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Abstract 53 

Theory predicts that environmental challenges can shape the composition of populations, which 54 

is manifest at the molecular level. Previously, we demonstrated that oil pollution affected gene 55 

expression patterns and altered genetic variation in natural populations of the foundation salt 56 

marsh grass, Spartina alterniflora. Here, we used a reduced representation bisulfite sequencing 57 

approach, epigenotyping by sequencing (epiGBS), to examine relationships among DNA 58 

sequence, DNA methylation, gene expression, and exposure to oil pollution. We documented 59 

genetic and methylation differentiation between oil-exposed and unexposed populations, 60 

suggesting that the Deepwater Horizon oil spill may have selected on genetic variation, and 61 

either selected on epigenetic variation or induced particular epigenotypes and expression patterns 62 

in exposed compared to unexposed populations. In support of the potential for differential 63 

response to the Deepwater Horizon oil spill, we demonstrate genotypic differences in response to 64 

oil under controlled conditions. Overall, these findings demonstrate genetic variation, epigenetic 65 

variation and gene expression are correlated to exposure to oil pollution, which may all 66 

contribute to the response to environmental stress.  67 
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Introduction 68 

Organismal interactions and response to environment are governed by molecular 69 

mechanisms, which are among the most basic levels of biological organization. Studies across a 70 

diversity of organisms have described the association of genetic variation with environmental 71 

factors (Andrew et al., 2013; Feder & Mitchell-Olds, 2003). More recently, transcriptomics 72 

studies in natural populations have identified gene expression differences that are associated with 73 

phenotypic plasticity, genotype-by-environment interactions, and local adaptation, and that some 74 

of these differences are only elicited in natural environments (Alvarez, Schrey, & Richards, 75 

2015; Nagano et al. 2012, 2019; Nicotra et al., 2010). Hence, gene expression variation, like 76 

genetic variation, can translate into trait variation that contributes to organismal performance 77 

with important population- and community-level ecological effects (Alvarez et al., 2015; 78 

Hughes, Inouye, Johnson, Underwood, & Vellend, 2008; Schoener, 2011; Whitham et al., 2006). 79 

Additional layers of variation, including chromatin modifications, small RNAs, and other 80 

non-coding variants, can mediate changes in genotypic expression and phenotype. However, this 81 

type of variation is infrequently studied in natural settings (Alvarez et al. 2015; Kudoh 2016; 82 

Nagano et al. 2012, 2019; Richards et al., 2017). DNA and chromatin modifications, such as 83 

DNA methylation, can also vary among individuals within populations (Banta & Richards, 2018; 84 

Becker & Weigel, 2012; Richards et al., 2017), and contribute to phenotypic variation by 85 

modulating the expression of genes (Alvarez et al., 2015, 2018), the types of transcripts that 86 

genes produce (Maor, Yearim, & Ast, 2015), the movement of mobile elements (Matzke & 87 

Mosher, 2014), and the production of structural variants (Underwood et al., 2018 ; Yelina et al., 88 

2015). At the same time, changes in genetic sequence or gene expression may cause variation in 89 

patterns of DNA methylation, creating a bidirectional relationship that varies across the genome 90 

(Meng et al., 2016; Niederhuth & Schmitz, 2017; Secco et al., 2015). Patterns of DNA 91 

methylation have been correlated to habitat types, exposure to stress, and shifts in species range 92 

(Foust et al., 2016; Liebl, Schrey, Andrew, Sheldon, & Griffith, 2015; Liebl, Schrey, Richards, 93 

& Martin, 2013; Richards, Schrey, & Pigliucci, 2012; Verhoeven, Jansen, van Dijk, & Biere, 94 

2010; Weyrich, et al., 2016; Xie et al., 2015). However, it is often unclear whether changes in 95 

