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Abstract 

Recent large-scale genomics efforts have better characterized the molecular correlates of 

schizophrenia in postmortem human neocortex, but not hippocampus which is a brain region 

prominently implicated in its pathogenesis. Here in the second phase of the BrainSeq 

Consortium (Phase II), we have generated RiboZero RNA-seq data for 900 samples across 

both the dorsolateral prefrontal cortex (DLPFC) and the hippocampus (HIPPO) for 551 

individuals (286 affected by schizophrenia disorder: SCZD). We identify substantial regional 

differences in gene expression, in both pre- and post-natal life, and find widespread differences 

in how genes are regulated across development. By extending  quality surrogate variable 

analysis (qSVA) to multiple brain regions, we identified 48 and 245 differentially expressed 

genes (DEG) by SCZD diagnosis (FDR<5%) in HIPPO and DLPFC, respectively, with 

surprisingly minimal overlap in DEG between the two brain regions. We further identified 

205,618 brain region-dependent eQTLs (FDR<1%) and found that 124 GWAS risk loci contain 

eQTLs in at least one of the regions. We also identify potential molecular correlates of in vivo 

evidence of altered prefrontal-hippocampal functional coherence in schizophrenia. These results 

underscore the complexity and regional heterogeneity of the transcriptional correlates of 

schizophrenia, and suggest future schizophrenia therapeutics may need to target molecular 

pathologies localized to specific brain regions. 

 

Main text 

Introduction 

Schizophrenia is a psychiatric disorder that affects ~1% of the worldwide population and 

is linked to major socio-economic costs (Gore et al., 2011; Millan et al., 2016). As a highly 

heritable (Schizophrenia Working Group of the Psychiatric Genomics Consortium, 2014) 
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disorder, it interferes with brain development and maturation, and has a wide range of severity 

and age of onset, though is typically diagnosed in young adults (Millan et al., 2016). Different 

treatments exist that have various degrees of efficacy against mainly so-called positive 

symptoms, though improving the treatment of these symptoms remains a crucial goal (Leucht et 

al., 2013; Millan et al., 2016). 

Novel therapeutics used to treat psychiatric disorders have been lacking for many 

decades, primarily due to a lack of understanding of the u nderlying neural mechanisms that 

drive disease (Hyman, 2012). In disorders like schizophrenia, this problem is further 

exacerbated by the variety of complex and variable clinical characteristics. Genetic studies play 

a critical role in understanding the etiology of neurodevelopmental disorders and informing the 

development of novel therapeutics to treat these diseases. Recent efforts by the Psychiatric 

Genomics Consortium (PGC) have found hundreds of loci with a significant genome-wide 

association with risk for schizophrenia (Pardiñas et al., 2018; Schizophrenia Working Group of 

the Psychiatric Genomics Consortium, 2014). However, translating an association between a 

locus and a disease into therapeutic treatments is a challenging task: the biological importance 

of associated genetic variation must first be understood.  

BrainSeq, a Human Brain Genomics Consortium consisting of six pharmaceutical 

companies working pre-competitively with the Lieber Institute for Brain Development, was 

initiated with the goal of generating publicly-available neurogenomic datasets (RNA sequence, 

genotype, and DNA methylation) in postmortem brain tissue to enhance the understanding of 

psychiatric disorders (BrainSeq Consortium, 2015). In the first phase of BrainSeq, we identified 

widespread genetic, developmental, and schizophrenia-associated changes in polyadenylated 

RNAs in the dorsolateral prefrontal cortex (DLPFC) (Jaffe et al., 2018) using polyA+ RNA 

sequencing (RNA-seq) to prioritize protein-coding changes in gene expression. Other research 
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groups, in particular the Common Mind Consortium, have also focused on understanding gene 

expression and regulation in schizophrenic brain (Fromer et al., 2016). However, in general, the 

transcriptional landscape of hippocampus (HIPPO), another region prominently implicated in the 

pathogenesis of schizophrenia (Callicott et al., 1998; Rasetti et al., 2014; Weinberger, 1999), is 

much less well-explored, as current large consortia have prioritized neocortical brain regions like 

DLPFC (Fromer et al., 2016; PsychENCODE Consortium et al., 2015) despite differences in 

neuronal clonal organization (Xu et al., 2014) and the timing of their formation (Rice and 

Barone, 2000; Weinberger, 1999). 

Here, in the second phase of the BrainSeq Consortium, we studied the expression 

differences between DLPFC and HIPPO by performing RNA-seq using RiboZero on 900 tissue 

samples across 551 individuals (286 with schizophrenia) in both DLPFC (n=453) and in HIPPO 

(n=447, Figure S1 , Figure S2  A). We quantified expression of multiple feature summarizations 

of the Gencode v25 reference transcriptome, including genes, exons and splice junctions. 

These summarization methods are consistent with (Jaffe et al., 2018) and allow the exploration 

of both the annotated and unannotated transcriptome. We compared expression within and 

across brain regions, modeled age-related changes in controls using linear splines, integrated 

genetic data to perform expression quantitative trait loci (eQTL) analyses, and performed 

differential expression analyses controlling for observed and latent confounders. By extending 

the experiment-based quality surrogate variable (qSVA) framework (Jaffe et al., 2017), we 

adjusted for RNA degradation across multiple brain regions and reduced false positives. We 

also explored at the molecular level evidence from in vivo imaging studies that the pattern of 

functional coherence between DLPFC and HIPPO is altered in patients with schizophrenia. 

Together these results help shed light on the complex regional and molecular heterogeneity of 

schizophrenia-associated gene expression in human brain.  
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Results 

 

The BrainSeq Phase II dataset was created to better understand the differences in brain 

gene expression in developmental regulation, genetic control and subsequent dysregulation in 

schizophrenia (Figure S1 , Material and Methods: postmortem brain tissue acquisition and 

processing, RNA sequencing). After processing the RNA-seq data, we performed extensive 

quality control to identify low quality samples and resolve potential sample swaps prior to 

filtering features with low expression across both brain regions together (Figure S3 , Figure S4 , 

Materials and Methods: RNA-seq processing pipeline, feature filtering by expression levels, 

genotype data processing, and the experiment-based qSVA approach to RNA quality control). 

We analyzed 24,652 genes, 396,583 exons, and 297,181 exon-exon junctions that were 

expressed across experiment-specific subsets of the 900 samples for all subsequent analyses.  

 

Regional differences in expression between brain regions across development 

We first explored differences in expression between DLPFC and HIPPO among non-psychiatric 

controls (Materials and Methods: differential expression by brain region in prenatal and adult 

samples). We compared the regions using both adult (age>=18 years, range: 18 to 96 years) 

and prenatal (age<0, range: 14 to 22 post-conception weeks) samples, separately (Figure S2 

B, total adult n=460, prenatal n=57). We also used 26 subjects (adult n=8, prenatal n=18) 

across 52 samples from the same two regions available in the smaller BrainSpan project as a 

potential replication dataset (BrainSpan, 2011) (Figure S2  C). Replication rate of differentially 

expressed features was determined across several Bonferroni-adjusted p-value thresholds 

while further requiring a consistent directionality of the expression differences (Figure 1  A, 
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Materials and Methods: Replication analysis with BrainSpan). This conservative analysis 

identified 1,612 and 32 genes differentially expressed between DLPFC and HIPPO among adult 

and prenatal age groups, respectively, (Figure 1  B) at Bonferroni-adjusted p-value <0.01 and 

replicating in BrainSpan. These results echo earlier reports (Sousa et al., 2017) suggesting 

cortical gene expression during fetal life reflects less differentiation of cell types and connectivity 

patterns compared with adult cortex. Moreover, individual exons from a total of 3,375 genes and 

exon-exon junctions from 37 genes were differentially expressed between these two regions in 

adults (Figure 1  B). Transcript-level results were mostly complementary in adults as only one 

differentially expressed transcript was detected in the prenatal age group (Figure S5 ). These 

differential expression results in adults reflect fewer reads spanning exon-exon junctions and 

differences in complexity between gene and exon read assignments and coverage, particularly 

using ribosomal depletion. The modest differential expression results for the prenatal age group 

could be due at least in part to the relatively small sample sizes in both BrainSeq Phase II and 

BrainSpan. 

Overall, there were large brain regional expression differences, particularly among adults 

by effect size as shown in Figure 1  C. However, we note that many of the strongest effects did 

not replicate in BrainSpan which could be due to the smaller sample size in that dataset. We did 

observe, however, higher replication rates when only considering directionality (Figure S6 ). In 

the adult samples, enriched gene ontology (GO) terms and Kyoto Encyclopedia of Genes and 

Genomes (KEGG) pathways for differentially expressed genes (DEGs) include biological 

processes such as axonogenesis and neurogenesis that are consistently observed across the 

three main expression features (Figure S7  A) with higher expression in DLPFC than HIPPO. 

We also observed DEG enrichment for ion channel activity and binding molecular functions 

(Figure S7  B), synaptic membrane and transporter complex cellular components (Figure S7  C) 
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and GABAergic and cholinergic synapse pathways (Figure S7  D, exons and junctions only). In 

the prenatal age group, although overall there were fewer enriched GO terms and KEGG 

pathways (Figure S8 ) for the regionally DEGs, likely because there were fewer DEGs, 

increased positive regulation of neurogenesis (Figure S8  A) as well as relatively increased 

basal transcription machinery binding (Figure S8  B), nuclear chromatin (Figure S8  C), and 

biosynthesis of amino acids (Figure S8  D) were found in HIPPO compared with DLPFC. These 

findings are likely consistent with the earlier neuronal maturation of HIPPO compared with 

DLPFC (Rice and Barone, 2000). These analyses suggest expression landscapes in HIPPO 

and DLPFC begin to diverge in prenatal life and further diverge across brain development and 

aging.  

