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Abstract 60 

The application of genomics technology in ecological contexts allows for examination of how 61 

rapid environmental change may shape standing molecular level variation and organismal 62 

response. We previously demonstrated an effect of oil pollution on gene expression patterns and 63 

genetic variation, but not methylation variation, in oil-exposed populations of the foundation salt 64 

marsh grass, Spartina alterniflora. Here, we used a reduced representation bisulfite sequencing 65 

approach, epigenotyping by sequencing (epiGBS), to examine relationships among DNA 66 

sequence, DNA methylation, gene expression, and exposure to oil pollution. With the increased 67 

resolution of epiGBS, we document genetic and methylation differentiation between oil-exposed 68 

and unexposed populations, and a correlation of genome-wide methylation patterns and gene 69 

expression, independent of population genetic structure. Overall, these findings demonstrate that 70 

variation in DNA methylation is abundant, responsive, and correlated to gene expression in 71 

natural populations, and may represent an important component of the response to environmental 72 

stress. 73 

  74 
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Introduction 75 

The application of molecular techniques to ecological questions can provide insight into 76 

the mechanisms that govern ecological interactions at the most basic levels of biological 77 

organization. Studies across a diversity of organisms have described the association of genetic 78 

variation with environmental factors (Feder & Mitchell-Olds, 2003; Andrew et al., 2013). More 79 

recently, transcriptomics studies in natural populations have identified gene expression 80 

differences that underlie phenotypic plasticity, genotype-by-environment interactions, and local 81 

adaptation, and that some of these differences are only elicited in natural environments (Nicotra 82 

et al., 2010; Andrew et al., 2013; Alvarez et al., 2015). Hence, genetic variation and gene 83 

expression variation can translate into trait variation that contributes to organismal performance 84 

with important population- and community-level ecological effects (Whitham et al., 2006; 85 

Hughes et al., 2008; Schoener, 2011; Alvarez et al., 2015). Additional layers of regulatory 86 

variation, including chromatin modifications, small RNAs, and other non-coding variants, can 87 

mediate these changes in genotypic expression and phenotype, but are infrequently studied in 88 

ecological settings (Nicotra et al., 2010; Richards et al., 2017).  89 

Like genetic variation and gene expression variation, chromatin modifications such as 90 

DNA methylation can also vary among individuals within populations, and contribute to 91 

phenotypic variation through a variety of regulatory roles (Becker & Weigel, 2012; Jackson, 92 

2017; Richards et al., 2017). For example, DNA methylation may affect phenotype and 93 

subsequent ecological interactions by modulating the expression of genes (Alvarez et al., 2015, 94 

2018), the types of transcripts that genes produce (Maor et al., 2015), the movement of mobile 95 

elements (Matzke & Mosher, 2014), and the production of structural variants (Yelina et al., 96 

2015; Underwood et al., 2018). On the other hand, changes in genetic sequence or gene 97 

expression may cause variation in patterns of DNA methylation, creating a relationship that is 98 

bidirectional and heterogeneous across the genome (Secco et al., 2015; Meng et al., 2016; 99 

Niederhuth & Schmitz, 2017). DNA methylation can vary in response to environment, and has 100 

been correlated to habitat types, exposure to stress, and shifts in species range (Verhoeven et al., 101 

2010; Richards et al., 2012a; Liebl et al., 2013; Xie & Li et al., 2015; Foust et al., 2016). While 102 

some studies have provided insight into how the complex interaction between genetic variation, 103 

DNA methylation, and the regulation of gene expression translates into organismal response (e.g 104 

Wibowo et al. 2016), these mechanisms are only understood in a few model species, partly 105 
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because of the limited genomic resources available for most species (Ainouche et al., 2009; 106 

Richards et al., 2017). Increasing application of high-resolution methods to understand genome-107 

level response to environmental conditions in natural populations is one of the central current 108 

tasks of ecological genomics. 109 

In 2010, the Deepwater Horizon (DWH) oil spill developed into the largest marine oil 110 

spill in history (National Commission on the BP Deepwater Horizon oil spill, 2011), and became 111 

an opportunity to apply emerging genomics technologies in natural populations to examine 112 

responses to this recurrent anthropogenic stress in a diversity of organisms (e.g. Hazen et al. 113 

2010; Whitehead et al. 2012; Kimes et al. 2013, 2014; Alvarez et al. 2018; DeLeo et al. 2018). A 114 

mixture of crude oil made and dispersants made landfall along 1,773 kilometers on the shorelines 115 

of Louisiana, Mississippi, Alabama and Florida (Mendelssohn et al., 2012; Michel et al., 2013). 116 

Nearly half of the habitat affected was salt marsh, which provides valuable ecosystem functions 117 

such as providing nurseries for birds and fish, and buffering storm and wave action (Day et al., 118 

2007; Mendelssohn et al., 2012; Michel et al., 2013). Gulf of Mexico salt marshes are dominated 119 

by the foundation species Spartina alterniflora, which is remarkably resilient to a variety of 120 

environmental stressors (Pennings & Bertness, 2001; Baisakh et al., 2008; Baisakh & Subudhi, 121 