DNA methylation, and correlated changes in gene expression, are simply a downstream 96 

consequence of changes in allele frequencies or if they may manifest through other mechanisms. 97 
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In 2010, the Deepwater Horizon (DWH) oil spill developed into the largest marine oil 98 

spill in history (National Commission on the BP Deepwater Horizon oil spill, 2011), and became 99 

an opportunity to test ecological and evolutionary hypotheses in a diversity of organisms 100 

exposed to this recurrent anthropogenic stress (e.g. Alvarez et al. 2018; DeLeo et al. 2018; 101 

Hazen et al. 2010; Kimes et al. 2013; Kimes, Callaghan, Suflita & Morris, 2014; Robertson, 102 

Schrey, Shayter, Moss, & Richards, 2017; Rodriguez-R et al. 2015; Whitehead et al. 2012). A 103 

mixture of crude oil and dispersants made landfall along 1,773 kilometers on the shorelines of 104 

Louisiana, Mississippi, Alabama and Florida (Mendelssohn et al., 2012; Michel et al., 2013). 105 

Nearly half of the affected habitat was salt marsh, which supplies valuable ecosystem functions 106 

such as providing nurseries for birds and fish, and buffering storm and wave action (Day et al., 107 

2007; Mendelssohn et al., 2012; Michel et al., 2013). Gulf of Mexico salt marshes are dominated 108 

by the hexaploid foundation plant species Spartina alterniflora (2n=6x=62; Marchant, 1968), 109 

which is remarkably resilient to a variety of environmental stressors (Bedre, Mangu, Srivastava, 110 

Sanchez, & Baisakh, 2016; Cavé-Radet, Salmon, Lima, Ainouche, & El Amrani, 2018; Pennings 111 

& Bertness, 2001; Silliman et al., 2012). Crude oil exposure from the DWH oil spill resulted in 112 

reduced carbon fixation, reduced transpiration, and extensive above-ground dieback in S. 113 

alterniflora populations (Lin & Mendelssohn, 2012; Silliman et al., 2012), but oil-affected 114 

populations showed partial to complete recovery within seven months of the spill (Lin et al., 115 

2016). However, the genomic and population level mechanisms that underlie this remarkable 116 

recovery have been poorly characterized.  117 

In previous studies, we found that in S. alterniflora exposed to the DWH oil spill, 118 

pollution tolerance was correlated to changes in expression of a diverse set of genes, including 119 

epigenetic regulators and chromatin modification genes, such as a homolog of SUVH5 (Alvarez 120 

et al., 2018). Although S. alterniflora populations were partially resilient to the DWH spill (Lin 121 

& Mendelssohn, 2012), we found evidence of genetic differentiation between individuals from 122 

oil-exposed areas and nearby uncontaminated areas (Robertson et al., 2017). We expected that 123 

DNA methylation patterns would be divergent between oil exposed and unexposed populations, 124 

which might be induced by the environment or result from the genetic differences between 125 

exposed and unexposed populations. However, while a few DNA methylation loci (measured via 126 

methylation sensitive amplified fragment length polymorphism; MS-AFLP) were correlated with 127 
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oil exposure, we did not find genome-wide patterns in DNA methylation correlated with oil 128 

exposure in S. alterniflora (Robertson et al., 2017). 129 

In this study, we used a recently developed reduced representation bisulfite sequencing 130 

(RRBS) technique, epigenotyping by sequencing (epiGBS), to generate a more robust DNA 131 

sequence and DNA methylation data set (van Gurp et al., 2016). We expected that the increased 132 

resolution, both in number and in detail of the markers, provided by this sequencing approach 133 

would confirm our previously observed patterns of genetic differentiation, and allow us to 134 

identify fine scale DNA methylation structure that was not apparent in our previous study. By 135 

aligning our fragments to the S. alterniflora transcriptomes (Boutte et al., 2016; Ferreira de 136 