 

Developmental differences in expression between brain regions 

We hypothesized that these differences in expression between brain regions could arise 

from differences in the cellular components of these regions. Using DNA methylation data we 

estimated cell type proportions (Materials and Methods: DNA methylation) for embryonic stem 

plus precursor cells (ESC+NPC), glial and neuronal cells and found that the differences in cell 

composition between DLPFC and HIPPO within the prenatal age group get larger with 

advancing months of gestation (Figure 2  A) which supports the results from the above 

differentially expressed genes between the two brain regions in comparing the prenatal and 

adult age groups (Figure 1  B). Given the changes in cell composition between the brain regions 

over development, we expected to find large expression differences across development. 

We therefore partitioned age into six age groups and used a linear spline model to 

identify changes in expression between DLPFC and HIPPO across development and aging 

among all non-psychiatric controls (Figure S2  B, DLPFC n=300, HIPPO n=314). We 
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Bonferroni-adjusted the p-values and used BrainSpan (Figure S2 C, n=79) to survey the 

features that replicated in this external dataset (p<0.05). Exploration of the top 8 principal 

components (PCs) showed that brain region, pre- versus post-natal age (Figure S9 , PC1 mean 

20.5% and PC2 mean 10.9%, Figure S9 ) and sex (Figure S10 ) represented the main sources 

of variation across all feature types, while race was not associated with the top 8 PCs (Figure 

S11 ). The BrainSpan dataset presented similar patterns (age: Figure S12 , sex: Figure S13 , 

race: Figure S14 ) and we included these and other covariates as adjustment variables in the 

model (Materials and Methods: Differential expression over development). 

We identified widespread differences in transcriptional regulation between the DLPFC 

and HIPPO over development, with 10,839 genes differentially expressed between these 

regions dependent on age period (Bonferroni < 0.01) that are nominally replicated in BrainSpan 

(p<0.05, Figure 2  B). Of these genes, 5,982 (55%) contain differentially expressed exons and 

splice junctions that replicated in BrainSpan (Materials and Methods: Replication analysis with 

BrainSpan). For example, GABRD (Figure 2  C), which encodes a subunit of the major inhibitory 

neurotransmitter receptor in the mammalian brain, shows decreased expression in HIPPO 

compared to DLPFC in several of the age groups. Enriched GO terms among differentially 

expressed genes dependent on development at the gene, exon or exon-exon junction levels 

include regulation of GTPase activity and dendrite development biological processes (Figure 

S15  A), GTPase regulator activity molecular function (Figure S15 B), synaptic membrane and 

postsynaptic density cellular components (Figure S15  C), and calcium signaling and RNA 

degradation KEGG pathways (Figure S15  D). These results suggest unique developmental 

profiles of expression in the HIPPO and DLPFC, and likely further associate with the shifting 

cellular landscapes of development in these brain regions. 
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Unique schizophrenia-associated expression differences in HIPPO compared to DLPFC 

Given the different expression levels and developmental regulation between DLPFC and 

HIPPO, we next asked whether different genes were associated with schizophrenia diagnosis in 

the two regions. As we have shown previously (Jaffe et al., 2017), RNA degradation is a major if 

not universal confounder in SCZD cases versus non-psychiatric controls comparisons, due in 

part to different ante- and post-mortem conditions that is not fully addressed by adjusting for 

observable quality metrics (e.g. RIN, mitochondrial mapping rate, pH, etc) (Figure S16  A-B). 

The effect of RNA degradation can be better adjusted for by using the quality surrogate variable 

analysis (qSVA) framework which is based on an ex vivo RNA degradation experiment (Jaffe et 

al., 2017). We modified the qSVA framework so that it could be applied to more than one brain 

region by identifying a common set of expressed regions (Collado-Torres et al., 2017) that are 

associated with degradation across both brain regions (Figure S17 , Material and Methods: 

Degradation data generation, determining multi-region quality surrogate variables). Exploratory 

data analysis led us to exclude 43 HIPPO samples prepared with a different sequencing kit, as 

well as age < 17 samples, given that there are no SCZD cases in that age range in the 

BrainSeq Phase II dataset (Figure S16  C-F, Figure S2  D). We identified 15 and 16 quality 

surrogate variables (qSVs) for DLPFC and HIPPO respectively, and 22 when using both regions 

together. The top qSV for each brain region is similarly associated with RIN and SCZD 

diagnosis (Figure S18 ) as well as with other technical covariates. Degradation quality plots for 

each brain region suggest that the adapted qSVA workflow is effective in reducing the 

confounding by RNA degradation for the SCZD case-control analysis (Figure S19 , Material and 

Methods: DEqual plots). For example, a naïve model that does not adequately control for 

degradation, i.e. one based only on observed quality control metrics (e.g. RIN, pH, mito 

mapping rate), generated 6,429 differentially expressed by SCZD status in HIPPO at FDR<5%. 
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In contrast, when using qSVA, in HIPPO we identified 48 significantly differentially 

expressed genes between patients and controls (27 Control > SCZD, down; 21 Control < SCZD, 

up) while in DLPFC we identified 245 genes significantly differentially expressed (142 Control > 

SCZD, down; 103 Control < SCZD, up) at FDR< 5%. These numbers of genes scaled with the 

false discovery rate, as there were 101 genes (52 down, 49 up) in HIPPO and 632 in DLPFC 

(379 down, 253 up) at FDR<10%. We considered a more liberal set of DE genes in 

hippocampus (FDR<20%, N=332: 171 down, 161 up) than DLPFC (FDR<10%, N=632) for gene 

set enrichment analyses to ensure a sufficient number of input genes for inference. 

Interestingly, among the two sets of genes associated with differential expression based on 

diagnosis in the two regions, there was remarkably little overlap at the different feature levels 

(Figure 3  A-B for genes, Figure S20  for other expression features) and also little overlap 

across expression features (Figure S21  A-E) when grouped by Gencode gene ID.  

We used previously published data from BrainSeq Phase 1 (BSP1) and the 

CommonMind Consortium (CMC) to examine replication of these differences in DLPFC, which 

specifically could assess differences in library preparation protocols (polyA+ versus RiboZero) 

for a largely overlapping sample set and independently sequenced subjects in different labs, 

respectively. At the gene level, the DLPFC data significantly correlate (ρ=0.81) with the DLPFC 

BrainSeq Phase I (BSP1) results based on PolyA+ (Figure S22 ) as well as the CommonMind 

Consortium (CMC) dataset based on RiboZero (ρ=0.53, Figure S22  B) that we had previously 

re-processed (Fromer et al., 2016; Jaffe et al., 2018). In line with the lack of regional overlap 

among DE genes, the t-statistics for the top 400 differentially expressed genes by SCZD status 

in HIPPO do not predict the t-statistics in DLPFC (Figure 3  C), further showcasing the striking 

regional specificity. Similar comparisons against BSP1 (ρ=0.70) and CMC (ρ=0.18, Figure S22 ) 

show greater concordance with our DLPFC results than HIPPO. For example, among the genes 
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identified in BSP1 at FDR<10% that replicated in CMC, KCNA1 is differentially expressed in 

DLPFC but not in HIPPO (Figure 3  D) despite BSP1 and DLPFC having different RNA-seq 

library preparation protocols. 

We performed gene set enrichment analyses at the gene level for DEGs based on 

diagnosis in each brain region, which did show more overlap in biological processes than 

individual DEGs had suggested. In both DLPFC and HIPPO we found that myeloid leukocyte 

activation and regulation of ion transport processes (Figure 3  E-F, Figure S23  A, Figure S24 

A), peptidase and ATPase activity molecular functions (Figure S23  B, Figure S24  B) were 

enriched. For cellular components, axon and endosome membrane were enriched in DLPFC 

(Figure S23  C) while nuclear chromosome and actin cytoskeleton were enriched for HIPPO 

(Figure S24  C). For KEGG, we found enrichment of Alzheimer’s and Parkinson’s disease 

pathways for DLPFC (Figure S23  D) and cytosolic DNA-sensing and influenza A pathways for 

HIPPO (Figure S24  D), while phagosome and tuberculosis pathways were enriched in both 

brain regions. We also performed GO enrichment analyses (Figure S25 ) and found primarily 

enrichment across genes with decreased expression among SCZD cases for both brain regions. 

We found several biological processes related to immune processes among differentially 

expressed genes in both regions (Figure S25  A), but no overlap among enriched molecular 

functions across brain regions and expressed features (Figure S25  B), with neuronal 

components enriched in DLPFC and phagocytic vesicle in HIPPO across expression features 

(Figure S25  C), and no overlap among brain regions in KEGG pathways with protein 

processing in endoplasmic reticulum appearing in HIPPO and tuberculosis and Ras signaling 

pathway in DLPFC (Figure S25  D). We identified 111 region-dependent DEGs using interaction 

modeling between SCZD diagnosis status and brain region (Figure S26  A, 424 with support at 

the gene, exon or junction expression level) such as SCLO2A1 (Figure S26  B) that are 
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enriched for axonogenesis, axon development, postsynaptic density and neuron to neuron 

synapse biological processes and cellular components (Figure S26  C-D). These interaction 

DEGs that showed differential effects across the two brain regions had minimal overlap with 

either the SCZD DEGs in HIPPO (4/48) or DLPFC (5/245). These results in total suggest largely 

unique differentially expressed genes and processes associated with schizophrenia in the 

HIPPO compared with DLPFC and underscore the incompleteness of the molecular pathology 

associated with schizophrenia based on only DLPFC or HIPPO. The enrichment of immune 

processes in genes relatively decreased in expression in schizophrenia echoes several recent 

studies that have not confirmed earlier proposals of an upregulated immune response in the 

brain of patients with this illness (Birnbaum et al., 2018; Plavén-Sigray et al., 2018). 

