides spp. abundance decreases dramatically, and E. coli and S. Typhimurium 286 

dominate the culture. This level of supplementation represents a “mismatched” regime, 287 

in which amino acid concentrations are high enough to support some of the species (S. 288 

Typhimurium and E. coli, which have the lowest amino acid requirements), but not the 289 

others (the Bacteroides spp., which have higher requirements.) When amino acid 290 

supplementation is reduced further (particularly below 20 uM), the ecosystem enters a 291 

low nutrient regime characterized by increased cooperativity as described above, and 292 

population evenness increases again, almost to levels seen with the highest levels of 293 

supplementation. 294 

 295 

The Engineered Consortium Exhibits Greater Stability  296 

Our amino acid supplementation experiments demonstrated that a microbial consortium 297 

with low cooperativity can exhibit high population evenness, but can also be less stable. 298 

One measure of stability is the extent to which a system tends to reach the same end-299 
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point or steady-state, even if it starts in a different initial state. Indeed, this behavior is a 300 

necessary condition for common microbial dynamical systems models to exhibit 301 

asymptotic stability (Gibson et al., 2017). To assess the stability of our consortium 302 

according to this criteria, we inoculated both WT and engineered consortia at five 303 

different starting concentrations each (Figure 4). In condition 1, all bacterial species 304 

were inoculated at the same ratios, and in conditions 2-5, we reduced one of the 305 

species’ inocula by a factor of 10. We then assessed growth of each strain in co-culture 306 

over 12 hours (Figure 4A, B) via strain-specfic qPCR. Both consortia reached consistent 307 

total concentrations at 12 hrs (approximately 5 x 107 cfu/mL, 1 x 106 cfu/mL for 308 

engineered.) However, the end-point abundances of the WT consortium members 309 

differed markedly, depending on the starting condition. In particular, for conditions 2-4, 310 

the low inoculum species remained low at 12 hrs. In contrast, the engineered 311 

consortium exhibited significantly greater consistency (p-value 0.0355) in end-point 312 

concentrations of the consortium members, regardless of the starting condition. These 313 

results demonstrate increased stability, a dynamical systems property, of the 314 

engineered consortium. 315 

 316 

Computational Analysis of in vitro Growth Dynamics of the Engineered Consortia 317 

over Time Elucidate a Net Positive Interaction Network 318 

Our design created a mutually coupled bacterial consortium designed to function 319 

together, suggesting that consortium behavior is best assessed in the full assemblage, 320 

rather than through pairwise co-culture experiments. In order to investigate such 321 

behavior, we analyzed the densely sampled time-series data from our experiments 322 

using the entire consortium with different initial starting conditions (Figures 4A,4B; 323 

described in the previous section) with a dynamical systems inference approach.  324 

 325 

Our dynamical systems approach uses a tailored model based on stochastic 326 

generalized Lotka-Volterra (gLV) dynamics and an associated fully Bayesian machine-327 

learning/statistical inference algorithm (Methods, Gibson and Gerber, 2018). Continuous 328 

time stochastic generalized Lotka-Volterra (gLV) dynamics can be expressed as: 329 
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d𝒙𝒙𝑡𝑡,𝑖𝑖,ℓ = �𝒓𝒓𝑖𝑖𝒙𝒙𝑡𝑡,𝑖𝑖,ℓ + �𝒂𝒂𝑖𝑖,𝑗𝑗𝒙𝒙𝑡𝑡,𝑖𝑖,ℓ𝒙𝒙𝑡𝑡,𝑗𝑗,ℓ

𝑛𝑛

𝑗𝑗=1

�d𝑡𝑡 + d𝒘𝒘𝑡𝑡,𝑖𝑖,ℓ 330 

where 𝒙𝒙𝑡𝑡,𝑖𝑖,ℓ is the abundance of microbe 𝑖𝑖 at time 𝑡𝑡 in experiment ℓ. The parameter 𝑟𝑟𝑖𝑖 331 

denotes the growth rate of microbe 𝑖𝑖, and 𝑎𝑎𝑖𝑖,𝑗𝑗 is the effect that microbe 𝑗𝑗 has on microbe 332 

𝑖𝑖. When 𝑖𝑖 = 𝑗𝑗 the expression 𝑎𝑎𝑖𝑖,𝑖𝑖 is a self-limiting term and together with 𝑟𝑟𝑖𝑖 determines 333 

the carrying capacity, − 𝑟𝑟𝑖𝑖
𝑎𝑎𝑖𝑖,𝑖𝑖

, of microbe 𝑖𝑖 if no other microbes were present. Finally, 𝒘𝒘 is 334 

the process disturbance term, which we assume is a Brownian motion. For inference, 335 

we discretize the continuous dynamics as described fully in Methods. 336 

 337 

We used our method to infer growth rates and microbe-microbe interaction strengths 338 

from our time-series data (Figure 4E,F). As we described above, the WT consortium 339 

achieves an overall higher concentration of approximately 5 x 107 versus 1 x 106 cfu/mL 340 

for the engineered consortium. This results in different scales for the self-interaction and 341 

interaction parameters across the two consortia, so we normalized the interaction 342 

matrices by steady-state dynamics (see Methods) to render the two consortia 343 

comparable. We see that the WT consortium has several strong aggregate negative 344 

interactions, e.g., mutual negative interactions between E. coli and S. Typhimurium. In 345 

contrast, the engineered consortium has aggregate neutral interactions, aside from one 346 

strong positive interaction from B. fragilis to S. Typhimurium.  347 

 348 

We can gain insight into the net changes in the quantitative structure of the synthetic 349 

microbial interaction network introduced by engineering, by subtracting the normalized 350 

WT network from the normalized engineered network, and keeping only interactions 351 

deemed significant with our inference method in at least one network. Using this 352 

analysis, we found 5 net positive and 7 net neutral interactions, confirming the ability of 353 

our engineering approach to promote cooperation in the consortium. Interestingly, since 354 

the WT interaction network shows strong competitive interactions, our model suggests 355 

that our engineering approach mostly promotes cooperatively by significantly weakening 356 

the naturally occurring competitive interactions.  357 

 358 
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The inferred network is generally consistent with our mono-culture and co-culture 359 

results. For instance, the strongest positive interaction in the engineered consortium is 360 

from B. fragilis to S. Typhimurium. Concordantly, B. fragilis overproduces the highest 361 

amount of its crossfed metabolite Arg, and S. Typhimurium is the strain that benefits 362 

most in co-culture. As another example, we did not infer any incoming positive 363 

interactions for B. fragilis, which is consistent with our finding that B. fragilis does not 364 

show improved growth in co-culture compared to monoculture.  Our model inferred 365 

mutual net positive interactions between E. coli to S. Typhimurium, which are consistent 366 

with our supernatant complementation experiments.  367 

 368 

Some aspects of the inferred model are inconsistent with the mono- and co-culture 369 

experiments, however. For instance, these experiments suggest a positive interaction 370 

from B. fragilis to E. coli, but this interaction does not appear in the inferred network. 371 

