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 911 
Fig 4 Engineered consortia exhibits net positive interaction structure and 912 

increased stability. a. We inoculated WT and engineered consortia in media without 913 

amino acid supplementation and followed growth over time. Starting inocula varied to 914 

mimic external perturbations. Each strain was inoculated at the same ratio (condition 1) 915 

and then each one dropped down by 1:10 (condition 2-5). Total bacterial abundance 916 

(black dots) and relative abundances (colored bars) for each starting condition for WT 917 

and engineered strains in sequence. Shown are data from one representative 918 
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experiment. WT consortia grow to about 100-fold higher cfu/mL. c. Hellinger distance 919 

between population ratios of all conditions at 12 hr time point calculated for WT and 920 

engineered consortia. The Hellinger distance for engineered consortia is lower than for 921 

WT consortia (Mann-Whitney p-value: 0.0355). d. Inferred growth rates and Jacobians 922 

of the inferred dynamics for both WT and engineered consortia (only interactions with 923 

Bayes factors greater than 1 shown). The Jacobians provide normalized measures of 924 

interaction strengths. e. Difference between engineered and WT Jacobians identifies 5 925 

net positive, 7 neutral interactions. 926 
 927 

 928 
Figure 5 Simulations investigating consortia stability with different design 929 

constraints. a. Baseline model of Lotka-Volterra dynamical system parameterized by 930 

growth rate 𝜌𝜌, self-interaction 𝛿𝛿 (which is negative), and identical interactions 931 

coefficients 𝛼𝛼, for all species. b. Scenario 1: as the interactions coefficient is increased, 932 

the system has an increased carrying capacity and robustness up to the point of system 933 

instability. c. Scenario 2: interactions coefficient is increased as the magnitude of the 934 

self-limiting term is increased, and the growth rate is decreased. This results in a more 935 

realistic scenario and a trade-off between cooperativity and self-interest emerges. d. 936 

Scenario 3:  similar to Scenario 2, but instead of the interactions coefficient starting at 937 

zero, it begins with a negative value (pre-existing competitive interactions), mimicking 938 

what we observed in our engineered consortia. This also results in a trade-off between 939 

cooperativity and self-interest, with a higher optimal interactions coefficient than c.  940 
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 941 

 942 
Figure 6. Consortia engineering increases population balance in the mammalian 943 

gut in a diet dependent manner. a. Four groups of 5 germfree mice were either fed 944 

low protein diet or standard diet, and inoculated with either the engineered or WT 945 

bacterial consortia. Fecal samples 10 days post-inoculation were analyzed via strain-946 

specific qPCR to assess concentrations of each consortia species. b. Population 947 

balance or evenness of consortia, expressed as normalized entropy of the population 948 

proportions. Bar indicates Median. Mann-Whitney test showed significantly increased 949 

population of the engineered consortia in mice that were fed low protein diet compared 950 

to the consortia in the three other groups (p-values: 0.024, 0.032, 0.015). Ec: E. coli; St: 951 

S. Typhimurium; Bt: B. theta; Bf: B. fragilis. 952 
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 953 

 954 

 955 

Table 1 Engineered strains and genotypes. a)prevents feedback inhibition (Veeravalli 956 

et al., 2014), b)decouples from histidine feedback inhibition (Malykh et al., 2018); c)trpE, 957 

removes feedback inhibition (Fang et al., 2015); d)arginine repressor, nonfunctional 958 

(Ginesy et al., 2015) 959 

 960 
 961 

 962 

 963 
Supplemental Figure 1. a. Description of key components of our Bayesian dynamical 964 

systems model for the consortia. Higher level priors not depicted for simplicity. b. 965 

Graphical Model depiction with plate notation. c. Portion of the Graphical Model 966 

unraveled in time, depicting a single time series experiment, and color coded to 967 

illustrate our inference method, using Metropolis-Hastings proposals, for filtering the 968 

latent state. The proposal uses information from the blue nodes to propose for the green 969 

Species Strain Auxotroph Genotype Other Genotype Overproduction Mutations
E. coli NGF ∆argA, ∆trpC, ∆hisA ∆thiE metA(I296S)a)

S. Tyhpimurium LT2 ∆argA, ∆trpC, ∆metA ∆thiE, ∆SPI1, ∆SPI2 hisG(E271K)b)

B theta VPI5482 ∆metA, ∆hisG, ∆argF, ∆thiSEG, ∆tdk BT_0532 (A306V; N63D)c)

B. fragilis 368R ∆metA, ∆hisG, ∆trpC ∆thiSEG, ∆tdk BF638R_0532 (L26R)d)
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node, but does not use future time information highlighted in red. The future information 970 

is however accounted for in the target distribution and thus the algorithm samples from 971 

the true posterior. 972 

 973 

 974 

 975 

 976 
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