2009; Silliman et al., 2012; Bedre et al., 2016). Crude oil exposure from the DWH oil spill 122 

resulted in reduced carbon fixation, reduced transpiration, and extensive above-ground dieback 123 

in S. alterniflora populations (Lin & Mendelssohn, 2012; Silliman et al., 2012), but oil-affected 124 

populations showed partial to complete recovery within seven months of the spill (Lin et al., 125 

2016). However, the genomic and regulatory mechanisms that underlie this remarkable recovery 126 

have been poorly characterized.  127 

Despite the tremendous resilience of S. alterniflora to the DWH spill, we discovered 128 

genetic divergence of individuals from oil-exposed areas and nearby uncontaminated areas 129 

(Robertson et al., 2017). We also found that pollution tolerance may be modulated by a diverse 130 

set of candidate genes (Alvarez et al., 2018). In particular, we provided support for the role of an 131 

epigenetic regulator (a homolog of the histone methyltransferase SUVH5), which significantly 132 

altered growth and flower production under crude oil stress in experimental studies (Alvarez et 133 

al., 2018). Considering that histone modifications may regulate and be regulated by DNA 134 

methylation (reviewed in Du et al., 2015), we expected to find a strong correlation between 135 

patterns of DNA methylation and crude oil exposure. However, while a few DNA methylation 136 
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loci (measured via methylation sensitive amplified fragment length polymorphism; MS-AFLP) 137 

were correlated with oil exposure, we did not find genome-wide patterns in DNA methylation 138 

correlated with oil exposure in S. alterniflora (Robertson et al., 2017). Our findings supported 139 

genetic differentiation in response to exposure to crude oil, but suggested that our ability to 140 

detect changes in DNA methylation may have been limited by the number of MS-AFLP markers 141 

(39 polymorphic loci). Further, although our previous study identified population-level patterns 142 

of divergence, we were unable to associate the anonymous AFLP loci with gene function 143 

(Schrey et al., 2013).  144 

In this study, we used a recently developed reduced representation bisulfite sequencing 145 

technique, epigenotyping by sequencing (epiGBS), to generate a more robust DNA sequence and 146 

DNA methylation data set (van Gurp et al., 2016). We expected that the increased resolution, 147 

both in number and in detail of the markers, provided by this sequencing approach would allow 148 

us to identify fine scale DNA methylation structure that was not apparent in our previous MS-149 

AFLP study. We further expected that biasing toward coding regions of the genome with the use 150 

of methylation sensitive enzymes in the epiGBS protocol (van Gurp et al., 2016) would allow us 151 

to find evidence that DNA methylation was correlated with changes in gene function since some 152 

fragments might overlap with the promoter or 5’ end of the coding regions of genes (Niederhuth 153 

& Bewick et al., 2016). Therefore, we hypothesized that genome-wide expression, as well as 154 

expression of candidate genes, could be correlated to changes in genetic variation and DNA 155 

methylation.  156 

 157 

Materials and Methods 158 

 159 

Sample Collection 160 

 We collected individuals from the leading edge of the marsh at three contaminated and 161 

three uncontaminated sites near Grand Isle, Louisiana and Bay St. Louis, Mississippi in August 162 

2010, four months after the DWH oil spill as described in previous studies (Table 1; Robertson et 163 

al., 2017; Alvarez et al., 2018). These sites were naturally highly variable in conditions, but all 164 

sites supported monocultures of S. alterniflora. Contaminated sites were identified by the visual 165 

presence of oil on the sediment, and substantial above-ground dieback of S. alterniflora on the 166 

leading edge of the marsh with S. alterniflora plants growing up through the dead wrack. Nearby 167 
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 7 

uncontaminated sites did not have any visual signs of the presence of oil or noticeable dieback of 168 

the above ground portions of S. alterniflora (contamination status confirmed via NRDA 169 

databases, Robertson et al., 2017). To standardize age and minimize developmental bias in 170 

sampling, we collected the third fully expanded leaf from each of eight individuals, spaced 10 171 

meters apart at each of the six sites (N=48). Leaf samples were immediately frozen in liquid 172 

nitrogen to prevent degradation, and kept frozen during transport to the University of South 173 

Florida for processing and analysis.  174 

 175 

DNA extractions and library prep 176 

 We isolated DNA from each sample (48) using the Qiagen DNeasy plant mini kit 177 

according to the manufacturer’s protocol. We prepared epiGBS libraries sensu van Gurp et al. 178 

(2016). Briefly, isolated DNA was fragmented with the enzyme PstI, which is sensitive to CHG 179 

methylation and biases resulting libraries toward coding regions (van Gurp et al., 2016). After 180 

digestion, adapters with variable barcodes were ligated to either end of the resulting fragments. 181 

Adapters contained methylated cytosines to ensure their sequence fidelity through the subsequent 182 

bisulfite treatment. We used the Zymo EZ Lightning methylation kit to bisulfite treat and clean 183 

the DNA. Libraries were then amplified with the KAPA Uracil Hotstart Ready Mix with the 184 

following PCR conditions: an initial denaturation step at 98ºC for 1 min followed by 16 cycles of 185 