Because our model is inferred from longitudinal data, which is relatively sparse and 372 

noisy, it is not surprising that some interactions may not be detected. Further, our 373 

approach is fully Bayesian and takes into account uncertainty in both the model and 374 

measurements. This approach is by design conservative, meaning that it requires 375 

strong evidence from the data to formally detect an interaction. Thus, our approach will 376 

tend to report the strongest pre-existing or engineering induced interactions, and may 377 

miss weaker but still present interactions. Although weak interactions were enhanced by 378 

removing any amino acid supplementation in our experiments, these interactions may 379 

still fall below our threshold of detection. 380 

 381 

Simulations Based on Realistic Design Constraints Reveal Principles for Stability 382 

in Metabolically Cooperative Microbial Consortia 383 

We used information from our experiments and data-derived microbial interaction 384 

networks to systematically study consortia stability, and gain insight into general design 385 

principles. We present these simulations with increasingly realistic design constraints 386 

and demonstrate how such constraints lead to different cooperativity regimes. For 387 

simplicity of exposition, we assume the four species have identical growth rates 𝜌𝜌, self-388 

interaction terms 𝛿𝛿 (which is always negative), and identical interactions coefficients 𝛼𝛼 389 
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(Figure 5A). In our first, and least realistic design (Figure 5B), the growth rate and self-390 

interaction terms are kept constant, and only the positive interaction strength is 391 

increased. Under these constraints, the carrying capacity and stability of the system 392 

increases as the interaction strengths increase, up to the point of system instability. 393 

However, such a scenario is unrealistic, because on theoretical grounds, it would allow 394 

for the overall carrying capacity of the ecosystem to be arbitrarily increased. Moreover, 395 

it is inconsistent with our experimental evidence and data-derived model, which both 396 

show a lower overall carrying capacity for the engineered consortia relative to WT. This 397 

lowered carrying capacity is driven by both lower growth rates as well as increased 398 

negative autoregulation in each species, likely due to the dual burden of auxotrophy and 399 

overproduction.  400 

 401 

To match these realistic design constrains, we ran simulations in which increases in 402 

cooperative interactions were always accompanied by decreases in intrinsic growth 403 

rates and increases in the magnitude of negative autoregulation (Figure 5C.) We further 404 

assumed no interactions prior to engineering. In this scenario, the stability margin 405 

cannot be arbitrarily increased, and an engineering design arises, with intermediate 406 

cooperation strengths, that optimizes consortium robustness. If cooperation strengths 407 

are increased beyond this level, the consortium becomes less stable. Thus, we see that 408 

under realistic constraints, there is a trade-off between cooperativity and self-interest in 409 

the consortium, with an optimal intermediate.  410 

 411 

We next investigated the impact of pre-existing interactions, an important feature of 412 

naturally occurring heterogeneous bacterial species, on stability (Figure 5D.)  In this 413 

case, the robustness of the consortium again cannot be arbitrarily increased, and an 414 

engineering design that optimizes consortium stability arises. However, in contrast to 415 

the case with no interactions prior to engineering (Figure 5C), the optimal cooperativity 416 

strength is higher. This reflects the fact that engineering must first push pre-existing 417 

competitive interactions toward neutrality before pushing interactions into the optimal 418 

regime for consortium stability. These results suggest qualitative design principles for 419 
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engineering cooperative bacterial consortia, and provide tools for future analyses of 420 

specific designs. 421 

 422 

Consortia Engineering Increases Population Calance in the Mammalian Gut in a 423 

Diet Dependent Manner 424 

We investigated the behavior of our consortium in the mammalian gut, using gnotobiotic 425 

mice as a controlled yet sufficiently complex environment for evaluation. To investigate 426 

the role of amino acid cross-feeding in vivo, we altered amino acid levels in the gut by 427 

changing the animal’s diet (Ravindran et al., 2016). Groups of five germfree mice were 428 

fed standard or low protein (3%) chow and gavaged with either the WT or engineered 429 

consortium (Figure 6). The consortia were allowed to colonize for 10 days, and then 430 

stool samples were collected and interrogated via qPCR with species-specific primers.  431 

The engineered consortium consistently exhibited greater population evenness in mice 432 

that were fed low protein diet compared to the three other groups (Mann-Whitney test; 433 

p-values: 0.02, 0.03, 0.02).  434 

 435 

Our results show that diet influences total bacterial concentrations in both engineered 436 

and WT consortia, and each species in the consortium is affected to a different extent. 437 

For the engineered consortium, species abundances were higher by a factor of 438 

approximately 3 for E. coli, 8 for S. Typhimurium, 16 for B. theta, and 11 for B. fragilis in 439 

mice fed a standard versus a low protein diet. In the case of the WT consortium, S. 440 

Typhimurium, B. theta and B. fragilis concentrations were similarly higher on standard 441 

chow (fold changes of approximately: 10, 22, 13 respectively). WT E. coli 442 

concentrations were dramatically higher (fold change of approximately 51), and partially 443 

account for the greater population imbalance in the WT consortium. Interestingly, in the 444 

mice on a low protein diet, S. Typhimurium grew about 8-fold better in the engineered 445 

consortium compared to the WT consortium. This finding is consistent with our in vitro 446 

results, which indicated that engineered S. Typhimurium benefits most from growing in 447 

co-culture. The same trend can be observed in mice that were fed standard diet, albeit 448 

to a lesser extent. 449 

 450 
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 451 

Discussion 452 

We have engineered a heterogeneous synthetic bacterial consortium from four different 453 

gut-derived species, and demonstrated that this consortium exhibits inducible 454 

cooperativity, with increased stability and population balance. Using data-driven 455 

dynamical systems models, we have elucidated the interaction network among 456 

consortia members and shown that our engineering strategy acts to increase 457 

cooperativity largely by neutralizing pre-existing competitive interactions. Simulations 458 

based on the derived model provide further insights into general synthetic design 459 

strategies for these systems, showing a regime of optimal cooperativity that maximizes 460 

consortium stability. Finally, we demonstrate that our engineered consortium exhibits 461 

increased population balance in the complex mammalian gut environment when 462 

induced to cooperate, with this behavior alterable by the host diet. 463 

 464 

This work differs from previous approaches in two key aspects. First, while there have 465 

been reports of engineered multi-strain consortia (Minty et al., 2013; Zhou et al., 2015), 466 

we have engineered four different species that have relevance to gut applications. 467 