 

Decreased regional coherence in schizophrenia via co-expression analysis 

The clinical imaging research literature contains a number of reports of altered patterns 

of correlated measures of HIPPO and DLPFC in SCZD subjects compared to non-psychiatric 

controls (Meyer-Lindenberg et al., 2001; Weinberger et al., 1992). Evidence of altered 

coherence of gene expression across these regions in schizophrenia has not previously been 

explored. Using the subset of individuals with data in both brain regions (n=265 subjects, 530 

RNA-seq samples), we first computed correlations across individuals for each gene to 

determine how genes were co-expressed across these brain regions. Those genes most 

consistently co-expressed (at FWER<5%) across these regions were enriched for GO terms 

related to the immune response, response to virus, cytokine activity (Figure S27  A-C) and 

cytokine-cytokine receptor interaction KEGG pathways (Figure S27  D), suggesting that immune 

processes are particularly coherent across these brain regions within individuals. Interestingly, 

there was no association between gene co-expression across brain regions and subsequent 
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differential expression in schizophrenia, supporting the regional heterogeneity across brain 

region by diagnosis described above (Figure S28 ). 

We next assessed decreased coherence at the subject-, rather than gene-, level across 

the entire transcriptome, which would be more comparable to identifying decreased 

connectivities via neuroimaging and other studies (Friston et al., 2016). We found that 

SCZD-affected individuals had significantly lower transcriptome-wide correlation across DLPFC 

and HIPPO for all expression feature types we assessed (Figure S29 , gene-level p=0.0164). 

This difference was accentuated for the 48 SCZD DEGs in HIPPO (Figure S30  A, p=1.89x10 -9) 

and missing for the DLPFC, BSP1 and CMC DEGs (Figure S30  B-D). We further refined these 

analyses by computing more specific individual-level correlations for sets of genes defined by 

biological functions (grouped by GO term and KEGG pathways). We identified 10 cellular 

component, 14 biological processes and 3 molecular function GO terms as well as 13 KEGG 

pathways with significant correlation differences (at FDR<5%) between SCZD-affected 

individuals and non-psychiatric controls (Table S3 ). Consistent with the dysconnection 

hypothesis and prior evidence from neuroimaging studies (Friston et al., 2016; 

Meyer-Lindenberg et al., 2001; Weinberger et al., 1992), 35 out of the 40 (87.5%) of the 

enriched terms and pathways had decreased correlation in the SCZD affected individuals 

(p=4.53x10 -6, 𝛘1
2=20.0, Table S3 ). We highlight gene sets involving the dendritic spine neck 

(Figure S31  A) and positive regulation of long term synaptic depression (Figure S31  B) having 

decreased coherence in SCZD affected individuals, which have been previously linked to 

schizophrenia (Crabtree and Gogos, 2014; Hasan et al., 2012; Penzes et al., 2011). We further 

identified that coherent activation of the immune response (Figure S31  C) across regions was 

also decreased in SCZD individuals, in agreement with our differential expression analyses 

among individual features. At the pathway level, the lysosome pathway (Figure S31  D) is 
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among the pathways with decreased correlation which is in agreement with previous studies 

that identified the lysosome as one of the components with dysregulated function in 

schizophrenia (Zhao et al., 2015). These findings provide novel insight into the potential 

molecular mechanisms underlying decreased functional coherences between the hippocampus 

and frontal cortex in schizophrenia.  

 

Differences in genetic regulation of expression between brain regions 

The altered connection hypothesis of schizophrenia is partially supported by the GWAS 

findings (Friston et al., 2016; Pardiñas et al., 2018; Schizophrenia Working Group of the 

Psychiatric Genomics Consortium, 2014) that have associated genetic risk with genes 

implicated in NMDAR function and plasticity at glutamatergic synapses, and also with genes 

showing association with altered connectivity measures on functional MRI (Rasetti et al., 2014). 

To further explore the impact of genetic risk, we combined genotype data with the RNA-seq 

data to assess the overlap in genetic regulation by brain region. We identified expression 

quantitative trait loci (eQTL) for each of the expression features and brain regions (Materials 

and Methods: eQTLs) using individuals with age > 13 (n=477). In HIPPO we found 11,237,357 

eQTL associations (SNP-feature pairs, at FDR <1%) across genes, exons and junctions 

corresponding to 17,719 genes (Figure 4  A, Figure S32  A) and in DLPFC we found 15,766,398 

eQTLs for 19,482 genes across the same spectrum of expression features. We then performed 

joint analyses in DLPFC and HIPPO to identify 205,618 (at FDR< 1%) brain region-dependent 

eQTLs (i.e. statistical interaction between genotype and region, Figure 4  B, Figure S32  B) 

corresponding to 1,484 genes (Figure 4  C, Figure S32  C) across all three expression feature 

types. These results show substantial regional specificity in genetic regulation of expression. 

The eQTL associations we identified showed low replication rates in GTEx v6 (GTEx 
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Consortium, 2015) when considering directionality and p<0.05 but higher rates when only 

considering directionality (HIPPO: 31.9% vs 69.9%, DLPFC: 32.5% vs 70%, brain-region 

dependent: 24.6% vs 67.4% at the gene level), likely due to the much smaller sample sizes 

(GTEx: 92 and 82, BSP2: 397 and 395 for DLPFC and HIPPO respectively).  

We explored whether any of these eQTLs were previously-identified schizophrenia 

GWAS risk variants (Pardiñas et al., 2018). Among the HIPPO eQTLs, we found eQTL 

associations to 60 risk SNPs such as rs42945 and expression features from the NDRG4 gene 

(Figure S33  A-B) that has been previously implicated in sudden cardiac death among users of 

antipsychotics in patients with schizophrenia (Watanabe et al., 2017). Similarly, 3 risk SNPs 

(rs4144797, rs12293670, and rs324015) were brain region-dependent eQTLs that involved 

features from genes LRP1, NRGN and NGEF (Figure S34  A-D) and have been previously been 

identified as methylation QTL SNPs in DLPFC (Jaffe et al., 2016). While risk SNPs rs12293670 

and rs4144797 were specific to the DLPFC, with weak to no eQTL signal in HIPPO, rs324015 

showed opposing eQTL directionality by brain region to features in LRP1 (Figure S34  A-D). 

To more fully characterize regional-specific eQTLs in the context of schizophrenia risk 

SNPs, we carried out a targeted eQTL analysis by using samples age > 13 (Figure S32  D, 

n=477, Materials and Methods: Risk loci) and GWAS variants. Using rAggr (Barrett et al., 2005) 

we identified proxy SNPs that have a linkage disequilibrium (LD) r2 score greater than 0.8 to the 

179 index GWAS (Pardiñas et al., 2018) risk SNPs and used 163 risk loci that were common 

(MAF > 5%) and well-imputed in our genotype data (Figure S32  E, Materials and Methods: risk 

loci). Of these 163 risk loci, 124 (76%) were either eQTLs (FDR<1%) in HIPPO or DLPFC with 

95 variants (76.6% of the eQTLs) shared across both regions (Figure 4  D). This percentage of 

GWAS significant SNPs showing association with gene expression is more than 50% greater 

than previous reports, again illustrating the incompleteness of assumptions about eQTLs based 
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on only limited surveys of brain regions. Overall, 5,510 and 6,780 out of the 9,692 proxy and 

index SNPs were eQTLs (FDR<1%) in HIPPO and DLPFC spanning 1,731 and 2,525 different 

expression features respectively (Figure S32  F). The top eQTL in HIPPO corresponds to an 

exon skipping event in the FANCL gene (Figure 4  E) and involves proxy SNP rs74563533. The 

corresponding index SNP rs75575209 is also an eQTL (Figure 4  F) with the same exon-exon 

junction (chr2:58,222,043−58,229,813 in hg38 coordinates). The eQTL involving this junction 

and proxy SNP rs74563533 was also the top result in DLPFC in BSP1 (Jaffe et al., 2018) 

(p=2.796e-85, chr2:58,449,178-58,456,948 in hg19 coordinates). FANCL has been previously 

linked to Fanconi anemia disease (Meetei et al., 2003) and is involved in the DNA repair 

pathway (Machida et al., 2006). From the 103 and 116 risk loci in these eQTLs, 38 (36.9%) and 

37 (31.9%) of the loci pair to a single gene in HIPPO and DLPFC (Figure S32  G) showcasing 

that in both brain regions roughly two thirds of the risk loci (63.1 and 68.1% respectively) are 

ambiguous to resolve. Through our eQTL browser resource http://eqtl.brainseq.org/ we have 

made all eQTLs sets available for further exploration: global HIPPO and DLPFC eQTLs, 

brain-region dependent eQTLs, and schizophrenia risk HIPPO and DLPFC eQTLs. 

 

Discussion 

In this second phase of the BrainSeq consortium project, we generated and processed 

900 RNA-seq samples from human postmortem brains from 551 individuals of which 286 (52%) 

were affected with schizophrenia (Figure S1 ). We used the RiboZero library preparation method 

to preserve non-coding RNA, and examined two brain regions - the hippocampus (HIPPO) and 

dorsolateral prefrontal cortex (DLPFC) - thus expanding our previous analysis of 495 (175 with 

schizophrenia) DLPFC samples analyzed using polyA+ RNA-seq (Jaffe et al., 2018). This 

second phase expands the variety of analyses that can be carried out to further investigate 
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differences among the two of the brain regions most consistently implicated in schizophrenia as 

well as their differences at given time points across development (Figure S1 ). As part of 

BrainSeq Phase II, we also generated genotype information and identified expression 

quantitative trait loci (eQTLs), thereby linking genetic risk variants for schizophrenia to biological 

consequences. By analyzing the expression data with multiple complementary annotation 

methods (gene, exon, exon-exon junction, transcript), we gleaned a more complete 

understanding of differences in the transcriptome (annotated and unannotated) (Figure S1 ).  

