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Abstract
Since the turn of the century, researchers have sought to diagnose cancer based on gene

expression signatures measured from the blood or biopsy as biomarkers. This task, known
as classification, is typically solved using a suite of algorithms that learn a mathematical
rule capable of discriminating one group (e.g., cases) from another (e.g., controls). However,
discriminatory methods can only identify cancerous samples that resemble those that the al-
gorithm already saw during training. As such, we argue that discriminatory methods are
fundamentally ill-suited for the classification of cancer: because the possibility space of cancer
is definitively large, the existence of a one-of-a-kind gene expression signature becomes very
likely. Instead, we propose using an established surveillance method that detects anomalous
samples based on their deviation from a learned normal steady-state structure. By trans-
ferring this method to transcriptomic data, we can create an anomaly detector for tissue
transcriptomes, a “tissue detector”, that is capable of identifying cancer without ever seeing
a single cancer example. Using models trained on normal GTEx samples, we show that our
“tissue detector” can accurately classify TCGA samples as normal or cancerous and that its
performance is further improved by including more normal samples in the training set. We
conclude this report by emphasizing the conceptual advantages of anomaly detection and by
highlighting future directions for this field of study.

1 Introduction
Cancer is a collection of complex heterogeneous diseases with known genetic and environmental risk
factors. Physicians diagnose cancer by carefully weighing evidence collected from patient history,
physical examination, laboratory testing, clinical imaging, and biopsy. Computers can aid diagnosis
and improve outcomes by mitigating diagnostic errors. Indeed, this is already actively researched,
where studies have shown that computers can reduce the reading errors of mammography [13]
and commuted tomographic (CT) [3] images. Meanwhile, researchers have also sought to use
computers to diagnose cancer based on gene expression signatures measured by high-throughput
assays like microarray or next-generation sequencing [1, 4]. Gene expression signatures are ideal
biomarkers because mRNA expression is dynamically altered in response to changes in the cellular
environment. However, developing molecular diagnostics requires large data sets which have only
recently become available due to reduced assay costs. These data could usher in a new era in
clinical diagnostics.

Within the last decade, scientists have produced large transcriptomic data sets containing
thousands of clinical samples. Of these, the TCGA stands out as the most comprehensive, having
sequenced more than 10,000 unique tissue samples from 33 cancers and healthy tissue controls
[19]. Meanwhile, an equally large study, GTEx, has sequenced non-cancerous samples comprising
54 unique human tissue types [10]. Already, a number of studies have used the TCGA data to
build diagnostic classifiers that can determine whether a tissue sample is cancerous or not based
only on its gene expression signature [7]. This task, known as classification, is typically solved
using a suite of algorithms that learn a mathematical rule capable of discriminating one group
(e.g., cases) from another (e.g., controls). This rule is learned from a large portion of the data
called the “training set”, then evaluated on a withheld portion of the data called the “test set”.
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Discriminatory classifiers like artificial neural networks (ANNs), support vector machines (SVMs),
and random forests (RFs) have become popular in the biological sciences [6]. All of these work well
for high-dimensional data provided that the training set contains enough correctly labeled cases
and controls.

In practice, clinicians need to answer questions like, "Is this tissue cancerous or not?" or "Is
this cancer malignant or not?". ANNs, SVMs, and RFs can all answer these questions by learn-
ing a discriminatory rule from labeled data. However, discriminative methods have two major
limitations, both of which apply to cancer classification. The first limitation is theoretical: dis-
criminative methods suffer from the problem of having to see all possible abnormalities in order to
make an accurate and generalizable prediction [15]. This is relevant to cancer because there exists
countless ways in which a normal cell could become cancerous. As such, the label “cancer” does
not encompass a known homogeneous group, but rather a heterogeneous collection of unknown
types. It is simply not possible to anticipate the nature or extent of these “unknown unknowns”
[14]. The second limitation is practical: even for a theoretically homogeneous cancer class, the
tumor may occur too rarely for there to exist enough samples to inform a meaningful discrimina-
tion rule. Discriminatory methods require sufficient sample sizes to learn a rule that tolerates the
large variance observed in replicates of transcriptomic data [11]. For these reasons, discriminatory
methods are doomed to fail.

On the other hand, we expect that the possibility space for steady-state normal tissue is appre-
ciably smaller than that of the aberrant tumor. By modeling this normal latent structure directly,
we could learn a new rule that detects cancerous samples as a departure from normal. This fol-
lows the biological intuition that tumors themselves are anomalies of normal cellular physiology.
The field of machine learning already has well-established methods that can detect anomalies in
high-dimensional data, especially images, for the purpose of surveillance [2]. By transferring these
methods to transcriptomic data, we can create an anomaly detector for tissue transcriptomes, a
“tissue detector”, that is capable of identifying cancer without ever seeing a single cancer example.
In this report, we show that “tissue detectors” are sensible and accurate for the classification of
cancer based on gene expression signatures. We do this by training an anomaly detection model
on normal GTEx samples, then using it to accurately differentiate normal from cancerous TCGA
samples. In presenting these results, we highlight future research directions for the detection of
anomalous gene expression signatures.