Second, previous efforts to engineer interactions via metabolite cross-feeding have 468 

relied on metabolite auxotrophies without corresponding overproduction (Mee et al., 469 

2014; Wintermute and Silver, 2010a). Here, we selected for overproducing strains for 470 

each of the four species, applying knowledge from industrial amino acid overproduction 471 

(Becker and Wittmann, 2012). 472 

 473 

We found that there are strong pre-existing negative interactions between WT strains 474 

(Figure 3b), which is not altogether surprising given the natural history of gut 475 

commensal bacteria. Negative interactions may include acidification (Ratzke et al., 476 

2018), scavenging of metals or other micronutrients (Hider and Kong, 2010), and 477 

competition for carbohydrate sources, among others. In some instances, we achieved 478 

measurable positive interactions, whereas in other cases the negative interactions were 479 

neutralized. Of note, our engineered consortia growth is reduced by about 100-fold 480 

compared to the WT consortia (Figure 3 a,b). In essence, we have introduced improved 481 
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cooperativity into the consortium with concomitant gains in stability and population 482 

balance, at the expense of strains’ individual fitness. Loss of fitness in this case is likely 483 

due to insufficient complementation by the overproducers as shown in our initial system 484 

characterization (Figure 2). Complementation could be improved in two ways: first 485 

directed evolution approaches could render a more efficient consortium, and second, 486 

we could apply rational engineering (e.g. introducing transporters or increasing 487 

overproduction) to improve cross-feeding. Genome sequencing of our mutated strains 488 

could aid in such approaches in future work.  489 

 490 

We have created a model ecosystem that allows us to study the effects that cooperation 491 

has on microbial consortia. While microbial cooperation is found in natural habitats 492 

(Hays et al., 2015b; Ponomarova et al., 2017; Rakoff-Nahoum et al., 2016), and there 493 

are many ecological theories that attempt to explain its evolution (Nowak, 2006; West et 494 

al., 2006; Zomorrodi and Segrè, 2016), there is a dearth of experimental systems to test 495 

such hypotheses. In our system, cooperation leads to improved growth of the overall 496 

synthetic consortia, but it also promotes continuing survival of each single species 497 

through improved population evenness. These two characteristics of our system make it 498 

an attractive test-bed to address questions about the evolution of cooperation, which 499 

serves both the consortia as a whole and each single species’ survival. 500 

 501 

We chose cross-feeding of amino acids as a model of cooperativity, because this 502 

approach has been well established and could readily be applied to disparate bacterial 503 

species. However, amino acids are also abundant in the animal gut and other 504 

environments, raising the possibility that background amino acids levels would simply 505 

saturate our synthetic consortium. Remarkably, our consortium demonstrated inducible 506 

cooperativity with increased population balance in our gnotobiotic mouse model (Figure 507 

6), despite the fact that the germ-free mouse gut contains amino acids from both diet 508 

and host sources.  This experimental system provides a relatively controlled, but still 509 

complex environment, and allows us to readily interpret behavior of the consortia alone 510 

without having to consider interactions with a pre-existing microbiota. Of note, all of the 511 

strains we used have been shown to individually colonize conventional mice, in some 512 
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cases without the need for prior antibiotic treatment (Kotula et al., 2014; Riglar et al., 513 

2017).  However, our approach using amino acid crossfeeding may not translate to a 514 

mammalian gut colonized with a pre-existing microbiota. Thus, when extending our 515 

results to more complex systems, more orthologous approaches to cooperativity are 516 

likely to be necessary to avoid host interference. 517 

 518 

Our computational approach is data-driven and phenomenological, abstracting various 519 

types of possible biological interactions (e.g., competition for nutrients, bacteriocin 520 

production, syntrophy, etc.) into quantitative pairwise interaction coefficients. This is a 521 

different modeling approach than that of many prior auxotroph-overproducer studies, 522 

which built detailed metabolic models. These models have not been shown to be 523 

reliable for diverse bacteria, such as the Bacteroides spp. in our consortium, in part due 524 

to limited knowledge of bacterial metabolism outside of a small number of model 525 

organisms. Moreover, as discussed, in a consortium with heterogeneous commensal 526 

gut bacteria as members, we expect there to be pre-existing interactions, many of which 527 

may not be metabolic. Thus, to gain insights into our consortium, rather than build a 528 

bottom-up metabolic model, we infer a phenomenological model from data.  Our model 529 

is based on stochastic generalized Volterra-Lotka (gLV) dynamics, which is a relatively 530 

simple model. More sophisticated models incorporate higher-order interactions or 531 

nonlinearities such as saturation effects. However, gLV models have been shown to 532 

accurately forecast dynamics in complex host-microbial ecosystems (Bucci et al., 2016), 533 

suggesting that the relatively simple assumption of pairwise quadratic interactions may 534 

dominate higher-order and more nonlinear effects. Moreover, reliable inference from 535 

data for more complicated models is not possible given the amount of densely sampled 536 

time-series data that we could feasibly collect for the present study.  537 

 538 

Overall, we have demonstrated a design, build and test cycle, applicable to engineering 539 

microbial consortia that function in the mammalian gut. There is currently interest in 540 

developing living bacterial diagnostics and therapeutics for human diseases. The first 541 

approach has been to attempt to transfer an uncharacterized microbiota, i.e., fecal 542 

microbiota transplants (Boyle, 2015). Subsequently, there have been efforts to 543 
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assemble defined collections of naturally occurring commensal bacteria (Atarashi et al.). 544 

While these approaches may work for some diseases, we could anticipate a need for 545 

precise and controllable behavior of therapeutics, which will require synthetic biology. 546 

Our results help to close this gap, providing new insights into the design principles 547 

needed to engineer robust and heterogeneous bacterial consortia. 548 

 549 

 550 

 551 

 552 

 553 

 554 

 555 

 556 
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 584 

Methods 585 

Auxotroph engineering 586 

For auxotroph generation in the E. coli NGF-1 strain we introduced multiple knockouts 587 

using sequential P1 transduction (Thomason et al., 2007) from the Keio knockout 588 

collection (Baba et al., 2006). Flip-out of kanamycin cassettes was done using pCP20 589 

(Cherepanov and Wackernagel, 1995). In brief, for P1 transduction we prepared phage 590 

by diluting an overnight culture of the donor strain 1:100 LB with 0.2% glucose, 5 mM 591 