98ºC for 15s, 60ºC for 30s, and 72ºC for 30s, with a final extension of 72ºC for 5 min. Paired-186 

end reads were sequenced at the University of Florida Interdisciplinary Center for Biotechnology 187 

Research on the Illumina HiSeq 5000. 188 

 189 

Data pre-processing and mapping to transcriptome 190 

 We used the epiGBS pipeline (van Gurp et al., 2016) to demultiplex samples, trim 191 

adapter sequences, and assemble the de novo reference sequence 192 

(https://github.com/thomasvangurp/epiGBS). To improve variant calling while accounting for 193 

polyploidy, we realigned individuals to the de novo reference (generated from the epiGBS 194 

pipeline), separately using BWAmeth (Pedersen et al., 2014), and called variants using the 195 

GATK pipeline (DePristo et al., 2011) with a specified ploidy of six. Methylation was tabulated 196 

using the existing epiGBS analysis pipeline. Both SNP and methylation data were filtered 197 

separately to include only loci that were present in more than 90% of individuals, with no more 198 
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than 50% missing from any one individual. Thus, each locus had, at most, 10% missing data, 199 

while each individual had less than 50% missing data across all loci. We removed loci with less 200 

than 5x depth of coverage and remaining missing data were imputed via a k-nearest neighbors 201 

approach, yielding a matrix of “common loci” (impute, Hastie et al., 2018). 202 

All fragments were mapped to the published S. alterniflora transcriptome (Boutte et al., 203 

2016) and the Oryza sativa genome (Michigan State University version 7, Kawahara et al., 2013) 204 

using BLAST (Altschul et al., 1997). We estimated the number and order of exons by mapping 205 

the S. alterniflora transcriptome to Oryza sativa. We also tested for random sampling across 206 

exons among the epiGBS fragments that occurred within coding regions using a Kolmogorov-207 

Smirnov test. We used BLAST (Altschul et al., 1997) and RepeatExplorer (Novak et al., 2013) 208 

to compare our sequenced fragments to the S. alterniflora transcriptome (Ferreira de Carvalho et 209 

al., 2013, 2017; Boutte et al., 2016) and known repeat elements, respectively. 210 

 211 

Population genetics 212 

 Our RRBS did not provide sufficient sequencing depth to estimate hexaploid genotype 213 

likelihoods with confidence, particularly considering the high levels of heterozygosity measured 214 

in S. alterniflora populations (Richards et al., 2004; Travis & Hester, 2005) and the lack of a 215 

high-quality reference genome (Dufresne et al., 2014; Boutte et al., 2016). We therefore used the 216 

frequency of the most common allele within an individual at each polymorphic locus to estimate 217 

allelic diversity, and to estimate Nei’s genetic distances among individuals and sites (StAMPP, 218 

Pembleton et al., 2013).  219 

We obtained pairwise FST values between populations to test for significance of pairwise 220 

differences. Following recommendations from Meirmans (2015) to minimize false positives, we 221 

used distance-based redundancy analysis (RDA; Vegan, Oksanen et al. 2017) to assess isolation 222 

by distance by regressing the genetic relatedness matrix against latitude and longitude (genetic 223 

distance ~ latitude * longitude) for each site using constrained analysis of principal coordinates 224 

(Vegan, Oksanen et al., 2017). 225 

To quantify the relationship between genome-wide variation and environmental 226 

conditions, we used RDA with surrogate variables to represent the complex differences among 227 

sites with the formula (genetic distance ~ oil exposure + surrogate variables). Redundancy 228 

analysis allowed us to assess the joint influence of all SNPs simultaneously (Lasky et al., 2015; 229 
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Forester et al. 2016). Although we attempted to control for variation among samples and sites 230 

with a replicated sampling strategy, rather than using a single term for “site”, we included 231 

parameters identified by surrogate variable analysis (SVA), which provides a method to detect 232 

residual variation due to unmeasured differences among populations including environmental 233 

variation, life history variation, and geographical separation, between samples that may distort 234 

analyses (Leek et al., 2017). We estimated surrogate variables by fitting a full and null model to 235 

the appropriate (i.e. DNA sequence allele frequency or DNA methylation frequency) high 236 

dimensional data matrix and examining the principal components of the residuals (Leek & 237 