Perhaps not surprisingly, we found that the expression in HIPPO and DLPFC is more 

similar in prenatal age than in adult age, with widespread differences across development and 

cell type composition as estimated using DNA methylation among non-psychiatric controls. 

These results are important for further understanding if expression differences associated with a 

given disorder vary by brain region or underlying cell types. Synaptic membrane, GTPase 

activity and regulation, calcium signaling and RNA degradation are among the cellular 

components, molecular functions and pathways that are different between the two brain regions. 

This information might be important when developing drugs, most of which will likely affect both 

the DLPFC and HIPPO. 

Given that SCZD cases generally have a longer postmortem interval and lower pH than 

non-psychiatric controls (Figure S16  A-B) and that RNA degradation is a major and virtually 

universal confounder in SCZD case-control analyses, we adapted the experiment-based quality 

surrogate variable (qSVA) framework (Jaffe et al., 2017) for more than one brain region (Figure 

S17 ). We generated 40 RiboZero RNA-seq samples in toto across both DLPFC and HIPPO to 

identify degradation-associated expressed regions. We then quantified those regions in 

BrainSeq Phase II and used them to identify quality surrogate variables (qSVs) for each brain 

region. Using the qSVs for each brain region we were able to substantially reduce the effect of 
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RNA degradation in our SCZD case-control analyses (Figure S19 ). By expanding the qSVA 

framework for two regions we have laid the groundwork for analyzing multiple brain regions with 

this framework, which involves carrying out degradation experiments for each new brain region. 

We identified 48 and 245 differentially expressed genes among SCZD cases and 

non-psychiatric controls in HIPPO and DLPFC (FDR<5%), respectively, with little overlap 

among these genes and at higher FDR thresholds or other expressed features. This finding, in 

itself, highlights the molecular heterogeneity of this illness across these regions. We determined 

that genes that are significantly co-expressed between HIPPO and DLPFC (FWER<5%) were 

enriched for immune processes but showed no relation with the SCZD case versus 

non-psychiatric control differential expression signal. Interestingly, at the individual subject-level, 

we found that HIPPO and DLPFC have significantly (p<0.05) lower transcriptome-wide 

correlation at the gene, exon, exon-exon and transcript levels (Figure S29 ) in SCZD cases 

compared to non-psychiatric controls, which may echo and could provide molecular insights into 

in vivo evidence of altered connectivity between these regions (Friston et al., 2016; 

Meyer-Lindenberg et al., 2001; Weinberger et al., 1992). To our knowledge, this is the first 

evidence that gene expression is less coherent between these regions in schizophrenia. Among 

the GO terms with significant correlation differences we identified dendritic spine neck and 

positive regulation of long term synaptic depression (Figure S31  A-C), which had significant 

decreased correlation in SCZD cases and have been previously linked to schizophrenia 

(Crabtree and Gogos, 2014; Hasan et al., 2012; Penzes et al., 2011). We further found more 

supporting evidence linking the lysosome pathway (Figure S31  D) to SCZD, thus also 

complementing previous findings (Zhao et al., 2015). 

 We lastly characterized extensive genetic regulation of gene expression with 

significantly different effects across the two brain regions: we identified 205,618 brain 
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region-dependent eQTLs (at FDR < 1%), corresponding to 1,484 genes, at the gene, exon, or 

exon-exon junction level. These brain region-dependent eQTLs included clinically relevant risk 

variants as five schizophrenia risk loci showed significant differential regional regulation. We 

also identified millions of eQTLs in both HIPPO and DLPFC (FDR<1%) across genes, exons 

and exon-exon junctions. A sub-analysis focusing on schizophrenia GWAS risk loci showed that 

124 of the 163 risk loci observed in our dataset are eQTLs with 95 (76% of the eQTLs) being 

shared across HIPPO and DLPFC. Furthermore, we found that 6,970 risk SNPs (GWAS index 

and their proxies) are an eQTL in either brain region. In each brain region, over 60% of the risk 

loci are associated with more than one gene, highlighting the complexity of SNP association for 

this disease and the potential difficulty in interpreting the eQTL results. Given the complexity 

and richness of these eQTL findings, we have made all five sets of eQTL results (global and 

risk-focused for each brain region, plus regional-dependent ones) publicly available via the user 

friendly LIBD eQTL browser at http://eqtl.brainseq.org/ to facilitate independent analyses. 

Overall, we showed extensive regional specificity of developmental and genetic 

regulation, and schizophrenia-associated expression differences between the hippocampus and 

dorsolateral prefrontal cortex and their molecular correlation. These findings suggest that some 

components of the transcriptional correlates of development and genetic risk for schizophrenia 

are brain region-specific. Thus, it may be necessary to incorporate regionally targeted therapies 

for schizophrenia. These data and analysis methods, generated as part of the BrainSeq Phase 

II project, strengthen the foundation of our understanding of schizophrenia and enhance our 

ability to find new ways to improve the lives of individuals affected by this disease. 

 

Materials and Methods 
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Postmortem brain tissue acquisition and processing 

As previously described in Jaffe et al. 2016 (Jaffe et al., 2016), postmortem human brain tissue 

was obtained by autopsy primarily from the Offices of the Chief Medical Examiner of the District 

of Columbia, and of the Commonwealth of Virginia, Northern District, all with informed consent 

from the legal next of kin (protocol 90-M-0142 approved by the NIMH/NIH Institutional Review 

Board). Additional post-mortem prenatal, infant, child and adolescent brain tissue samples were 

provided by the National Institute of Child Health and Human Development Brain and Tissue 

Bank for Developmental Disorders (http://www.BTBank.org) under contracts NO1-HD-4-3368 

and NO1-HD-4-3383. Postmortem human brain tissue was also provided by donation with 

informed consent of next of kin from the Office of the Chief Medical Examiner for the State of 

Maryland (under Protocol No. 12-24  from the State of Maryland Department of Health and 

Mental Hygiene) and from the Office of the Medical Examiner, Department of Pathology, Homer 

Stryker, M.D. School of Medicine (under Protocol No. 20111080 from the Western Institute 

Review Board). The Institutional Review Board of the University of Maryland at Baltimore and 

the State of Maryland approved the protocol, and the tissue was donated to the Lieber Institute 

for Brain Development under the terms of a Material Transfer Agreement. Clinical 

characterization, diagnoses, and macro- and microscopic neuropathological examinations were 

performed on all samples using a standardized paradigm, and subjects with evidence of macro- 

or microscopic neuropathology were excluded, as were all subjects with any psychiatric 

diagnoses. Details of tissue acquisition, handling, processing, dissection, clinical 

characterization, diagnoses, neuropathological examinations, and quality control measures 

were further described previously (Lipska et al., 2006). Postmortem tissue homogenates of the 

prefrontal cortex (dorsolateral prefrontal cortex, DLPFC, BA46/9) were obtained from all 

subjects.  
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RNA sequencing 

Total RNA was extracted from samples using the RNeasy Plus Mini Kit (Qiagen). 

Paired-end strand-specific sequencing libraries were prepared from 300ng total RNA using the 

TruSeq Stranded Total RNA Library Preparation kit with Ribo-Zero Gold ribosomal RNA 

depletion (Illumina). An equivalent amount of synthetic External RNA Controls Consortium 

(ERCC) RNA Mix 1 (Thermo Fisher Scientific) was spiked into each sample for quality control 

purposes. The libraries were sequenced on an Illumina HiSeq 3000 at the LIBD Sequencing 

Facility, after which the Illumina Real Time Analysis (RTA) module was used to perform image 

analysis and base calling and the BCL converter (CASAVA v1.8.2) was used to generate 

sequence reads, producing a mean of 125.2 million 100-bp paired-end reads per sample. 

 

RNA-seq processing pipeline 

Raw sequencing reads were quality checked with FastQC (Babraham Bioinformatics, 

2016), and where needed leading bases were trimmed from the reads using Trimmomatic 

(Bolger et al., 2014) as appropriate. Quality checked reads were mapped to the hg38/GRCh38 

human reference genome with splice-aware aligner HISAT2 version 2.0.4 (Kim et al., 2015). 

Feature-level quantification based on GENCODE release 25 (GRCh38.p7) annotation was run 

on aligned reads using featureCounts (subread version 1.5.0-p3) (Liao et al., 2014) with a mean 

45.3% (SD=7.4%) of mapped reads assigned to genes. Exon-exon junction counts were 

extracted from the BAM files using regtools (McDonnell Genome Institute) v. 0.1.0 and the 

bed_to_juncs  program from TopHat2 (Kim et al., 2013) to retain the number of supporting 

reads (in addition to returning the coordinates of the spliced sequence, rather than the 

maximum fragment range) as described in (Jaffe et al., 2018). Annotated transcripts were 
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quantified with Salmon version 0.7.2 (Patro et al., 2017) and the synthetic ERCC transcripts 

were quantified with Kallisto version 0.43.0 (Bray et al., 2016). For an additional QC check of 

sample labeling, variant calling on 740 common missense SNVs was performed on each 

sample using bcftools version 1.2. We generated strand-specific base-pair coverage BigWig 

files for each sample using bam2wig.py  version 2.6.4 from RSeQC (Wang et al., 2012) and 

wigToBigWig  version 4 from UCSC tools (Kent et al., 2010). Table S1  includes demographics 

for different subsets of samples and differences (if any) among technical covariates. 

 

Genotype data processing 

Genotype data was processed and imputed as previously described (Jaffe et al., 2018). 