CaCl2 and 25 mM MgCl2 and incubated for 1-2 hours at 37 °C until slightly turbid. We 592 

then added 40 µL P1 lysate and continued growth for 1-3 h at 37 °C while shaking until 593 

lysed. Lysate was then filtered with a 20 µm sterile filter and stored in the fridge. For 594 

transduction, we harvested 2 mL overnight culture of recipient strain and re-suspended 595 

in 2 mL LB with 5 mM CaCl2 and 100 mM MgSO4. We then mixed 100 µL donor lysate 596 

with 100 µL recipient, incubated 30 min at 37 °C and added 200 µL sodium citrate (1 M, 597 

pH 5.5) and 1 mL LB and incubated for another 1 hr at 37 °C. Cells were harvested, re-598 

suspended in 100 µL LB with 100 mM sodium citrate and plated on LB Kan plates (75 599 

µg/mL). The transduced kanamycin cassette was then removed using pCP20 according 600 

to protocol. We transformed pCP20 via electroporation and transformants were selected 601 

on LB agar plates supplemented with 100 µg/mL carbenicillin grown at 30 °C. Single 602 

colonies were re-streaked on LB without drugs and incubated for 10 hours at 42 °C. 603 

From there, single colonies were re-streaked on LB plates without drugs and grown 604 

overnight at 37 °C. Colonies were checked for Carbenicillin, and Kanamycin sensitivity 605 
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and further confirmed via PCR at respective loci. This procedure was repeated until all 606 

knockouts were introduced. 607 

 608 

Engineering of S. Typhimurium LT2 required generation of single knockout strains that 609 

contained pKD46 integrated into the genome, which allowed for linear DNA integration 610 

using lambda red recombination (Cherepanov and Wackernagel, 1995). We then 611 

introduced the knockouts into the S. Typhimurium strain through sequential P22 612 

transduction and pCP20 flipout analogous to E. coli engineering. Single knockout 613 

strains were generated by PCR amplifying a Kanamycin resistance cassette from 614 

pKD13 generating linear fragments that contained upstream and downstream homology 615 

to the gene of interest and the kanamycin cassette with FRT sequences. Fragments 616 

were introduced via electroporation and selected on LB agar plates supplemented with 617 

50 µg/mL Kanamycin. Sequential P22 transduction and pCP20 flip-out was essentially 618 

performed as described above for P1 transduction but lysis was done overnight.  619 

 620 

For knockout generation of both B. theta and B. fragilis, we used pExchange KO vectors 621 

as described (Mimee et al., 2015). Briefly, we introduced 750 bp flanking regions for 622 

genes of interest adjacent to each other into the vector. The vector contains an 623 

erythromycin resistance positive marker and a thymidine kinase as counter selection 624 

marker. Cloning was done in pir+ E. coli strains and vectors were transferred to MFDpir 625 

for conjugation (Ferrières et al., 2010). Conjugation was done according to protocol with 626 

minor changes. In brief, five drops of overnight culture of E. coli donor was inoculated in 627 

LB supplemented with 300 µM Diamino pimelic acid (DAP) and five drops of recipient 628 

overnight culture was inoculated in 50 mL basal media. Both cultures were grown for 629 

about 2 hr (E. coli aerobically, Bacteroides spp. anaerobically) until E. coli culture was 630 

well turbid and Bacteroides culture just slightly turbid. Subsequently, 9 mL recipient and 631 

3 mL donor were combined and spun down for 10 min at 4000 rpm together. The pellet 632 

was re-suspended in 100 µL fresh basal media with 300 µM DAP and pipetted on basal 633 

media agar plates without cysteine and supplemented with 300 µM DAP. The cells were 634 

incubated at 37 °C aerobically face up for up to 20 hr, scraped off and re-suspended in 635 

10% glycerol. Dilutions were plated on basal-agar plates supplemented with 10 µg/mL 636 
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erythromycin and incubated at 37 °C anaerobically for 2-3 days. Single colonies were 637 

re-streaked in the presence of erythromycin and grown for another 2 days. 10 single 638 

colonies were inoculated in basal media without drug and grown overnight. 500 µL of 639 

each culture was mixed, spun down and re-suspended in 10% glycerol. We then plated 640 

different dilutions on basal media plates supplemented with 5-fluoro-2-deoxy-uridine 641 

(FuDR) (200 µg/mL) and incubated at 37 °C anaerobically for 3 days. Knockouts were 642 

verified via PCR. This procedure was repeated multiple times to obtain the multiple 643 

auxotroph strains. 644 

 645 

Overproducer selection 646 

Overproducers were generated by selecting for mutants that could grow on minimal 647 

media agar plates supplemented with anti-metabolites (E. coli: 5 mg/mL Norleucine for 648 

Met overproduction; S. Typhimurium: > 0.7 mg/mL beta-(2-thiazolyl)-DL-alanine for His 649 

overproduction; B. theta: 50 µg/mL 4-methyl tryptophan for Trp overproduction; B. 650 

fragilis: 80 µg/mL Canavinine for Arg overproduction). Single colonies that showed 651 

halos were re-streaked and overproduction was measured using a bioassay. In brief, for 652 

screening of overproducing mutants the isolated strains were grown overnight at 37 °C 653 

shaking aerobically (for E. coli and S. typhimurium) or anaerobically without agitation 654 

(for Bacteroides spp.). Supernatant was harvested, diluted 1:1 with fresh media, and E. 655 

coli auxotrophs were inoculated and their growth was recorded after 24 hr. For E. coli 656 

NGF-1 overproducers, we used a S. Typhimurium auxotroph instead, since its colicin 657 

production prevented the E. coli biosensor from growing. Confirmed overproducers 658 

were further quantified using LC-MS.  659 

 660 

LC-MS for Overproduction Measurements 661 

To quantitate amino acid levels in overproducer supernatants, a standard curve was 662 

obained using freshly prepared amino acid standards dissolved in growth media (1mM, 663 

500 uM, 100 uM, 50 uM, 10 uM of L. Methionine, L/Histidine, L-Tryptophan, L-Arginine 664 

each). To prepare for HPLC-MS analysis, 0.5 mL sample or standard were added to 665 

1.5 mL ice-cold methanol and incubated on ice for 10 min. The mixture was centrifuged 666 

for 5 min at 15,000 rpm and 500 µL supernatant was vacuum concentrated and re-667 
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suspended in 50 µL methanol. Samples were kept on ice or at 4°C. HPLC-MS analysis 668 

of standards and extracts was carried out using an Agilent 1260 Infinity HPLC system 669 

equipped with an Agilent Eclipse Plus C18 (100 × 4.6 mm, particle size 3.5 mm, flow 670 

rate: 0.3 mL/min, solvent A: dd.H2O/0.1% (v/v) formic acid, solvent B: acetonitrile, 671 

injection volume: 4 mL) connected to an Agilent 6530 Accurate-Mass Q-TOF 672 

instrument. The following gradient was used (time/min, %B): 0, 0; 0.5, 0; 14, 100; 19, 673 