Storey, 2007). We used a permutational test (999 permutations) to assess the significance of 238 

differences between the treatment and control groups, given the covariates. We also tested for 239 

differences in the amount of dispersion around centroids (multivariate variance) between oil-240 

exposed or unexposed populations (PERMDISP2, Vegan, Oksanen et al. 2017). We corrected 241 

the resulting P values for false discovery using a Holm correction, and visualized results using 242 

multidimensional scaling (MDS, Vegan, Oksanen et al. 2017). 243 

To identify SNPs that were significantly correlated with oil contamination, we used 244 

binomial linear mixed modeling (MACAU; Lea et al., 2015) including a genetic relatedness 245 

matrix to account for population structure and the surrogate variables as covariates. All locus-by-246 

locus association scans were corrected for family-wise false discovery using the Q-value package 247 

in R (Storey et al., 2015).  248 

 249 

Methylation analysis  250 

 During the filtering process, loci were annotated with their methylation context, but all 251 

contexts were pooled for distance-based analyses as well as family-wise error rate corrections 252 

after locus-by-locus modeling. We tabulated methylation frequency at each locus, defined as the 253 

fraction of methylated cytosines observed out of the total number of cytosines measured at a 254 

given locus (methylated cytosines/(methylated+unmethylated cytosines)), and used methylation 255 

frequencies to generate a methylation distance matrix in R.  256 

To identify signatures of DNA methylation variation that were correlated with oil 257 

exposure and not genetic structure, we used principal components analysis to reduce the genetic 258 

data to orthogonal components, and identified 8 of the 42 possible principal components axes 259 

that were significantly correlated with methylation. We then modeled the impact of oil exposure 260 
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to genome-wide patterns of DNA methylation by jointly assessing the influence of all 261 

polymorphic methylation loci concurrently via RDA (Vegan, Oksanen et al. 2017) with the 262 

formula (methylation distance ~ oil exposure + surrogate variables + significant principal 263 

components of allele frequency data). We corrected the resulting P values for false discovery 264 

using a Holm correction, and visualized results using multidimensional scaling (MDS, Vegan, 265 

Oksanen et al. 2017). 266 

To identify differentially methylated positions (DMPs) between contaminated and 267 

uncontaminated samples, we used binomial linear mixed modeling (MACAU; Lea et al., 2015), 268 

using the genetic relatedness matrix and surrogate variables as covariates to control for 269 

population structure. We corrected locus-specific P-values for multiple testing (qvalue, Storey et 270 

al., 2015), and tested for overrepresentation of cytosine contexts (CG, CHG, CHH) using an 271 

exact binomial test, implemented in R. Because our epiGBS fragments rarely exceeded 200bp, 272 

we did not identify differentially methylated regions. 273 

  274 

Relationships to gene expression variation 275 

 We used transcriptome data from our previous analyses of three mRNA pools of three 276 

individuals from each of the six sites to assess the relationship between variation in gene 277 

expression, genetic variation, and methylation variation (Alvarez et al., 2018). We found 3,334 278 

genes that responded to crude oil exposure in S. alterniflora out of 15,950 genes that were 279 

assessed. In order to make the epiGBS data comparable to our pools of mRNA, we concatenated 280 

SNPs and methylation polymorphisms from individuals into in silico sample pools by averaging 281 

values at individual loci across samples within pools of the same individuals that were used in 282 

the gene expression analysis. We then calculated genetic, expression, and methylation distances 283 

between sample pools and used multiple regression on distance matrices to assess the 284 

relationship between all three data types (MRM; ecodist, Goslee & Urban, 2007). 285 

We assessed the correlation between gene expression, genetic variation, and methylation 286 

variation within the same fragment (i.e. in cis) gene-by-gene using only microarray probes and 287 

epiGBS fragments that could be mapped to the S. alterniflora transcriptome. We regressed the 288 

expression values of each gene against the methylation frequencies and most common allele 289 

frequencies at corresponding epiGBS fragments using the lm function in R with the formula 290 

(gene expression ~ cis methylation + cis SNP). We summarized variation across each epiGBS 291 
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fragment for multiple SNP or methylation loci by using the first principal component of each 292 

data type. We interpreted significant effects of SNPs or DNA methylation to mean that the 293 

expression of a given gene depended on the frequency of the nucleotide or methylation 294 

polymorphism. We corrected for false discovery using qvalue (Storey et al., 2015).  295 

 296 

Results 297 

epiGBS yields informative genetic and methylation loci 298 

 Following library preparation, we removed four samples due to stochastic under-299 

sequencing. The libraries for 44 individuals (Table 1) generated 6,809,826 total raw sequencing 300 

reads, of which 3,833,653 (56.3%) could be matched to their original mate strand. De novo 301 

assembly using the epiGBS pipeline resulted in 36,131 contiguous fragments (19-202 basepairs) 302 

with a total length of 5,441,437 bp (Figs. S1, S2). Given the size of the S. alterniflora genome 303 

(2C values = 4.3 pg; Fortune et al., 2008), our epiGBS approach assayed approximately 0.3% of 304 

the genome. However, fragments that were >90% similar were merged, and polyploid 305 

homeologs may have been concatenated. With BLAST, we found 10,103 fragments mapped to 306 