Briefly, genotype imputation was performed on high-quality observed genotypes (removing low 

quality and rare variants) using the prephasing/imputation stepwise approach implemented in 

IMPUTE2 (Howie et al., 2009) and Shape-IT (Delaneau et al., 2008), with the imputation 

reference set from the full 1000 Human Genomes Project Phase 3 dataset (1000 Genomes 

Project Consortium et al., 2015), separately by Illumina platform using genome build hg19. We 

retained common variants (MAF > 5%) that were present in the majority of samples 

(missingness < 10%) that were in Hardy Weinberg equilibrium (at p>1x10 -6) using the Plink tool 

kit version 1.90b3a (Purcell et al., 2007). Multidimensional scaling (MDS) was performed on the 

autosomal LD-independent construct genomic ancestry components on each sample, which can 

be interpreted as quantitative levels of ethnicity – the first component separated the Caucasian 

and African American samples. This processing and quality control steps resulted in 7,023,860 

common variants in this dataset of 551 unique subjects. We remapped variants to hg38 first 

using the dbSNP database (Sherry et al., 2001) (from v142 on hg19 to v149 on hg38) and then 

the liftOver tool (Hinrichs et al., 2006) for unmapped variants (that were dropped in dbSNP 
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v149). eQTL analyses were performed using the 7,023,286 variants with hg38 coordinates (574 

variants did not liftOver). 

 

Quality control 

After completing the preprocessing pipeline, samples were checked for quality control 

measures. All samples had expected ERCC concentrations. Forty-two samples with poor 

alignment rates (<70%), gene assignment rates (<20%), and mitochondrial mapping rates (>6%, 

DLPFC only) were dropped. Next, for each sample we correlated the genotypes of missense 

single nucleotide variants (SNVs) found in the processing pipeline to those same SNVs based 

on genotyping described above, and dropped ten samples based on possible incorrect sample 

labeling, where the genotypes were lowly correlated to the same sample number, or highly 

correlated do a different sample number. Ultimately 900 samples passed quality control checks 

(HIPPO n=447, DLPFC n=453). 

 

Feature filtering by expression levels 

We filtered lowly expressed features using the expression_cutoff()  function from 

the jaffelab (Collado-Torres and Jaffe, 2017) package v0.99.18 resulting in cutoffs based on the 

mean expression across all 900 samples: RPKM 0.25 for genes, RPKM 0.30 for exons, RP10M 

0.46 for exon-exon junctions and 0.32 TPM for transcripts (Figure S3 ). 24,652 genes (42.5%), 

396,583 exons (69.4%), 297,181 exon-exon junctions (35.5%) and 92,732 transcripts (46.8%) 

passed the expression filters. Figure S4  shows the number of expressed features passing the 

expression cutoffs grouped by gene ids. 

 

Differential expression by brain region in prenatal and adult samples 
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Using the neuropsychiatric control samples (Figure S2  B, Table S1 ) for the adult age 

group (age >= 18, HIPPO n=238, DLPFC n=222) or the prenatal group (age < 0, HIPPO and 

DLPFC n=28) we identified differentially expressed features by brain region while adjusting for 

age, technical covariates (mitochondrial mapping rate, total assigned gene rate, RIN) and 

ethnicity (first five principal components based on the genotype data) as shown in Equation 1 . 

We used the voom method (Law et al., 2014) for genes, exons and exon-exon junctions and 

calculated the t-statistics for using limma (Ritchie et al., 2015) v3.34.5 while adjusting for0β1 =   

repeated measures using duplicateCorrelation() . Resulting p-values were 

Bonferroni-adjusted within each feature type. 

 

Equation 1 . Full model for the differential expression analysis by brain region subsetted to 

specific age groups. 

The full list and statistics for the differentially expressed features are available in Table 

S2 . 

 

DNA methylation 

DNA methylation was assessed using the Illumina HumanMethylation450 (“450k”) 

microarray as previously described (Jaffe et al., 2016). Samples from both brain regions were 

jointly normalized using stratified quantile normalization in the minfi Bioconductor package 

(Aryee et al., 2014). We retained a single array in the case of duplicates by choosing the sample 

that had the closest quality profile (via Methylated and Unmethylated signal intensity) to all other 

arrays. We implemented in silico estimation of the relative proportions of five cell types (ESCs, 

ES-derived NPCs, and derived dopamine neurons from culture, and adult cortex neuronal and 

24 

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 26, 2018. ; https://doi.org/10.1101/426213doi: bioRxiv preprint 

http://f1000.com/work/citation?ids=148638&pre=&suf=&sa=0
http://f1000.com/work/citation?ids=148089&pre=&suf=&sa=0
https://www.codecogs.com/eqnedit.php?latex=%20E%5BY%5D%20%3D%20%5Cbeta_0%20%2B%20%5Cbeta_1%20Region%20%2B%20%5Cbeta_2%20age%20%2B%20%5Cbeta_3%20mitoRate%20%2B%20%5Cbeta_4%20sex%20%2B%20%5Cbeta_%7B5%7D%20totalAssignedGene%20%5C%5C%20%2B%20%5Cbeta_%7B6%7D%20RIN%20%2B%20%5Csum_%7Bi%20%3D%201%7D%5E5%20%5Ceta_%7Bi%7D%20snpPC_%7Bi%7D%20%0
http://f1000.com/work/citation?ids=1840841&pre=&suf=&sa=0
http://f1000.com/work/citation?ids=488308&pre=&suf=&sa=0
https://doi.org/10.1101/426213
http://creativecommons.org/licenses/by-nc/4.0/


 

non-neuronal cells from adult tissue) using the reference profile described in Jaffe et al, 2016 

(Jaffe et al., 2016) with the deconvolution algorithm described by Houseman et al (Houseman et 

al., 2012). 

 

Differential expression over development 

Using the neuropsychiatric control samples (Figure S2  B, Table S1 , n=614) we fit a 

linear spline model with break points at birth/0, 1, 10, 20, and 50 years of age while adjusting for 

the brain region (DLPFC was set as the reference, n=300, HIPPO n=314), sex, technical 

covariates (mitochondrial mapping rate, total assigned gene proportion and RIN) and ethnicity 

(first five principal components based on the genotype data). We computed F-statistics based 

on the null (Equation 2 ) and full (Equation 3 ) models shown below where we tested for an 

interaction between the age splines and the region indicator. For genes, exons and exon-exon 

junctions we used the voom method (Law et al., 2014) for normalizing the expression. To take 

into account the correlation induced by measuring two brain regions from the same individuals 

(in most cases) we used the duplicateCorrelation()  function in limma where the block 

and design  arguments were set to the individual identifier and the intercept and region 

indicator, respectively. The resulting estimated correlation was passed to the lmFit()  function 

in limma (Ritchie et al., 2015) version 3.34.5. Statistics were then calculated using eBayes() 

and topTable()  with the coef argument set to the additional terms in the full model (Equation 

3 ). Resulting p-values were Bonferroni-adjusted within each feature type. 

 

Equation 2 . Null model for differential expression over development where .max(0, x)x+ =    
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Equation 3 . Additional terms present in the full model absent from the null model (Equation 2 ) 

that are tested in the F-statistic. 

The full list and statistics for the differentially expressed features are available in Table 

S2 . 

 

Replication analysis with BrainSpan 

To assess replication, we downloaded the fastq files from BrainSpan (BrainSpan, 2011) 

and processed the samples using the same RNA-seq processing pipeline and software 

versions. We retained only the samples with region code DFC and HIP and subsetted the 

measured features to those retained in our expression filtering cutoffs for BrainSeq Phase II 

(Figure S2  C). We then used the same models and procedure as for Equation 1  for the 

differential expression by brain region analysis, and Equation 2  and Equation 3  for determining 

differential expression over development: p-value in BrainSpan had to be < 0.05 to be 

considered as replicating. For the differential expression by brain region analysis we required 

the log fold change to be consistent by directionality.  

 

Degradation data generation 

The qSVA algorithm begins with measuring brain tissue degradation in a separate 

RNA-seq dataset to determine regions most-associated with degradation as illustrated in Figure 

S17 . In this study, degradation was tested at four different time points for tissue from two brain 

regions, HIPPO and DLPFC, from five individuals (Jaffe et al., 2017). An aliquot of ~100 mg of 

pulverized tissue for each brain region from each donor was left on dry ice, and placed at room 
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temperature until reaching the respective time interval, at which point the tissue was placed 

back onto dry ice (Jaffe et al., 2017). The four time intervals tested were 0, 15, 30, and 60 

minutes, with the 0-minute aliquot remaining on dry ice for the entirety of the experiment, and 

RNA extraction began immediately after the end of the final time interval (Jaffe et al., 2017). 

 

Determining multi-region quality surrogate variables (qSVs) 

Raw fastq files were processed with the same RNA-seq processing pipeline as the 

BrainSeq Phase II data using the same software versions. The base-pair coverage RNA-seq 

expression data was normalized to 40 million reads using recount.bwtool (Ellis et al., 2018) 

version 0.99.28, and a cutoff of 5 reads was used to identify the expressed regions (ERs) of 

interest using derfinder version 1.12.6 (Collado-Torres et al., 2017). Transcript features most 

susceptible to RNA degradation were then identified using a regression model for degradation 

time adjusting for the brain region and individuals as shown in Equation 4 . Individuals were 

adjusted for to account for variability due to subject effect, since brain tissue degradation was 

measured in the same brain at 4 different time points. The top 1000 ERs most associated with 

degradation (by FDR) were then quantified in the BrainSeq Phase II data using recount.bwtool. 

 

Equation 4 . Linear model for identifying degradation-associated expressed regions. 

We also used a model (shown in Equation 5 ) that included an interaction term between 

degradation time and brain region and found 620 ERs with a significant interaction term 

(FDR<5%) of which 603 had a significant degradation time term in the initial model. The 

genomic coordinates of the degradation-associated ERs used are available in Table S4 . 
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Equation 5 . Same as Equation 4  but also including an interaction term between degradation 

time and brain region. 