100; 20, 0, 25, 0. The mass spectrometer was operated in positive mode and the 674 

autosampler was kept at 4°C. After HPLC-MS analysis, extracted ion current (EIC) 675 

peaks were automatically integrated using the MassHunter Workstation Software 676 

(version: B.07.00). A plot of peak area versus amino acid concentration was used to 677 

generate a linear fit. 678 

 679 

Sequencing 680 

Bacterial cultures were prepared in rich media (basal for Bacteroides spp. and LB for E. 681 

coli and S. Typhimurium). Genomic DNA (gDNA) extraction was performed using the 682 

Wizard Genomic DNA Purification Kit (Promega) according to protocol. The extracted 683 

gDNA was sheared using Covaris DNA Shearing, and the library was prepared using 684 

Kapa Biosystem DNA Hyper Prep NGS Library (Dana Faber Core MBCFL Genomics). 685 

Sequencing was performed on the Illumina MiSeq instrument, with the 150 bp paired 686 

End (PE150) reagents. Sequences were analyzed for SNPs using Geneious software 687 

and published genome sequences (E. coli: CP016007.1; S. typhimurium: NC_003197; 688 

B. theta: AE015928; B. fragilis: NC_016776) (Table S1).  689 

 690 

Growth and Media Conditions 691 

All basal media and co-culture media was pre-incubated for at least 24 hr anaerobically 692 

before use. Bacteroides spp. were inoculated from glycerol stock into basal media, 693 

grown overnight and 400 µL was inoculated in 5 mL basal and grown 2 hr anaerobically. 694 

Cells were spun down, washed twice in PBS and diluted in growth media as described 695 

for each experiment in Results. E. coli and S. Typhimurium were inoculated from 696 

glycerol stock into LB and grown overnight at 37 °C while shaking. 100 µL of culture 697 

was then inoculated into pre-incubated LB and grown anaerobically for 2 hr, diluted, 698 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted September 25, 2018. ; https://doi.org/10.1101/426171doi: bioRxiv preprint 

https://doi.org/10.1101/426171


 24 

washed in PBS and diluted into co-culture media as described. Co-culture media 699 

consisted of modified M9 salts (0.2 g/L Na2HPO4, 90 mg/L KH2PO4, 30 mg/L NH4Cl, 15 700 

mg/L NaCl), 1 mM MgSO4, 10 µg/mL heme, 0.1 mM CaCl2, 1 µg/mL Niacinamide, 701 

vitamin B12 and thiamine, 400 µg/mL L-cysteine, 0.3% bicarbonate buffer, 2.5 ng/mL 702 

vitamin K, 2 µg/mL FeSO4*7H2O and carbon sources and amino acid supplementation 703 

as described in Results. 704 

 705 

Multiplex qPCR 706 

We designed strain specific primer/probe-fluorophore pairs according to IDT protocol 707 

(Table S2). We chose strain specific genes by multiple genome alignment between the 708 

strain of interest, the other consortia members and closely related strains using Mauve 709 

(Darling et al., 2004). Multiplex qPCR was used to quantify each strain in co-culture by 710 

using a standard curve obtained by plating late log phase cultures grown in rich media. 711 

In brief, each strain was grown from overnight culture for ~5 hours until about OD of 1. 712 

Cells were then counted by plating. Cultures were mixed, diluted and frozen at -80 °C 713 

for use as standard curve. Samples were diluted 1:10 in ddH2O and snap-frozen in 714 

liquid nitrogen and stored at least overnight at -80 °C. Growth curve and sample were 715 

both thawed together and prepared in a 5 µL Primetime Mastermix (IDT) with 1 µL 716 

Primer/Probe mixture (final concentrations: 100 nM for primers and 50 nM for probes). 717 

The qPCR was run with the following program: 20 min at 98 µC (to boil the cells and 718 

denature gDNA), followed by 40 cycles of 60 °C and 98 °C.  719 

 720 

Calculation of Normalized Entropy (Pielou’s Evenness) and Hellinger Distance 721 

Normalized entropy (Pielou’s evenness) was calculated according to the given formula: 722 

 723 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑢𝑢′𝑠𝑠 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 =  
−∑ 𝑝𝑝𝑖𝑖 ∗ ln (𝑝𝑝𝑖𝑖)4

𝑖𝑖=1

ln (𝑆𝑆)
 724 

 725 

Where pi refers to the population ratio of a given strain in the consortium of four strains. 726 

S is the number of species. 727 
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Hellinger distance was used as a metric for comparing consortia relative abundances. 728 

We computed Hellinger distances between different starting conditions in WT and 729 

engineered strains using the formula: 730 

 731 

𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 =  
1
√2

 ��(�𝑝𝑝𝑖𝑖 −  �𝑞𝑞𝑖𝑖)2
4

𝑖𝑖=1

 732 

Where pi and qi are the ratios of each strain in the consortium in two different conditions. 733 

 734 

 735 

Pairwise Supernatant Experiment 736 

Overproducers and WT strains were grown overnight anaerobically at 37 °C in co-737 

culture media and supernatant was harvested and sterile filtered. Auxotrophs were 738 

prepared as described in Media and Growth conditions and inoculated in media that 739 

contained 50% fresh co-culture media and 50% spent supernatant. OD600 was 740 

measured after 24 hr growth anaerobically at 37 °C. 741 

 742 

In vivo Experiments 743 

Adult (6-8 weeks) male Swiss Webster germ free mice bred in house at the 744 

Massachusetts Host-Microbiome Center were used. Animals were fed either on 745 

standard chow in the facility for the entire experiment, or on low-protein diet (3% custom 746 

diet, envigo, doubly irradiated) beginning 10 days prior to the experiment and continuing 747 

for its duration. To prepare bacteria for gavage, we grew each strain to mid-log phase, 748 

plated for counting and snap-froze aliquots. For gavage, aliquots were thawed, spun 749 

down, combined to achieve concentrations of approximately 107 per bacteria per 750 

gavage, and re-suspended in 200 µL 1x PBS with 0.05% L-cysteine for gavage. After 751 

gavage, mice were transferred to Optimice cages and maintained gnotobiotic for 10 752 