Carvalho et al., 2013, 2017) and Oryza sativa genome (Kawahara et al., 2013), we expected to 137 

assess the relationship between DNA methylation and previously reported gene expression. We 138 

predicted that we would find evidence that DNA methylation was correlated with changes in 139 

gene expression since some fragments might overlap with the coding regions of genes 140 

(Niederhuth & Bewick et al., 2016). In addition, we examined the potential for response to 141 

selection by crude oil exposure among genotypes collected from the field in a common garden 142 

greenhouse experiment. We predicted that we would find variation in response to crude oil 143 

among genotypes, which would indicate existing standing variation in wild populations of S. 144 

alterniflora that could be acted upon by selection.  145 

 146 

Materials and Methods 147 

 148 

Sample Collection 149 

 We collected individuals from the leading edge of the marsh at three contaminated and 150 

three neighboring uncontaminated sites near Grand Isle, Louisiana and Bay St. Louis, 151 

Mississippi in August 2010, four months after the DWH oil spill as described in previous studies 152 

(Table 1; Alvarez et al., 2018; Robertson et al., 2017). These sites were naturally variable in 153 

conditions, but all sites supported monocultures of S. alterniflora. Contaminated sites were 154 

identified by the visual presence of oil on the sediment and substantial above-ground dieback of 155 

S. alterniflora on the leading edge of the marsh with S. alterniflora plants growing through the 156 

dead wrack. Nearby uncontaminated sites did not have any visible signs of the presence of oil or 157 

noticeable dieback of the above ground portions of S. alterniflora. Contamination status was 158 
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later confirmed via National Resource Damage Assessment databases (Robertson et al., 2017). 159 

To standardize age and minimize developmental bias in sampling, we collected the third fully 160 

expanded leaf from each of eight individuals, spaced 10 meters apart at each of the six sites 161 

(N=48). Leaf samples were immediately frozen in liquid nitrogen to prevent degradation, and 162 

kept frozen during transport to the University of South Florida for processing and analysis. 163 

 164 

DNA extractions and library prep 165 

 We isolated DNA from each field-collected sample (N=48) using the Qiagen DNeasy 166 

plant mini kit according to the manufacturer’s protocol. We prepared epiGBS libraries sensu van 167 

Gurp et al. (2016). Briefly, isolated DNA was digested with the enzyme PstI, which is sensitive 168 

to CHG methylation and biases resulting libraries toward coding regions (van Gurp et al., 2016). 169 

After digestion, adapters containing methylated cytosines and variable barcodes were ligated to 170 

either end of the resulting fragments. We used the Zymo EZ Lightning methylation kit to 171 

bisulfite treat and clean the DNA. Libraries were then amplified with the KAPA Uracil Hotstart 172 

Ready Mix with the following PCR conditions: an initial denaturation step at 98ºC for 1 min 173 

followed by 16 cycles of 98ºC for 15s, 60ºC for 30s, and 72ºC for 30s, with a final extension of 174 

72ºC for 5 min. We used rapid run–mode paired-end sequencing on an Illumina HiSeq2500 175 

sequencer using the HiSeq v4 reagents and the HiSeq Control software (v2.2.38), which 176 

optimizes the sequencing of low-diversity libraries (van Gurp et al., 2016). 177 

 178 

Data pre-processing and mapping to transcriptome 179 

 We used the epiGBS pipeline (van Gurp et al., 2016) to demultiplex samples, trim 180 

adapter sequences, assemble the de novo reference sequence, and call single nucleotide 181 

polymorphisms (SNPs) and DNA methylation polymorphisms (DMPs) 182 

(https://github.com/thomasvangurp/epiGBS). Sequencing depth varied substantially between 183 

samples, which we evaluated with a principal components analysis (PCA) on sampling depths 184 

across loci. We assumed that an approximately even spread of the samples across PC1 and PC2 185 

with no association of population or oil exposure, would indicate that sampling depth did not 186 

bias our downstream analyses (Figure S1). SNPs (the resulting snps.vcf file) and DMPs 187 