From our exploratory data analysis of all 900 BrainSeq Phase II samples (Figure S16 ) 

we determined that it was best to drop the HIPPO Gold samples and samples age < 17 due to 

the lack of early SCZD cases (Table S1 ) before determining the actual qSVs (right side of 

Figure S17 ). We found three sets of qSVs with the BE algorithm (Buja and Eyuboglu, 1992) 

using sva (Leek and Storey, 2007) version 3.26.0: one for DLPFC samples (k=15, n=379), one 

for HIPPO samples (k=16, n=333) and one for both regions combined (k=22, n=712). The 

DLPFC and HIPPO top qSVs have similar relationships to RIN and SCZD diagnosis status as 

shown in Figure S18 . 

 

DEqual plots 

To assess the performance of the qSVA approach we used three different linear 

regression models for each brain region: a naïve model with only the SCZD diagnosis term 

(Equation 6 ), a model with all covariates we adjust for excluding qSVs (Equation 7 ), and a full 

model with all adjustment covariates and qSVs (Equation 8 ). We then compared the log2 fold 

change by SCZD diagnosis against the log2 fold change by degradation time for each brain 

region as shown in Figure S19 .  

 

Equation 6 . Linear regression model for the case-control analysis with a naïve model. 

 

Equation 7 . Linear regression model for the case-control analysis using all adjustment 

covariates except the quality surrogate variables (qSVs). 

28 

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 26, 2018. ; https://doi.org/10.1101/426213doi: bioRxiv preprint 

http://f1000.com/work/citation?ids=5558082&pre=&suf=&sa=0
http://f1000.com/work/citation?ids=482167&pre=&suf=&sa=0
https://www.codecogs.com/eqnedit.php?latex=%20E%5BY%5D%20%3D%20%5Cbeta_0%20%2B%20%5Cbeta_1%20SCZDstatus%20%0
https://www.codecogs.com/eqnedit.php?latex=%20E%5BY%5D%20%3D%20%5Cbeta_0%20%2B%20%5Cbeta_1%20SCZDstatus%20%2B%20%5Cbeta_2%20age%20%2B%20%5Cbeta_3%20sex%20%2B%20%5Cbeta_4%20mitoRate%2B%20%5Cbeta_%7B5%7D%20rRNArate%20%5C%5C%20%2B%20%5Cbeta_%7B6%7D%20totalAssignedGene%20%2B%20%5Cbeta_%7B7%7D%20RIN%20%2B%20%5Csum_%7Bi%20%3D%201%7D%5E5%20%5Ceta_%7Bi%7D%20snpPC_%7Bi%7D%20%0
https://doi.org/10.1101/426213
http://creativecommons.org/licenses/by-nc/4.0/


 

 

Equation 8 . Linear regression model for the case-control analysis where k was determined by 

the BE algorithm (Buja and Eyuboglu, 1992) using sva (Leek and Storey, 2007) version 3.26.0 

for each brain region separately (Table S1 ; DLPFC k=15, n=379; HIPPO k=16, n=333). 

 

Differential expression between SCZD cases and non-psychiatric controls 

Using voom (Law et al., 2014) from limma (Ritchie et al., 2015) version 3.34.9 we 

identified differentially expressed features using the model described in Equation 8  for each 

brain region for genes, exons and exon-exon junctions. For transcripts we skipped the voom 

step. For comparisons with BrainSeq Phase 1 (Jaffe et al., 2018) and the CommonMind 

Consortium dataset (Fromer et al., 2016) we used the log fold changes we determined 

previously (Jaffe et al., 2018) and matched the sets by gene ids. The full list and statistics for 

the differentially expressed features are available in Table S2 . 

To identify differentially expressed features by the interaction between SCZD diagnosis 

status and brain region, we expanded Equation 8  to include the interaction term and used the 

same methodology as previously described. The qSVs used in this analysis were determined 

acrossed both the DLPFC and HIPPO degradation matrices (N=712) resulting in k=22 qSVs. 

 

Gene ontology and gene set enrichment analyses 

Unless otherwise noted, we used the compareCluster() function from clusterProfiler (Yu 

et al., 2012) version 3.6.0 for gene ontology (Ashburner et al., 2000; 

The Gene Ontology Consortium, 2017) and KEGG (Kanehisa et al., 2017) enrichment analyses 

with parameters pvalueCutoff=0.1  and qvalueCutoff=0.05  with the set of Ensembl 
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gene ids expressed in genes, exons and exon-exon junctions as the background universe 

(Figure S4 ). For gene set enrichment analysis in the SCZD case-control model, we used the 

gseGO()  function from clusterProfiler with default parameters using Ensembl gene ids. 

 

Visualization of differential expression results 

We used the cleaningY()  function from the jaffelab package (Collado-Torres and 

Jaffe, 2017) version 0.99.20 to regress out adjustment covariates from our main differential 

expression models (Equation 1 , Equation 3 , Equation 8 ) to visualize the expression as shown 

in Figure 2  C and Figure 3  D. Doing so helps visualize what the model is observing. 

 

Venn diagrams 

Colored venn diagrams were made using the VennDiagram R package version 1.6.18 

while non-colored venn diagrams were made using gplots version 3.0.1. 

 

Brain region co-expression analyses 

Using the age > 17 RNA-seq samples from the SCZD case-control analysis, we 

identified the individuals with measured expression in both DLPFC and HIPPO (n=265 subjects, 

530 RNA-seq samples). We computed the log2(RPKM + 0.5) for gene and exon expression 

levels, log2(RP10M + 0.5) for exon-exon junctions and log(TPM + 0.5) for transcripts. For 

DLPFC and HIPPO separately, we then used the cleaningY()  function from the jaffelab 

package (Collado-Torres and Jaffe, 2017) version 0.99.21 to remove all the covariates from 

Equation 8  while keeping the intercept and SCZD diagnosis effects. 

At the gene level, we computed the Pearson correlation for each gene across all 265 

individuals producing one correlation value per gene. We then permuted the individual labels 
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1000 times to compute a null distribution of the gene correlation values and calculated FWER 

p-values using derfinder:::.calcPval()  function (Collado-Torres et al., 2017). With the 

genes that had a significant correlation among brain regions (FWER<5%) we identified enriched 

GO terms and KEGG pathways using the same parameters previously described. We did this 

process for both the raw expression (say log2(RPKM + 0.5) at the gene level) and the “cleaned” 

expression (post use of the cleaningY() function). 

We computed correlations at the individual level for all 4 expression summarizations 

(gene, exon, exon-exon junction, transcript) across all features, resulting in one correlation 

value per individual and expression level. We performed two-sided t-tests comparing the mean 

correlation among SCZD cases and non-psychiatric controls for each expression level. We 

grouped all the genes expressed in our dataset by their GO level 3 category for the biological 

process, cellular component and molecular function ontologies as well as by their KEGG 

pathway id. For each of these 4 gene sets, we calculated the individual level correlation 

between DLPFC and HIPPO, their two-sides t-test p-value for a difference in mean correlation, 

and corrected the p-values using the FDR method. GO terms and KEGG pathways with a 

significant difference are listed in Table S3 .  

We further computed correlations across brain regions using the sets of genes with 

significant differential expression by SCZD status identified in our previous analysis for both 

brain regions as well as in either the BSP1 and CMC datasets. 

 

Identifying eQTLs 

MatrixEQTL (Shabalin, 2012) version 2.2 was used to identify eQTLs for each brain 

region using samples age > 13 (Figure S32  D, DLPFC n=397, HIPPO n=395) with either the 

log2(RPKM+1) for genes and exons, log2(RP10M+1) for exon-exon junctions or log2(TPM+1) 
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for transcripts. For the eQTL analysis we adjusted for SCZD diagnosis status, sex, SNP PCs as 

well as expression PCs as shown in Equation 9 . To determine the number of expression PCs to 

adjust (p) for we used the num.sv()  function from the sva package with the model in Equation 

10  and the vfilter=50000  parameter. Then the Matrix_eQTL_main()  was used to 

identify the eQTLs using the parameters pvOutputThreshold.cis=0.001, 

pvOutputThreshold=0, useModel=modelLINEAR, cisDist=5e5 . 

 

Equation 9 . Main eQTL model for DLPFC and HIPPO. 

 

Equation 10 . Model used for determining the number of expression PCs to adjust for in the 

eQTL analysis. 

To identify eQTLs that have different effects by brain region, we ran a similar analysis 

using all the age > 13 samples (n=792) using the model from Equation 11  and by changing 

some parameters of Matrix_eQTL_main() to useModel=modelLINEAR_CROSS,

cisDist=2.5e5 . 

 

Equation 11 . Model used for the brain region interaction eQTL analysis between DLPFC and 

HIPPO. num.sv()  from the sva package was used to determine the number of expression PCs 

to adjust for. 

 

Risk loci 
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We downloaded the list of 179 schizophrenia GWAS risk SNPs determined by the 

Psychiatric Genomics Consortium (Pardiñas et al., 2018). We used this list as input to the rAggr 

tool available at raggr.usc.edu  (Barrett et al., 2005) to identify proxy markers in linkage 

disequilibrium (LD>0.8) with the list of the 179 index SNPs based on the 1000 Genomes Project 

Phase 3 database. A maximum distance of 500kb and minumum MAF of 0.001 were used as 

cutoffs, and reference populations used were African, Americas, East Asian, and European, 

based on the races present in our samples. Of the 44 index SNPs absent in our genotype data, 

28 (64%) had at least one proxy present, so we considered 163 out of 179 risk loci (91%) and 

135 index SNPs we directly analyzed. The rAggr software returned a set of 10,981 markers that 

included both the index and proxy SNPs, of which we found 9,736 of them present in our 

genotype data (Figure S32  D). We then used those 9,736 SNPs to identify eQTLs for each 

brain region by repeating a similar analysis as described above using Equation 9  and Equation 

10 , with the exception of now using pvOutputThreshold.cis=1  when running 

Matrix_eQTL_main() for the set of risk SNPs. 