2,718 transcripts in S. alterniflora transcriptome. We found no bias in mapping to particular gene 307 

regions (Fig. S3), but 1,571 transcripts (57.8%) contained multiple epiGBS fragments that align 308 

to the same place, and 296 (10.9%) contained multiple epiGBS fragments that mapped to 309 

different places within the same gene. We suspect that multiple epiGBS fragments map to the 310 

same location because some epiGBS contiguous fragments represent different homeologs of the 311 

same region, which mapped to the same location. Only 1% of reads map to repetitive elements, 312 

confirming that Pst1-fragmented libraries were biased away from highly methylated, repetitive 313 

regions (van Gurp et al., 2016). 314 

 315 

Genetic differentiation  316 

 Our initial sequencing run yielded 171,205 SNPs across all individuals. After filtering to 317 

common loci and removing invariant sites, we imputed 10-25% missing genetic data and 10-50% 318 

methylation data per sample (Fig. S4), resulting in 6,521 SNP loci. We hypothesize that this 319 

significant data loss after filtering was due to insufficient sampling depth across an exceptionally 320 

large hexaploid genome, and a preponderance of restriction sites. Of these 6,521 loci, 243 SNPs 321 

occurred in transcripts. Pairwise FST calculations showed that all sites were significantly different 322 
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from each other (Table 3), with no evidence of isolation by distance (P>0.05 for latitude, 323 

longitude, and interaction). As in our AFLP study, we found significant genetic differentiation 324 

that was correlated to oil exposure: oil exposure explained 7.9% of the variance in DNA 325 

sequence (P=0.035, Table 2). These results are recapitulated in the MDS visualization, which 326 

shows partial separation of oil-exposed and unexposed sites along MDS axis 1 (Fig. 1). We 327 

found 42 SNPs that were significantly associated with oil exposure, including 6 that overlapped 328 

with the S. alterniflora transcriptome. Four of these genes were annotated in O. sativa (Table 329 

S1). After testing for homogeneity of group dispersion, we found no evidence of change in 330 

variance in oil-exposed populations (P=0.696). 331 

 332 

DNA methylation differentiation 333 

 Our bisulfite sequencing yielded 1,402,083 cytosines that were polymorphic for 334 

methylation across our samples before filtering. After filtering our data to common loci as 335 

described above, we analyzed 19,577 polymorphic methylated loci, 5,836 of which occurred in 336 

the CG context, 5,069 in the CHG context, and 8,673 in the CHH context. These proportions of 337 

polymorphic loci did not change significantly due to oil exposure (Fig. 2). Methylation calls 338 

were collapsed for symmetric CG and CHG loci across “watson” and “crick” strands so that 339 

methylation on either one or both strands was considered as a single locus. A quarter of cytosines 340 

that showed methylation polymorphism (26.3%) were methylated in fewer than 5 individuals, 341 

suggesting that many cytosines were infrequently methylated or methylated only on some sub-342 

genomes. We found significant methylation differentiation by oil exposure after controlling for 343 

population structure with principal components of genetic data (P=0.022). Oil explained 9.2% of 344 

the variation in methylation.  345 

Using locus-by-locus tests, we found 14 differentially methylated positions (DMPs 346 

between exposure types (Q<0.05, Fig. 3; Table S1). These loci occurred nearly equally in CG (4 347 

loci), CHG (5 loci), and CHH (5 loci) contexts, and no contexts were overrepresented relative to 348 

their distribution across all loci (P>0.2 for all tests). Among these significant loci, one was 349 

located within a fragment that mapped to the S. alterniflora transcriptome. In addition, four were 350 

located in one of three fragments that mapped to the Oryza sativa transcriptome (Table S1). Most 351 

of these 14 loci had small differences in the magnitude of methylation frequency changes 352 

(average 2.8% change between exposed and unexposed populations). However, one locus 353 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 27, 2018. ; https://doi.org/10.1101/426569doi: bioRxiv preprint 

https://doi.org/10.1101/426569
http://creativecommons.org/licenses/by-nc-nd/4.0/


 13 

experienced frequency changes of 30%, and was located in an actin filament depolymerization 354 

protein (Os03g56790; ADF2). We found no DMPs that mapped to the first 250 nucleotides of a 355 

fragment in exon 1, where DNA methylation may be particularly relevant to the differential 356 

expression of genes (Secco et al., 2015).  357 

 358 

Correlations with gene expression 359 

 Although 2,718 epiGBS fragments mapped to the Spartina transcriptome, none of these 360 

fragments overlapped with transcripts that showed expression differences correlated with 361 

exposure to the DWH oil spill (Alvarez et al., 2018). Across all genes within a sample, we found 362 

no significant relationship between genetic distance with gene expression distance (P=0.185, 363 

Mantel’s R=0.1489), but there was a correlation between patterns of methylation variation and 364 

genome wide gene expression (P=0.009, Mantel’s R=0.2319). We had expression data and either 365 

SNPs or methylation polymorphisms for only 54 genes, and we found no association between 366 

individual SNPs or methylation polymorphisms with expression in cis. 367 

 368 

Discussion 369 

 Spartina alterniflora displays high levels of genetic and methylation variation across 370 

environmental conditions in its native range (Richards et al., 2004; Hughes & Lotterhos, 2014; 371 

Foust et al., 2016; Robertson et al., 2017), providing substrate for both genetic and epigenetic 372 

response to pollution. We previously found that genetic structure and expression of 3,334 genes 373 

were correlated to exposure to the DWH oil spill, but genome-wide methylation variation was 374 

not (Robertson et al., 2017; Alvarez et al., 2018). Higher resolution epiGBS suggests that both 375 

genetic sequence and DNA methylation are correlated with crude oil exposure in S. alterniflora, 376 

and that changes in gene expression are more strongly correlated to genome-wide patterns of 377 