2 Methods
We acquired the combined GTEx and TCGA data from Wang et al. 2018, who harmonized
the disparate data sets using quantile normalization and svaseq-based batch effect removal [18].
The Wang et al. data represents six tissues as characterized in Table 1: breast, liver, lung,
prostate, stomach, and thyroid. We accessed the data as fragments per kilobase of transcript
per million (FPKM), separated the data by tissue, and z-score standardized each gene. We then
performed a residual analysis on each tissue with GTEx training sets and TCGA test sets. Residual
analysis is based on the principle that most data have an underlying structure that can be largely
reconstructed using a subset of the principal components, whereby the difference between the
reduced representation and the original observations are termed the residues. Residual analysis
uses the squared value of the residue as a proven way to measure the degree to which an observation
is an outlier. For normally distributed data, the squared value of the residues follows a non-central
χ2 distribution. By comparing the norm of the residue for an unlabeled sample to a procedurally
generated threshold (corresponding to a stipulated false alarm rate), we have a predictive rule that
decides whether to reject the null hypothesis and call that sample an anomaly [5].

We refer to a predictive model and its threshold as a “tissue detector”, of which we trained six
(one for each tissue). After training each model on the GTEx data, we evaluated its performance
on the respective TCGA data. For each sample in the test set, we calculated an anomaly score
based on the distance between that sample and the model reference. We do this by projecting the
sample to the principal component space and measuring its residue, where higher residue scores
indicate that the sample is more anomalous. If the anomaly score is larger than the anomaly
detection threshold, the sample is called abnormal (i.e., an outlier). Otherwise, the sample is
called normal (i.e., an inlier). This allows us to differentiate between normal and cancerous TCGA
samples without ever seeing a single cancer example. We repeated this procedure for increasingly
smaller subsets of the training data, with specificity averaged across ten bootstraps each. We

2

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 29, 2018. ; https://doi.org/10.1101/426395doi: bioRxiv preprint 

https://doi.org/10.1101/426395
http://creativecommons.org/licenses/by-nc-nd/4.0/


present these results in Figure 2.

3 Results
In this study, we trained a “tissue detector” on each six tissues represented in the combined GTEx
and TCGA data set, using only the GTEx samples for training. We then evaluated its performance
on the withheld TCGA data by calculating an anomaly score for each TCGA sample and comparing
it against the anomaly threshold: if the score is greater than the threshold, the sample is considered
an anomaly (i.e., cancerous). Figure 1 shows the (log-)ratio of per-sample anomaly scores relative
to the tissue-specific anomaly threshold (y-axis) for each tissue (x-axis), faceted based on whether
the sample is cancerous. Especially for breast, liver, lung, and thyroid data, our “tissue detector”
not only recognizes most TCGA cancer samples as anomalies, but also recognizes most TCGA
healthy samples as normal. On the other hand, anomaly detection performs poorly for prostate
and stomach tissue. Table 1 shows the precision, recall, and specificity for each “tissue detector”.

Figure 1: This figure shows the (log-)ratio of per-sample anomaly scores relative to the tissue-
specific anomaly threshold (y-axis) for each tissue (x-axis), faceted based on whether the sample is
cancerous. The “tissue detector” calls any sample above the x-intercept threshold as an anomaly
(i.e., cancerous). The threshold is determined procedurally during model training. This figure
shows performance for TCGA test set only; no TCGA samples were included in the training set.

For all tissues, our anomaly detectors tended to have better sensitivity (i.e., recall) than speci-
ficity. Intuitively, we expect that increasing the number of normal samples shown to the “tissue
detector” during model training would improve its specificity, especially for the poorly perform-
ing prostate and stomach detectors. To test this hypothesis, we measured the specificity of each
“tissue detector” as trained on increasingly smaller subsets of the GTEx data. Figure 2 shows
the specificity for each “tissue detector’ (y-axis) according to the number of samples in the train-
ing set (x-axis). A pattern emerges: the inclusion of additional GTEx samples can improve the
classification of TCGA samples, up until a point of diminishing returns.
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GTEx (N) TCGA (N) TCGA (C) Precision Recall Specificity Accuracy AUC
breast 89 110 982 0.975 0.965 0.782 0.947 0.903
liver 115 48 295 0.986 0.939 0.917 0.936 0.973
lung 313 59 503 0.987 0.907 0.898 0.906 0.960
prostate 106 48 426 0.949 0.742 0.646 0.732 0.734
stomach 192 33 380 0.943 0.966 0.333 0.915 0.547
thyroid 318 53 441 0.974 0.925 0.792 0.911 0.893

Table 1: This table shows the number of samples in each GTEx training set and TCGA test set,
alongside the test set performance of that anomaly detector. Precision and recall remain high for
all classifiers, but specificity suffers for select tissues. This suggests that our “tissue detector”,
when it fails, has a bias toward viewing all TCGA samples as abnormal. The acronyms N and C
refer to number of normal and cancerous samples, respectively.