 

GTEx eQTL replication 

We downloaded the GTEx v6 (GTEx Consortium, 2015) HIPPO (“Brain - Hippocampus”) 

and DLPFC [“Brain - Frontal Cortex (BA9)”] fastq files from SRA (Leinonen et al., 2011) using 

fastq-dump as well as their corresponding genotype data for samples passing the GTEx quality 

controls (SMAFRZE labeled as “USE ME”). RNA-seq data was processed using the same 

pipeline and expression features were subsetted to those observed in BrainSeq Phase II. 

Genotype data was processed as previously described and variantes were subsetted to those 

observed in BrainSeq Phase II. eQTL analyses were run using matrixEQTL (Shabalin, 2012) for 

all the expression features and all the variants that had a significant eQTL association 
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(FDR<0.01) in any of the previous 5 eQTL analyses. Replication was assessed for the DLPFC, 

HIPPO and the brain region interaction eQTLs by directionality or by nominal p-value <0.05. 
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Figure 1 . (A) Replication rate with consistent fold change for the adult and prenatal differences               

between brain regions using the BrainSpan dataset (n=16 for adult, n=36 for prenatal) across              

p-value thresholds for the exon, gene and exon-exon junction features. (B) Differentially            

expressed features grouped by gene ID for the adult and prenatal age groups. (C) Volcano plots                

of the differential expression signal between brain regions for each feature type and age group               

stratified by whether the differential expression replicated in BrainSpan (p<0.05 and consistent            

fold change).  
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Figure 2 (A) Estimated cell type proportions for precursor cells (ESC+NPC) and glial cells              

across age groups using DNA methylation data. Neuronal cells are not shown. (B) Differentially              

expressed features between brain regions across development grouped by gene ID. (C)            

GABRD is differentially expressed between DLPFC and HIPPO across development. Y-axis           

shows the residualized expression after removing modeled covariates. PCW: post-conception          

weeks. 

40 

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 26, 2018. ; https://doi.org/10.1101/426213doi: bioRxiv preprint 

https://doi.org/10.1101/426213
http://creativecommons.org/licenses/by-nc/4.0/


 

 

Figure 3 (A) Venn diagram of differentially expressed genes with higher expression in             

non-psychiatric controls than SCZD affected individuals by brain region (DLPFC: FDR <10%,            

HIPPO: FDR <20%). (B) Similar to (A) but for genes with higher expression in SCZD than in                 

non-psychiatric controls. (C) T-statistics for the top 400 differentially expressed genes in HIPPO             

compared to their t-statistics in DLPFC. (D) KCNA1 is differentially expressed in DLPFC. (E)              

Gene set enrichment (GSE) analysis on DLPFC with biological process ontology terms and             

HIPPO (F). 
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Figure 4 (A) HIPPO eQTLs grouped by gene ID. (B) region-dependent eQTLs grouped by SNP               

ID. (C) Region-dependent eQTLs group by gene ID. (D) Unique risk schizophrenia GWAS index              

SNPs from PCG2 (Pardiñas et al., 2018) by brain region that are in eQTLs. (E) Top HIPPO                 

eQTL among schizophrenia risk SNPs. This exon-exon junction skips exon 4/14 of the FANCL              

gene. (F) Index schizophrenia risk SNP corresponding to the proxy SNP from (E). 
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Supplementary Figures 

 

Figure S1 . BrainSeq Phase II RNA-seq overview. RNA-seq samples from the hippocampus 

(HIPPO) and dorsolateral prefrontal cortex (DLPFC) across the human lifespan were 

sequenced. The individuals were also genotyped with some being patients with SCZD and 

others being non-psychiatric controls. Differences in expression across age, across HIPPO and 

DLPFC and between SCZD status were assessed. Expression was evaluated at 4 feature 

levels: gene, exons, exon-exon junctions and transcripts. The data is also available to perform 

expressed regions analyses. 

43 

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 26, 2018. ; https://doi.org/10.1101/426213doi: bioRxiv preprint 

https://doi.org/10.1101/426213
http://creativecommons.org/licenses/by-nc/4.0/


 

 

Figure S2 . RNA-seq samples in BrainSeq Phase II and BrainSpan. (A) All BrainSeq Phase II 

RNA-seq samples. (B) Non-psychiatric control samples in BrainSeq Phase II. (C) 

Non-psychiatric control samples in BrainSpan. (D) SCZD samples in BrainSeq Phase II. 
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Figure S3 . Determination of the low expression filters. (Left) Mean expression and the 

number of features passing the cutoff. (Right) Mean expression compared to the number of 

expressed samples (non-zero expression) among the features that pass the cutoff. The 

maximum suggested cutoff (highlighted in red) was used for each feature type. 
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Figure S4 . Expressed features grouped by gene ID. Venn diagram of expressed features 

grouped by Ensembl gene ID. 
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Figure S5 . Region-specific differentially expressed features. Venn diagrams of differentially 

expressed features between DLPFC and HIPPO grouped by Ensembl gene ids. (A) DE features 

in prenatal samples with higher expression in DLPFC. (B) DE features in adult samples with 

higher expression in DLPFC. (C) DE features in prenatal samples with higher expression in 

HIPPO. (D) DE features in adult samples with higher expression in HIPPO.  
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Figure S6 . Region-specific differentially expressed replication rate with BrainSpan. (A) 

Replication rate when considering directionality only instead of consistent directionality and 

p-value < 0.05. (B) Number and percent (C) of differentially expressed features across the 

different p-value thresholds. 
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Figure S7 . Enriched GO terms for region-specific adult genes. Gene ontology enrichment 

results for differentially expressed features between HIPPO and DLPFC in adult samples. 

Enriched (A) biological processes, (B) molecular function, (C) cellular component ontologies 

and (D) Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways at the gene, exon or 

junction feature levels separated by higher expression in HIPPO or DLPFC. 
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Figure S8 . Enriched GO terms for region-specific prenatal genes. Gene ontology 

enrichment results for differentially expressed features between HIPPO and DLPFC in prenatal 

samples. Enriched (A) biological processes, (B) molecular function, (C) cellular component 

ontologies and (D) Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways at the gene, 

exon or junction feature levels separated by higher expression in HIPPO or DLPFC. 
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su

Figure S9 . Top PCs by brain region and age. Principal components for each feature across 

the 614 samples used for the development analysis colored by pre- and postnatal status as well 

as brain region. Top 8 PCs for (A) gene, (B) exon, (C) exon-exon junctions and (D) transcripts.  
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Figure S10 . Top PCs by brain region and sex. Principal components for each feature across 

the 614 samples used for the development analysis colored by sex and brain region. Top 8 PCs 

for (A) gene, (B) exon, (C) exon-exon junctions and (D) transcripts.  
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Figure S11 . Top PCs by race. Principal components for each feature across the 614 samples 

used for the development analysis colored by race. Top 8 PCs for (A) gene, (B) exon, (C) 

exon-exon junctions and (D) transcripts.  

54 

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 26, 2018. ; https://doi.org/10.1101/426213doi: bioRxiv preprint 

https://doi.org/10.1101/426213
http://creativecommons.org/licenses/by-nc/4.0/


 

 

Figure S12 . Top PCs by brain region and age in BrainSpan. Principal components for each 

feature across 79 the BrainSpan samples used for the development replication analysis colored 

by pre- and postnatal status as well as brain region. Top 8 PCs for (A) gene, (B) exon, (C) 

exon-exon junctions and (D) transcripts.  
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Figure S13 . Top PCs by brain region and sex in BrainSpan. Principal components for each 

feature across the 79 BrainSpan samples used for the development analysis colored by sex and 

brain region. Top 8 PCs for (A) gene, (B) exon, (C) exon-exon junctions and (D) transcripts.  
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Figure S14 . Top PCs by race in BrainSpan. Principal components for each feature across the 

79 BrainSpan samples used for the development replication analysis colored by race. Top 8 

PCs for (A) gene, (B) exon, (C) exon-exon junctions and (D) transcripts.  
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Figure S15 . Enriched GOs across development. Gene ontology enrichment results for 

differentially expressed features across development as modeled with age splines. Enriched (A) 

biological processes, (B) molecular function, (C) cellular component ontologies and (D) Kyoto 

Encyclopedia of Genes and Genomes (KEGG) pathways at the gene, exon or junction feature 

levels. 
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Figure S16 . PMI and PCA EDA with all 900 samples. Post mortem interval (PMI) measured in 

hours for (A) HIPPO and (B) DLPFC separated by SCZD status. Using all 900 BrainSeq Phase 

II RNA-seq samples, the first gene-level principal component (PC) is associated with brain 

region (C), gene assignment rate (D) and mitochondrial mapping rate (E). The second PC is 

associated with age (F), in particular with the prenatal vs postnatal age boundary. Samples in 

the bottom row are colored by brain region and RNA-seq preparation kit. 
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Figure S17 . qSVA overview. Workflow illustration for a complete analysis using degradation            

data and case-control data to implement the qSVA method. The degradation data, a few              
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samples across time, are used to infer expressed regions that are associated with degradation.              

We save the genome coordinates of the top 1000 regions. We then quantify the expression of                

those regions in our case-control data (BrainSeq Phase II) to obtain a degradation matrix. Using               

this matrix we compute the quality surrogate variables (qSVs) that we can then use as               

adjustment covariates in a case-control differential expression analysis. We identify the qSVs by             

performing PCA on the degradation matrix and choosing k number with the BE algorithm (Buja               

and Eyuboglu, 1992).  