days. Fecal samples were collected prior gavage and at 10 days, and snap-frozen for 753 

storage at -80 °C. 754 

 755 

Molecular Analysis of in vivo Samples 756 
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DNA was extracted from fecal samples using the Zymobiomic 96 DNA Kit with the 757 

following modification: we omitted the silicon-ATM-HRC wash. Cells were lysed in a 758 

bead beater at speed 20 for 10 min, plates were turned and lysed for another 10 min at 759 

the same speed. We added an additional 3 min incubation step for Binding Buffer and 760 

additional 5 min incubation steps when transferring to Zymo-Spin-I-96-Z plates. Elution 761 

was done in 50 µL ZymoBIOMIC DNase/RNase Free Water.  762 

 763 

Direct multiplex probe-based qPCR was done on extracted DNA samples as described 764 

above. For standard curves, we used plated overnight cultures spiked into germfree 765 

fecal samples and extracted them as described above. 766 

 767 

Synthetic simulations of deterministic microbial dynamics in the presence of a 768 

disturbance 769 

For the synthetic results in Figure 1 and Figure 5, we used the following (deterministic) 770 

generalized Lotka-Volterra (gLV) dynamics with a constant disturbance 𝑑𝑑  771 

 d𝑥𝑥𝑘𝑘+1,𝑖𝑖

d𝑡𝑡
= 𝑥𝑥𝑘𝑘,𝑖𝑖 �𝑟𝑟𝑖𝑖 + �𝑎𝑎𝑖𝑖,𝑗𝑗𝑥𝑥𝑘𝑘,𝑗𝑗

4

𝑗𝑗=1

� + 𝑑𝑑𝑖𝑖 772 

The corresponding first order Euler integration of these dynamics with step size Δ𝑘𝑘 is as 773 

follows 774 

𝑥𝑥𝑘𝑘+1,𝑖𝑖 = 𝑥𝑥𝑘𝑘,𝑖𝑖 + 𝑥𝑥𝑘𝑘,𝑖𝑖 �𝑟𝑟𝑖𝑖 + �𝑎𝑎𝑖𝑖,𝑗𝑗𝑥𝑥𝑘𝑘,𝑗𝑗

4

𝑗𝑗=1

�Δ𝑘𝑘 + 𝑑𝑑𝑖𝑖Δ𝑘𝑘. 775 

For the simulations to generate Figure 1, the growth rate vector, interaction matrix, and 776 

disturbance vector for the non-interacting consortia are 777 

𝑟𝑟 = �
. 3
6
9

12

� , 𝐴𝐴 = �

−2
0
0
0

 

0
−2
0
0

 

0
0
−2
0

 

0
0
0
−2

� ,   and   𝑑𝑑 = �
0

−5.3
0
0

�. 778 

The growth rate vector, interaction matrix, and disturbance vector for the cooperative 779 

community are then as follows 780 
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𝑟𝑟 = �
. 3
6
9

12

� , 𝐴𝐴 = �

−2
0
0

0.2

 

0.5
−2
0.2
0

 

0
0
−2
0.2

 

0.5
0.5
0
−2

� ,   and   𝑑𝑑 = �
0

−5.3
0
0

�. 781 

Two simulation were performed for both the non-interacting and the cooperative 782 

community: one simulation without the disturbance present, and then the subsequent  783 

simulation with the disturbance present.  784 

 785 

For the simulations to generate Figure 5, the parameterization and simulation 786 

parameters are as specified in the figure. The robustness margin was calculated as the 787 

largest value of 𝜅𝜅 for which the disturbance vector 788 

𝑑𝑑 = �
0
−𝜅𝜅
0
0

�. 789 

can be applied to the dynamics without any of the 𝑥𝑥𝑖𝑖 becoming <0.01 in abundance (i.e., 790 

without any of the species going extinct during the simulation). For all synthetic results 791 

shown in Figures 1 and 5, the step size was Δ𝑘𝑘 = 0.005 for a total of 3000 steps. For 792 

generating Figure 5, the initial condition for all the species was an abundance of 2. 793 

 794 

Bayesian dynamical systems inference 795 

Our dynamical systems model and associated inference algorithm is a version of our 796 

previously published method (Gibson and Gerber, 2018) that we have customized for 797 

this study. Briefly, our model is based on continuous time stochastic gLV dynamics as 798 

described in Results. We approximate these dynamics with a first order Euler 799 

integration of step size Δ𝑘𝑘,ℓ 800 

𝒙𝒙𝑘𝑘+1,𝑖𝑖,ℓ = 𝒙𝒙𝑘𝑘,𝑖𝑖,ℓ + 𝒙𝒙𝑘𝑘,𝑖𝑖,ℓ �𝒓𝒓𝑖𝑖 + �𝒂𝒂𝑖𝑖,𝑗𝑗𝒙𝒙𝑘𝑘,𝑗𝑗,ℓ

4

𝑗𝑗=1

�Δ𝑘𝑘,ℓ + �Δ𝑘𝑘,ℓ�𝒘𝒘𝑘𝑘+1,𝑖𝑖,ℓ − 𝒘𝒘𝑘𝑘,𝑖𝑖,ℓ� 801 

Our model is fully Bayesian, with the inference goal being to learn the posterior 802 

probability distribution over both the model parameters as well as the qualitative 803 

interaction structure graph. To model the interaction structure graph, we use indicator 804 

variables 𝒛𝒛𝑖𝑖,𝑗𝑗, which indicate the presence or absence of the edge from species i to j in 805 

the graph. The resulting conditional distribution for dynamics is then: 806 
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𝒙𝒙𝑘𝑘+1,𝑖𝑖,ℓ � 𝒙𝒙𝑘𝑘,[𝑛𝑛],ℓ,𝒓𝒓,𝒂𝒂, 𝒛𝒛,𝝂𝝂𝑖𝑖𝒘𝒘807 

∼ Normal�𝒙𝒙𝑘𝑘,𝑖𝑖,ℓ + 𝒙𝒙𝑘𝑘,𝑖𝑖,ℓ �𝒓𝒓𝑖𝑖 +  𝒂𝒂𝑖𝑖,𝑖𝑖𝒙𝒙𝑘𝑘,𝑖𝑖,ℓ + �𝒂𝒂𝑖𝑖,𝑗𝑗𝒛𝒛𝑖𝑖,𝑗𝑗𝒙𝒙𝑘𝑘,𝑗𝑗,ℓ
𝑗𝑗≠𝑖𝑖