DNA methylation than population structure. 378 

 379 

Increased resolution of genetic and epigenetic response to the DWH 380 

 Our study confirmed significant genetic differentiation between oil-exposed and 381 

unexposed sites. This type of genetic structure may reflect either stochastic mortality in oil-382 

exposed areas that may result from a severe bottleneck, or a signature of selection for oil 383 

tolerance in affected populations. Spartina alterniflora is a highly stress tolerant plant, and 384 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 27, 2018. ; https://doi.org/10.1101/426569doi: bioRxiv preprint 

https://doi.org/10.1101/426569
http://creativecommons.org/licenses/by-nc-nd/4.0/


 14 

populations have persisted after exposure to the DWH oil spill, even after extensive dieback (Lin 385 

& Mendelssohn, 2012; Silliman et al., 2012; Lin et al., 2016). However, our genetic data suggest 386 

that at least some S. alterniflora genotypes were susceptible to crude oil stress, and either had not 387 

regrown at the time of sampling or experienced mortality as a result of oil exposure. Our genetic 388 

marker studies, combined with initial losses in live aboveground and belowground biomass, 389 

support the hypothesis of differential mortality (Lin et al., 2016). Although we found no 390 

evidence for a reduction in genetic variation, which may indicate selection for tolerant 391 

genotypes, the polyploidy of Spartina makes accurate quantification of total genetic variation 392 

challenging. Further investigations will be required to confirm whether mortality varied by 393 

genotype, and whether the DWH oil spill was truly a selective event. 394 

 The DNA methylation differences that were correlated to oil exposure may reflect either 395 

the downstream effects of different genetic variants, a plastic regulatory response to oil exposure, 396 

or both. In another study of S. alterniflora populations, patterns of DNA methylation were more 397 

strongly correlated than genetic structure with microhabitat, and some response of DNA 398 

methylation to environment was independent of population structure (Foust et al., 2016). In the 399 

oil contaminated populations, we identified a differentially expressed gene that was homologous 400 

to the histone methyltransferase SUVH5, which may modulate fitness effects during oil exposure 401 

(Alvarez et al., 2018). Histone methylation is intimately linked to DNA methylation through the 402 

regulation of DNA (cytosine-5)-methyltransferase CMT3 activity (Stroud et al., 2013). Therefore, 403 

we hypothesized that the differential expression of SUVH5 in response to crude oil exposure 404 

would result in differences in DNA methylation variation. With the increase in resolution offered 405 

by the epiGBS data set (36,131 epiGBS fragments yielding 19,615 methylation loci compared to 406 

39 polymorphic MS-AFLP fragments), we found a previously unidentified genome-wide 407 

signature of methylation differentiation between oil affected and unaffected sites after 408 

controlling for population structure.  409 

 410 

Epigenetic variation is correlated to genome wide patterns of gene expression 411 

We expected that our fragments would be biased toward coding regions of the genome, 412 

and that we would find DNA methylation was correlated with changes in gene function since 413 

fragments could overlap with the promoters or the 5’ end of the coding regions of genes. We 414 

found that almost 1/3 (10,103 of the 36,131) epiGBS fragments mapped to the S. alterniflora 415 
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transcriptome. However, many transcripts contained multiple epiGBS fragments such that only 416 

2,718 transcripts were represented. None of these 2,718 genes overlapped with the 3,334 oil 417 

responsive genes from our previous transcriptome analysis (Alvarez et al., 2018), and few 418 

fragments overlapped the 5’ end of genes. Therefore, our expectation that we could correlate 419 

local methylation polymorphisms to expression of oil responsive genes was not fulfilled in this 420 

study. However, genome-wide patterns of DNA methylation are more strongly correlated than 421 

genetic structure with gene expression. 422 

Combined, our results suggest that genetic variation and regulatory mechanisms may play 423 

a role in the response of S. alterniflora populations to crude oil pollution. Although we are 424 

unable to dissect causality, our data suggest one of two possibilities. In the first scenario, crude 425 

oil exposure may have generated genetic differentiation between oil exposed and unexposed 426 

populations, which in turn shaped patterns of gene expression. Differential transcription may 427 

then have generated divergent patterns of methylation, either through genetic variation in DNA 428 

methyltransferases (Dubin et al., 2015), or through changes in gene expression affected by 429 

neighboring transposable element activity (sensu Secco et al., 2015). In this scenario, DNA 430 

methylation patterns are generated by genetic variation and/or reflect expression variation (sensu 431 

Meng et al., 2016; Niederhuth & Schmitz, 2017). In the second scenario, crude oil exposure may 432 

have affected genetic variation while simultaneously but independently inducing patterns of 433 

DNA methylation e.g. as a response to the genomic “shock” of crude oil exposure (Rapp & 434 