 

Figure S18 . qSVA EDA for HIPPO and DLPFC. (A) First quality surrogate variable (qSV) from 

the DLPFC samples (n=379) is associated with RIN and SCZD diagnosis status (B). Similarly, 

the first qSV from the HIPPO samples (n=333) is associated with RIN (D) and SCZD diagnosis 

status (E). There is no strong association with age for the first qSV for both DLPFC (C) and 

HIPPO (F). 
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Figure S19 . DEqual plots. Degradation quality (DEqual) plots for each brain region (HIPPO: 

left column, DLPFC: right column) comparing against a naïve diagnosis model (A and B), 

adjusting for covariates including known quality-associated metrics (C and D) and the final 

model adjusting for the region-specific qSVs and covariates (E and F). Correlation between the 

log2 fold change by SCZD status (x-axis) and log2 fold change by degradation in HIPPO or 

DLPFC is shown in the top left corner of each panel. DEqual plots are defined in Jaffe et al. 

(Jaffe et al., 2017). 

 

Figure S20 . Feature DE by SCZD status. Venn diagrams of differentially expressed features 

between non-psychiatric controls and SCZD affected individuals by brain region (DLPFC: FDR 

<10%, HIPPO: FDR <20%). Exons (A and B), exon-exon junctions (C and D) and transcripts (E 

and F) with higher expression in non-psychiatric controls (A, C and E) or in SCZD cases (B, D 

and F). 
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Figure S21 . Model and feature DE by SCZD status . Venn diagrams of differentially expressed 

features (FDR<10%) between non-psychiatric controls and SCZD affected individuals by brain 

region and studies grouped by gene id. Differentially expressed features in HIPPO (A) or 

DLPFC (B). Exons and exon-exon junctions differentially expressed by SCZD status 

(FDR<10%) grouped by gene ID (C), gene and exons (D), as well as genes and exon-exon 

junctions (E) across brain regions. (F) Differentially expressed genes in BrainSeq Phases I and 

II as well as in the CommonMind Consortium (CMC). 
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Figure S22 . T-statistics across regions and datasets for top SCZD results. T-statistics for 

the top 400 differentially expressed genes between non-psychiatric controls and SCZD cases 

for either DLPFC (A and B) or HIPPO (C and D) compared against the t-statistics in BrainSeq 

Phase 1 DLPFC (A and C) and the CommonMind Consortium dataset (B and D). Correlation 

and the linear regression trend (blue line) are shown for each plot. 
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Figure S23 . GSE DLPFC results . Gene set enrichment (GSE) results for differentially 

expressed features between SCZD cases and non-psychiatric controls in DLPFC. Enriched (A) 

biological processes, (B) molecular function, (C) cellular component ontologies and (D) Kyoto 

Encyclopedia of Genes and Genomes (KEGG) pathways. Biological process is duplicated here 

from Figure 3  to facilitate comparisons. 

66 

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 26, 2018. ; https://doi.org/10.1101/426213doi: bioRxiv preprint 

https://doi.org/10.1101/426213
http://creativecommons.org/licenses/by-nc/4.0/


 

 

Figure S24 . GSE HIPPO results. Gene set enrichment (GSE) results for differentially 

expressed features between SCZD cases and non-psychiatric controls in HIPPO. Enriched (A) 

biological processes, (B) molecular function, (C) cellular component ontologies and (D) Kyoto 

Encyclopedia of Genes and Genomes (KEGG) pathways. Biological process is duplicated here 

from Figure 3  to facilitate comparisons. 
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Figure S25 . SCZD enriched GOs. Gene ontology enrichment results for differentially 

expressed features between SCZD cases and non-psychiatric controls either in the DLPFC or 

HIPPO brain region. Enriched (A) biological processes, (B) molecular function, (C) cellular 

component ontologies and (D) Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways 

at the gene, exon or junction feature levels separated by higher expression in SCZD cases or 

non-psychiatric controls. 
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Figure S26 . Differential expression by interaction between SCZD diagnosis status and 

brain region. (A) Differentially expressed features grouped by gene id excluding 29 

un-annotated DE exon-exon junctions. (B) The SCLO2A1 gene has a significantly different 

relationship between expression and SCZD status across DLPFC (decreased in SCZD versus 

controls) and HIPPO (increased in SCZD versus controls); LFC: log2 fold change. Enriched 

biological processes (C) and cellular components (D) among the genes with DE signal at the 

exon and exon-exon junction levels. No terms were enriched among the 111 DEGs with gene 

support. 
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Figure S27 . Enriched GOs among highly correlated genes in DLPFC and HIPPO adults. 

Gene ontology enrichment results for genes with significant correlation between HIPPO and 

DLPFC (FWER<5%) among the matched individuals from the SCZD case-control analysis 

(n=265 individuals). Enriched (A) biological processes, (B) molecular function, (C) cellular 

component ontologies and (D) Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways 

at the gene level either with the raw expression values [log2(RPKM + 0.5)] or the cleaned 

expression values [log2(RPKM + 0.5) with covariates and qSVs removed while retaining the 

SCZD diagnosis effect]. 
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Figure S28 . Correlated genes in DLPFC and HIPPO adults compared vs SCZD 

case-control t-statistic. Scatter plot of the correlation between HIPPO and DLPFC compared 

against the SCZD t-statistic with significantly correlated genes (FWER<5%) labeled in red. (A) 

HIPPO and (B) DLPFC SCZD t-statistics. The correlation was calculated with the cleaned 

expression values: log2(RPKM + 0.5) with covariates and qSVs removed while retaining the 

SCZD diagnosis effect. 
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Figure S29 . Correlation differences in HIPPO and DLPFC by SCZD diagnosis for all 

feature levels. Correlation for each expression feature across HIPPO and DLPFC per individual 

(n=265) shows that SCZD affected individuals have decreased correlation at the (A) gene, (B) 

exon, (C) exon-exon junction and (D) transcript levels compared to non-psychiatric controls. The 

correlation was calculated with the cleaned expression values: log2(RPKM + 0.5) for genes and 

exons, log2(RP10M + 0.5) for exon-exon junctions and log2(TPM + 0.5) for transcripts with 

covariates and qSVs removed while retaining the SCZD diagnosis effect. 
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Figure S30 . Correlation differences in HIPPO and DLPFC by SCZD diagnosis for SCZD 

differentially expressed genes. For genes differentially expressed by SCZD status, their 

correlation across HIPPO and DLPFC per individual (n=265) shows that SCZD have decreased 

correlation for the (A) HIPPO SCZD DEGs, but not for the (B) DLPFC, (C) BrainSeq Phase 1 

(BSP1), or (D) CommonMind Consortium (CMC) DEGs. 
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Figure S31 . Highlighted GO and KEGG pathways with significant correlation differences 

in HIPPO and DLPFC by SCZD diagnosis. Sets of genes grouped by their membership to GO 

terms (level 3) and KEGG pathways that show differential correlation among individuals with 

SCZD and non-psychiatric controls. Highlighted significantly (FDR<5%) differentially correlated 

GO terms (A: 0044326, B: 1900454, C: 0002253) and KEGG pathway (D: hsa04142) among 

HIPPO and DLPFC. The correlation was calculated with the cleaned gene expression values: 

log2(RPKM + 0.5) with covariates and qSVs removed while retaining the SCZD diagnosis effect. 
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Figure S32 . eQTLs by feature and risk analysis. (A) HIPPO eQTLs grouped by gene ID. (B) 

region-dependent eQTLs grouped by SNP ID. (C) region-dependent eQTLs group by gene ID. 

(D) Brain samples by individual used for the SNP GWAS risk analysis. (E) Input information for 

the SNP GWAS risk analysis. (F) SNP GWAS risk analysis results summary by brain region. (G) 

Number of risk GWAS loci that are eQTLs in BrainSeq Phase II that pair to genes by brain 

region. 
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Figure S33 . Example GWAS PGC2 index risk SNP eQTLs in HIPPO. An exon-exon junction 

(A) and a transcript (B) from the gene NDRG4 are in eQTL associations with the schizophrenia 

risk snp rs42945 in HIPPO (and DLPFC: not shown). Residual expression is log2(RP10M + 1) 

or log2(TPM + 1) with SCZD diagnosis, sex, five ancestry PCs and expression PCs removed.  
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Figure S34 . Brain-region dependent eQTLs that involve GWAS PCG2 index risk SNPs. 

GWAS PCG2 index risk snps rs324015 (A and D), rs12293670 (B) and rs4144797 (C) have 

brain-region dependent eQTL associations with DLPFC and HIPPO. They involve either an 

exon (A) or exon-exon junctions (B-D) for genes LRP1, NRGN and NGEF. Two of the 

exon-exon junctions are un-annotated (B, C) though they are in the same strand as the only 
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gene they overlap: NRGN and NGEF, respectively. Residual expression is log2(RPKM + 1) or 

log2(RP10M + 1) with SCZD diagnosis, sex, five ancestry PCs and expression PCs removed 

while retaining the brain region effect. Orange: DLPFC, blue: HIPPO. 

 

Supplementary Tables 

Table S1 . Demographic and sequencing metrics by group for the RNA-seq samples. See file 

SupplementaryTable1.xlsx.  

Table S2 . Differentially expressed features for each of the three main models: (1) HIPPO versus 

DLPFC developmental differences among non-psychiatric controls, (2) HIPPO versus DLPFC in 

both adults and prenatal age groups among non-psychiatric controls, (3) SCZD cases versus 

non-psychiatric controls for both DLPFC and HIPPO. See file SupplementaryTable2.tar.gz.  

Table S3 . Differentially (FDR<5%) correlated GO terms and KEGG pathways at the individual 

level between SCZD affected individuals and non-psychiatric controls. See file 

SupplementaryTable3.xlsx. 

Table S4 . Genomic coordinates of the top 1000 degradation-associated expressed regions 

across DLPFC and HIPPO. See file SupplementaryTable4.xlsx.  
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