4 Discussion
Technological advances have made it possible to measure the global gene expression signature
of any biological sample at little cost. Already, there is a growing body of evidence that gene
expression signatures can be used as biomarkers to diagnose cancer [7]. In this report, we present a
novel application of anomaly detection to classify cancer based on gene expression signatures. By
learning the latent structure of normal gene expression from a training set of normal samples, we
created a “tissue detector” that can identify cancer without having seen a single cancer example.
Our method contrasts with discriminatory methods, widely used in the biological sciences, which
can only identify cancerous samples that resemble those that the algorithm already saw during
training. In principle, discriminatory methods do not make sense for a disease like cancer where
a one-of-a-kind gene expression signature is theoretically possible. Practically speaking, anomaly
detection further benefits from normal samples being more readily available and easier to collect
than abnormal samples: for any cancer, many more people do not have the cancer than do. Since
the inclusion of additional normal samples can improve the specificity of anomaly detection, as
demonstrated in Figure 2, the curation of large normal data sets could open up the possibility of
building diagnostic tests for extremely rare cancers.

Although we applied anomaly detection here to differentiate normal from cancerous tissue,
anomaly detection could suit a number of other health surveillance applications. By changing
the class of samples used in the training set, the meaning of “anomaly” changes. For example,
if we include only benign tumors in the training set, then an anomaly detector might identify
whether a biopsied tumor is potentially malignant (i.e., not benign). Likewise, using a training set
of blood biomarkers for patients with surgically resected tumors might yield an anomaly detector
that can identify whether a primary tumor has recurred. Other novel applications might include
training a “tissue detector” on healthy lymphatic tissue to screen for lymphatic metastasis or
on chemotherapy-sensitive tumor biopsies to screen for emerging drug resistance. Whatever the
application, anomaly detection is unique in that it only requires that there exist data for the null
state that is under surveillance: it is not necessary that researchers have characterized the full
spectrum of the undesired outcome.

One challenge faced during the detection of anomalous gene expression signatures is the limited
amount of data available for training and testing. Even as data sets get larger, anomaly detection
will still benefit from the combination of multiple data sets, known as horizontal data integration
[17]. However, horizontal data integration is complicated because every data set has intra-batch
and inter-batch effects caused by systematic or random differences in sample collection. These
differences could arise from a variety of biological factors (e.g., biopsy site, age, sex) or technical
factors (e.g., RNA extraction protocol, sequencing assay), including latent factors unknown to the
investigator [9]. Although software like ComBat and sva can remove intra-batch biases, inter-batch
biases may still remain. Indeed, inter-batch biases could explain why our “tissue detectors”, when
they fail, tend to view all TCGA samples as abnormal (though the “normal” TCGA samples do
all come from sites adjacent to cancerous tissue). Although Wang et al. tried to harmonize the
TCGA and GTEx data [18], the removal of inter-batch biases is non-trivial and further challenged
by the prevailing need to preserve test set independence. Moreover, owing to how next-generation
sequencing data measure the relative abundance of gene expression, these data also contain inter-
sample biases that sit on top of the intra-batch and inter-batch biases [16, 12]. It remains an
open question of how best to integrate multiple data sets. Non-parametric or compositional PCA-
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Figure 2: This figure shows the specificity for each “tissue detector” (y-axis) according to the
number of samples in the training set (x-axis). Performance is averaged across 10 bootstraps of
the GTEx training set. This figure shows performance for TCGA test set only; no TCGA samples
were included in the training set.

like methods could provide a suitable alternative to anomaly detection that is more robust to
inter-batch and inter-sample biases.

Another challenge faced during the detection of anomalous gene expression signatures is the
lack of transparency in the decision-making process. Although the concept of anomaly detection is
intuitive, its implementation decomposes high-dimensional data into orthogonal eigenvectors that
do not necessarily have any meaning to biologists. When examining these eigenvectors directly, it
may be unclear how an anomaly detection model reached its decision. This makes it difficult to
formulate new hypotheses to improve the model performance or elucidate the biological system. Fu-
ture work should aim to improve the interpretability of anomaly detection methods. One approach
might involve building a tool that visualizes which eigenvector components contributed maximally
to each decision. If some constituent genes are consistently involved in misclassification, this could
generate testable hypotheses. Similarly, one could try to characterize the biological importance
of the maximally relevant eigenvectors through gene set enrichment analysis (GSEA), as done by
Weighted Gene Correlation Network Analysis [8]. This would allow investigators to frame inlier
and outlier distributions not only in terms of the constituent genes involved, but also in terms the
biological pathways affected. This too could generate testable hypotheses. With these improve-
ments, anomaly detection would become an interpretable and actionable classification strategy for
many health surveillance applications.
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