Wendel, 2005; Richards et al., 2012b). This variation may modulate the plastic response of gene 435 

expression variation in this system, and reflect an induced regulatory shift in S. alterniflora, 436 

regardless of genetic background. Of course, these scenarios are not mutually exclusive. While 437 

more complex models of causation will require substantially more genomic resources than are 438 

currently available in S. alterniflora, reverse genetic screens and higher resolution surveys may 439 

help to discern the relative contributions and causal roles of methylation and genetic variation in 440 

genes of interest. 441 

 442 

Reduced representation sequencing compared to AFLP 443 

 As the field of ecological genomics matures, there is a pressing need to develop robust 444 

assays and statistically sound measures of population regulatory variation. Reduced 445 

representation methylation sequencing techniques are attractive for ecological genomics because 446 
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they can be used to infer genome wide patterns of both genetic and methylation variation without 447 

a high-quality reference genome (Robertson & Richards, 2015; Richards et al., 2017; Paun et al., 448 

2018). However, considering the small portion of the genome that is sampled in these 449 

techniques, they still have serious limitations particularly for species that do not yet have a fully 450 

sequenced reference genome (Paun et al., 2018). 451 

 We assessed the utility of epiGBS compared to MS-AFLP, and expected that the 452 

substantial increase in informative markers would confirm our results from our MS-AFLP study 453 

and lend greater resolution to detect patterns of DNA methylation variation. Our epiGBS survey 454 

detected significant differentiation in both genetic variation and DNA methylation that was 455 

correlated to oil exposure, suggesting that epiGBS provides increased resolution over MS-AFLP 456 

to detect genome-wide methylation differences in studies of similar sample sizes. However, 457 

despite the much larger data set generated by epiGBS compared to MS-AFLP, we only found 14 458 

differentially methylated positions, which is not substantial improvement over the five loci 459 

detected by MS-AFLP (Robertson et al., 2017). The comparable number of DMPs and lack of 460 

power to evaluate cis association between methylation, genetic variation, and gene expression 461 

suggests that the ability to characterize individual functional elements remains obscured by 462 

substantial variation in methylation across individuals, and is limited by the small fraction (an 463 

estimated 0.3%) of the genome that is assayed. Further, although we may have biased sampling 464 

to coding regions of the genome, we found few fragments that overlapped the functionally 465 

relevant 5’ end of transcripts. Without a reference genome for S. alterniflora, we were unable to 466 

identify fragments that overlapped promoter regions. 467 

 Sequencing-based techniques provide the potential to identify functional genomic 468 

regions, but correct annotations rely on genomic resources in a relevant reference. In polyploid 469 

species like S. alterniflora, a greater number of paralogs and the potential for 470 

neofunctionalization among them creates additional uncertainty for using annotations from other 471 

species (Primmer et al., 2013). Spartina alterniflora has various levels of duplicated gene 472 

retention and homeologous expression (Ainouche et al., 2003; Fortune et al., 2007; Ferreira de 473 

Carvalho, 2013, 2017; Boutte et al., 2016), which may result in more opportunities for gene 474 

diversification and subfunctionalization (Chen et al., 2015; Shimizu-Inatsugi et al. 2017), and 475 

complicates gene annotation. Therefore, while studies with RRBS techniques in non-model 476 

plants offer increased power to detect broad, genome-wide patterns of variation that may be 477 
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correlated to ecology, they are still limited for the detection of specific gene function. Future 478 

studies will benefit from optimizing protocols that enrich for specific portions of the genome, but 479 

generating a draft reference genome will be imperative to locate the promoter regions and allow 480 

for better exploitation of RRBS data (Paun et al., 2018). 481 
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Tables and Figures 491 

 492 

Table 1 Sampling information across all sites after filtering.  493 

Site Location Site Code Exposure No. of individuals 

Grand Isle, LA GIN1 None 7 

Grand Isle, LA GIN2 None 7 

Barataria Bay, LA GIO1 Heavily 
Oiled 

8 

Barataria Bay, LA GIO2 Heavily 
Oiled 

8 

Bay St. Louis, MS MSN None 7 

Bay St. Louis, MS MSO Heavily 
Oiled 

7 

 494 

Site information includes location and whether oil was observed at each site (exposure).  495 
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Table 2 Association between oil exposure, genetic distance, and methylation distance across 496 

tests.  497 

  Genetic  Methylation 

Factor df F 
Variance 
explained  F 

Variance 
explained  

oil 1 1.395 * 0.079  1.960* 0.092 
 498 

Test statistics and significance, determined through RDA. For clarity, we do not show 499 

significance for estimated surrogate variables (7 for methylation data, 16 for genetic data) or the 500 

8 principal components of allele frequencies for the methylation data. P * ≤ 0.05, P ** ≤ 0.01, P 501 