�Δ𝑘𝑘,ℓ,Δ𝑘𝑘,ℓ𝝂𝝂𝑖𝑖,ℓ𝒘𝒘 � 808 

Where 𝝂𝝂𝑖𝑖,ℓ𝒘𝒘  is the variance for the Brownian motion. Our measurements of microbial 809 

abundances are captured by the observed variable 𝒚𝒚. We introduce an auxiliary variable 810 

𝒒𝒒 that enables efficient inference of a relaxed system (see Gibson and Gerber, 2018 for 811 

details): 812 

𝒒𝒒𝑘𝑘,𝑖𝑖,ℓ � 𝒙𝒙𝑘𝑘,𝑖𝑖,ℓ ∼ Normal�𝒙𝒙𝑘𝑘,𝑖𝑖,ℓ, 𝜈𝜈𝒒𝒒� 813 

𝒒𝒒𝑘𝑘,𝑖𝑖,ℓ ∼ Uniform[0, 𝐿𝐿) 814 

𝒚𝒚𝑘𝑘,𝑖𝑖,ℓ � 𝒒𝒒𝑘𝑘,𝑖𝑖,ℓ ∼ Normal≥0�𝒒𝒒𝑘𝑘,𝑖𝑖,ℓ, 𝜈𝜈𝑘𝑘,𝑖𝑖,ℓ
𝒚𝒚 � 815 

We estimate the measurement variance 𝜈𝜈𝑘𝑘,𝑖𝑖,ℓ
𝒚𝒚  directly from qPCR technical replicates, 816 

obtaining 𝐿𝐿 = 1010, and 𝑣𝑣𝒒𝒒 = 106. The prior probability distributions for the indicator 817 

variables, the growth rates, and the interactions terms as defined below: 818 

𝒛𝒛𝑖𝑖,𝑗𝑗 ∼ Bernouli(0.5) 819 

𝒓𝒓𝑖𝑖 | 𝝂𝝂𝒓𝒓 ∼ Normal(0,𝝂𝝂𝒓𝒓) 820 

𝒂𝒂𝑖𝑖,𝑗𝑗 � 𝝂𝝂𝒂𝒂 ∼ Normal(0,𝝂𝝂𝒂𝒂) 821 

Note that our prior for z, the indicator variables for presence or absence of interaction 822 

edges is set to indicate maximum uncertainty, e.g., no a priori assumption about the 823 

presence or absence of an interaction. The variance parameters in our model that are 824 

not a-priori fixed or estimated from technical replicates have the following conjugate 825 

priors 826 

𝝂𝝂𝒓𝒓 ∼ Inv − Χ2(𝜂𝜂𝒓𝒓,𝜃𝜃𝒓𝒓) 827 

𝝂𝝂𝒂𝒂 ∼ Inv − Χ2(𝜂𝜂𝒂𝒂,𝜃𝜃𝒂𝒂) 828 

𝝂𝝂𝒘𝒘 ∼ Inv − Χ2(𝜂𝜂𝒘𝒘,𝜃𝜃𝒘𝒘) 829 

Our parameterization of the Inv − Χ2 is as follows 830 

𝑓𝑓(𝑥𝑥; 𝜂𝜂,𝜃𝜃) ≜
(𝜃𝜃𝜃𝜃/2)𝜂𝜂/2

Γ(𝜂𝜂/2)
exp �− 𝜂𝜂𝜂𝜂2𝑥𝑥�
𝑥𝑥1+𝜂𝜂/2  831 

which is sometimes referred to as the Scale − Inv − Χ2 distribution, because it has two 832 

parameters, number of degrees of freedom 𝜂𝜂, and scale parameter 𝜃𝜃. In our model 833 
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𝜂𝜂𝒓𝒓, 𝜂𝜂𝒓𝒓, 𝜂𝜂𝒓𝒓 = 1 with 𝜃𝜃𝒓𝒓 = 1, 𝜃𝜃𝒂𝒂 = 10−10, and 𝜃𝜃𝒘𝒘 = 106, specifying relatively diffuse priors. A 834 

compact representation of our model is shown in Supplemental Figure 1a with an 835 

accompanying graphical model with plate notation in Supplemental Figure 1b 836 

 837 

We perform model inference using a custom Markov Chain Monte Carlo (MCMC) 838 

algorithm. Almost all variables in the model can be updated with Gibbs or collapsed 839 

Gibbs sampling, with the exception of 𝒒𝒒 and 𝒙𝒙. Sampling of the auxiliary variables and 840 

latent trajectories require Metropolis-Hastings (MH) steps. For 𝒒𝒒, the MH proposal is 841 

based on a Generalized-Linear Model approximation. For 𝒙𝒙, we use a one time-step 842 

ahead proposal that is essentially the forward pass of a Kalman filter, see Supplemental 843 

Figure 1c and (Gibson and Gerber, 2018). Inference was performed with 6,000 MCMC 844 

steps where the first 1,000 steps are discarded (burn in). 845 

 846 
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 847 
Figure 1 Engineering positive interactions in a microbial consortia introduces 848 

resilience to disturbances. (A) Simulations show increased stability in consortia with 849 

positive interactions. In a non-interacting consortia, disturbances can lead to dramatic 850 

changes in consortia composition; in this example, the disturbance causes one of the 851 

strains to die out. Introducing positive interactions among the consortia strains 852 

increases stability in the presence of disturbances. (B) Our engineering design, which 853 

introduces mutual positive interactions by cross-feeding metabolites. Each strain was 854 

knocked out for three amino acid biosynthesis pathways and mutated to overproduce 855 

one amino acid. Thus, four amino acids L-methionine (Met), L-histidine (His), L-856 

tryptophan (Trp) and L-arginine (Arg) are cross-fed between the four strains. 857 
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 858 

 859 

 860 
 861 

Figure 2 Characterization of auxotroph requirements and overproduction 862 

capabilities in a 4-species consortium. a. Growth response with indicated 863 
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overproduction. Each auxotroph was grown in media supplemented with varying 864 

concentrations of one amino acid and saturating concentration of the two others. 865 

Depicted is the average of three biological replicates; error bars indicate standard 866 

deviation. A sigmoidal curve was fit using GraphPad Prism 7. Overproduction 867 

(horizontal lines) falls largely within requirement values. b. Cross-feeding capabilities of 868 

each strain were assessed by testing for rescue of auxotrophs in supernatants obtained 869 

from overproducers. c. Growth of overproducers after 24 hr, at which point supernatant 870 

was collected for cross-feeding experiment. Overproduction does not affect growth with 871 

the exception of B. theta (3-fold reduction). Shown are three biological replicates with 872 

median indicated as horizontal line. d. Growth of auxotrophs with and without amino 873 

acid supplementation and in supernatant of engineered overproducers and WT 874 

equivalents. Shown are three biological replicates with median indicated as horizontal 875 

lines. Except for B. fragilis, all auxotrophs can be rescued to varying degrees. 876 