*** ≤ 0.0001  502 
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Table 3 Pairwise Fst among three oil contaminated and three uncontaminated sites. Bold (i.e. all 503 

entries) indicates significance at P<0.001.  504 

 GIN1 GIN2 MSN GIO1 GIO2 

GIN2 0.1304     

MSN 0.1329 0.1421    

GIO1 0.1451 0.1264 0.1382   

GIO2 0.0966 0.1020 0.1198 0.1158  

MSO 0.1171 0.1471 0.1497 0.1580 0.1008 

  505 
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Figure 1 Multidimensional scaling (MDS) of a) genetic distance matrix and b) DNA 506 

methylation distance matrix. Circles represent 95% confidence intervals around the centroid of 507 

each group: no oil exposure (“none”) or oil-exposed (“oil”). 508 

  509 

a b 
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 510 
 511 
Figure 2 Proportion of methylated sites by context across a) all samples, b) in uncontaminated 512 
sites and c) oil-contaminated sites. 513 
  514 

a b c 
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 515 

 516 
 517 

Figure 3 Circular manhattan plot showing 14 significant outlier methylation loci, as determined 518 

by Q-value. Only significant loci (Q<0.05) are colored, where colors represent trinucleotide 519 

context. Plot is shown as circular to accommodate unknown positions along a chromosome, as S. 520 

alterniflora does not have a reference genome. 521 
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Table S1 Genetic and methylation loci significantly differentially associated with oil exposure.  523 

Contiguous 
fragment Position Context Q-value O. sativa 

annotation Gene name 

3386 141 - 0.0056   
5449 67 - 0.0399   
7242 26 - 0.0447   
8158 95 - 0.016   
9488 45 - 0.0339   
9488 51 - 0.0421   
9488 94 - 0.0385   

10931 43 - 0.0385   
11792 111 - 0.0339   
11939 123 - 0.0033 Os06g02570 Syntaxin, putative 
11972 49 - 0.0327   
11974 102 - 0.012   
11974 131 - 0.0327   
12084 26 - 0.0447   
12418 86 - 0.0033   
13976 47 - 0.0385   
14656 84 - 0.0385   
14804 93 - 0.0001   
14957 105 - 0.012   
19335 34 - 0.0032   
19759 76 - 0.0447   
26805 111 - 0.0466   
26906 41 - 0.0009   
27016 91 - 0.0421 Os03g18220 pyruvate decarboxylase isozyme 2, 

putative 
27227 103 - 0.0307   
28167 59 - 0.0443   
28937 126 - 0.0421   
28937 133 - 0.0413   
28937 147 - 0.0307   
30433 105 - 0.013   
31126 85 - 0.0181   
31126 147 - 0.0174   
31604 78 - 0.0421   
32215 52 - 0.0033   
33738 102 - 0.0218   
34288 53 - 0.0001 Os11g39230 retrotransposon protein, putative 
34398 88 - 0.0013   
34744 123 - 0.0366   
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35646 61 - 0 Os01g43070 
psbP-related thylakoid lumenal 
protein 4, chloroplast precursor, 

putative 
36084 92 - 0.0009   
36084 96 - 0.0447   
36084 115 - 0.0308   

673 43 CG 0.0461   
8098 139 CG 0.0291   

11959 13 CG 0.0182 Os01g69980 TCP family transcription factor, 
putative 

34711 123 CG 0.0075   
183 10 CHG 0.0443   
527 19 CHG 0.0388 Os03g56790 actin-depolymerizing factor, putative 

4191 107 CHG 0.0105   
5540 171 CHG 0.0482   
7334 97 CHG 0.0009   

45 82 CHH 0.0388 Os03g51920 peptidase, M50 family, putative 
5540 34 CHH 0.008   
6013 69 CHH 0.0016 Os10g34480 cytochrome P450, putative 

14227 11 CHH 0.0312 Os08g38560 receptor-like protein kinase 2 
precursor, putative 

14776 15 CHH 0.0394   
 524 

Only loci with Q-value <0.05 are shown. Trinucleotide context (CG, CHG, CHH) shown for 525 

methylated loci. Gene numbers from O. sativa are shown for loci on fragments that were able to 526 

annotated.  527 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 27, 2018. ; https://doi.org/10.1101/426569doi: bioRxiv preprint 

https://doi.org/10.1101/426569
http://creativecommons.org/licenses/by-nc-nd/4.0/


 26 

 528 

 529 
 530 

Figure S1 Depth of sampling by fragment size in each sample across all fragments. Fragments 531 

ranged from 19-202 basepairs (bp) for a total length of 5,441,437 bp (approximately 0.3% of the 532 

2117 Mbp S. alterniflora genome (2C= 4.33pg); Fortune et al., 2008). Fragments shown in 533 

classes on the X axis. 534 
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 537 
Figure S2 Sequencing depth for each sample for each of the 36,131 fragments. 538 

  539 
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 540 
Figure S3. Distribution of epiGBS hits across exons. Exon order is predicted by BLAST hits to 541 

Oryza sativa. 542 

 543 

0

50

100

150

0 10 20 30
Exon

Fr
eq
ue
nc
y

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 27, 2018. ; https://doi.org/10.1101/426569doi: bioRxiv preprint 

https://doi.org/10.1101/426569
http://creativecommons.org/licenses/by-nc-nd/4.0/


 29 

 544 
Figure S4. Missing and imputed data by sample after filtering. Genetic and methylation data 545 

were both filtered to include only loci present in >90% of samples and samples with less than 546 

50% missing data. 547 
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