 877 

 878 

 879 

 880 

 881 

 882 
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 883 
Figure 3 Engineering introduces increased cooperativity manifested in population 884 

balance. a./b. Growth of engineered (a.) and WT (b.) mono cultures and co-culture 885 
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grown without supplementation was recorded after 24 hr as qPCR cfu/mL estimates. 886 

Shown are three replicates with median indicated. For engineered strains co-culture 887 

reaches higher cfu/mL than sum of monocultures quantified by cooperation factor. *sum 888 

in co-culture in engineered strains is significantly larger than sum in monocultures 889 

(Mann-Whitney test; p-value: 0.0071) c./d. Population ratios and calculated balance 890 

factor for engineered and WT co-cultures. Balance for engineered strains is higher than 891 

for WT strains. e. Supplementation titration experiment. Engineered consortia co-culture 892 

and mono cultures were subjected to a range of amino acid supplementation and was 893 

analyzed after 24 hr via qPCR. Upper panel: sum of monocultures growth (empty 894 

circles) and co-culture growth (filled circles) and calculated cooperation factor (grey 895 

bars). Shown are three replicas with median indicated as black line. Cooperation 896 

increases with decreasing supplementation. Lower Panel: Population ratios of co-897 

cultures as function of supplementation. Shown is the mean of three replicas. At high 898 

supplementation, evenness is high, then drops at intermediate levels and rises again at 899 

lower levels. Cooperation and evenness co-vary. 900 

 901 

 902 

 903 

 904 

 905 

 906 

 907 

 908 

 909 

 910 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted September 25, 2018. ; https://doi.org/10.1101/426171doi: bioRxiv preprint 

https://doi.org/10.1101/426171


 35 

 911 
Fig 4 Engineered consortia exhibits net positive interaction structure and 912 

increased stability. a. We inoculated WT and engineered consortia in media without 913 

amino acid supplementation and followed growth over time. Starting inocula varied to 914 

mimic external perturbations. Each strain was inoculated at the same ratio (condition 1) 915 

and then each one dropped down by 1:10 (condition 2-5). Total bacterial abundance 916 

(black dots) and relative abundances (colored bars) for each starting condition for WT 917 

and engineered strains in sequence. Shown are data from one representative 918 
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experiment. WT consortia grow to about 100-fold higher cfu/mL. c. Hellinger distance 919 

between population ratios of all conditions at 12 hr time point calculated for WT and 920 

engineered consortia. The Hellinger distance for engineered consortia is lower than for 921 

WT consortia (Mann-Whitney p-value: 0.0355). d. Inferred growth rates and Jacobians 922 

of the inferred dynamics for both WT and engineered consortia (only interactions with 923 

Bayes factors greater than 1 shown). The Jacobians provide normalized measures of 924 

interaction strengths. e. Difference between engineered and WT Jacobians identifies 5 925 

net positive, 7 neutral interactions. 926 
 927 

 928 
Figure 5 Simulations investigating consortia stability with different design 929 

constraints. a. Baseline model of Lotka-Volterra dynamical system parameterized by 930 

growth rate 𝜌𝜌, self-interaction 𝛿𝛿 (which is negative), and identical interactions 931 

coefficients 𝛼𝛼, for all species. b. Scenario 1: as the interactions coefficient is increased, 932 

the system has an increased carrying capacity and robustness up to the point of system 933 

instability. c. Scenario 2: interactions coefficient is increased as the magnitude of the 934 

self-limiting term is increased, and the growth rate is decreased. This results in a more 935 

realistic scenario and a trade-off between cooperativity and self-interest emerges. d. 936 

Scenario 3:  similar to Scenario 2, but instead of the interactions coefficient starting at 937 

zero, it begins with a negative value (pre-existing competitive interactions), mimicking 938 

what we observed in our engineered consortia. This also results in a trade-off between 939 

cooperativity and self-interest, with a higher optimal interactions coefficient than c.  940 
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 941 

 942 
Figure 6. Consortia engineering increases population balance in the mammalian 943 

gut in a diet dependent manner. a. Four groups of 5 germfree mice were either fed 944 

low protein diet or standard diet, and inoculated with either the engineered or WT 945 

bacterial consortia. Fecal samples 10 days post-inoculation were analyzed via strain-946 

specific qPCR to assess concentrations of each consortia species. b. Population 947 

balance or evenness of consortia, expressed as normalized entropy of the population 948 

proportions. Bar indicates Median. Mann-Whitney test showed significantly increased 949 

population of the engineered consortia in mice that were fed low protein diet compared 950 

to the consortia in the three other groups (p-values: 0.024, 0.032, 0.015). Ec: E. coli; St: 951 

S. Typhimurium; Bt: B. theta; Bf: B. fragilis. 952 
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 953 

 954 

 955 

Table 1 Engineered strains and genotypes. a)prevents feedback inhibition (Veeravalli 956 

et al., 2014), b)decouples from histidine feedback inhibition (Malykh et al., 2018); c)trpE, 957 

removes feedback inhibition (Fang et al., 2015); d)arginine repressor, nonfunctional 958 

(Ginesy et al., 2015) 959 

 960 
 961 

 962 

 963 
Supplemental Figure 1. a. Description of key components of our Bayesian dynamical 964 

systems model for the consortia. Higher level priors not depicted for simplicity. b. 965 

Graphical Model depiction with plate notation. c. Portion of the Graphical Model 966 

unraveled in time, depicting a single time series experiment, and color coded to 967 

illustrate our inference method, using Metropolis-Hastings proposals, for filtering the 968 

latent state. The proposal uses information from the blue nodes to propose for the green 969 

Species Strain Auxotroph Genotype Other Genotype Overproduction Mutations
E. coli NGF ∆argA, ∆trpC, ∆hisA ∆thiE metA(I296S)a)

S. Tyhpimurium LT2 ∆argA, ∆trpC, ∆metA ∆thiE, ∆SPI1, ∆SPI2 hisG(E271K)b)

B theta VPI5482 ∆metA, ∆hisG, ∆argF, ∆thiSEG, ∆tdk BT_0532 (A306V; N63D)c)

B. fragilis 368R ∆metA, ∆hisG, ∆trpC ∆thiSEG, ∆tdk BF638R_0532 (L26R)d)
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node, but does not use future time information highlighted in red. The future information 970 

is however accounted for in the target distribution and thus the algorithm samples from 971 

the true posterior. 972 

 973 
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