(methylation.bed) were filtered separately for each individual to include only loci that were 188 

sequenced a minimum of ten times (10x depth of coverage), while loci below this coverage were 189 
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considered missing data. We first removed 10 individuals with high amounts of missing data 190 

(>80%), leaving 38 samples across all 6 populations (Table 1). We then retained only loci that 191 

were present in more than 50% of individuals, with no more than 70% missing from any one 192 

individual (Figure S2). During the course of this filtering, missing data were imputed via a k-193 

nearest neighbors approach (impute, Hastie, Tibshirani, Narasimhan, & Chu, 2018). We also 194 

performed genome-wide analyses (redundancy analyses, explained below) a second time with 195 

stricter filtering parameters (no more than 50% missing data in any individual, and no more than 196 

20% missing data at each locus, leaving 34 individuals) and obtained nearly identical P-values 197 

and F-statistics, although percent variance explained was reduced (Supplementary File 1). 198 

All fragments were mapped to the published S. alterniflora transcriptome (Boutte et al., 199 

2016) and the O. sativa genome (Michigan State University version 7, Kawahara et al., 2013) 200 

using BLAST (Altschul et al., 1997). We used BLAST (Altschul et al., 1997) and 201 

RepeatExplorer (Novak, Neumann, Pech, Steinhaisl, & Macas, 2013) to compare our sequenced 202 

fragments to the S. alterniflora transcriptome (Boutte et al., 2016; Ferreira de Carvalho et al., 203 

2013, 2017) and known repeat elements, respectively. 204 

 205 

Population genetics 206 

 All statistical analyses were performed in R v 3.5.3 (R Core Team, 2017). The epiGBS 207 

technique, and the sequencing design that we chose, did not provide sufficient sequencing depth 208 

to estimate hexaploid genotype likelihoods with confidence, particularly considering the lack of 209 

a high-quality reference genome (Boutte et al., 2016; Dufresne et al., 2014). We therefore used 210 

the frequency of the most common allele within an individual at each polymorphic locus as a 211 

substitute for genotype at each locus. Although this method ignores the various types of partial 212 

heterozygosity that are possible in hexaploid S. alterniflora, methods do not currently exist for 213 

accurate estimation of heterozygosity in polyploids, and the majority of standard population 214 

genetic inference assumes diploidy. We assumed that the frequency of the most common allele 215 

was likely to underestimate diversity and therefore underestimate divergence between 216 

populations, making our tests of differentiation conservative (Meirmans, Liu, & van Tienderen, 217 

2018). 218 

We obtained pairwise FST values between populations to test for significant 219 

differentiation (StAMPP, Pembleton, Cogan, & Forster, 2013). We also used distance-based 220 
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redundancy analysis (RDA function in the Vegan package v. 2.5-2; Oksanen et al. 2017) to 221 

minimize false positives (Meirmans, 2015) in assessing isolation by distance using the formula 222 

(genetic distance ~ latitude * longitude). We visualized data using principal components analysis 223 

(PCA; Figure 1A). 224 

To quantify the relationship between genome-wide variation and environmental 225 

conditions, we used partial constrained redundancy analysis (RDA, implemented with the RDA 226 

function in the Vegan package v. 2.5-2; Oksanen et al. 2017). RDA is a multivariate ordination 227 

technique that allowed us to assess the joint influence of all SNPs simultaneously, while 228 

effectively controlling for both population structure and false discovery (Forester, Lasky, 229 

Wagner, & Urban, 2018). The resulting “locus scores” correspond to the loadings of each SNP 230 

on to the constrained axis, which represents the variation that can be explained by the variable of 231 

interest (in this case, crude oil exposure). We attempted to control for variation among sites with 232 

a replicated sampling strategy, but rather than using a single term for “population”, we 233 

conditioned our ordination on variables identified by latent factor mixed models analysis using 234 

the LFMM package (Caye, Jumentier, Lepeule, & François, 2019), which provides a method to 235 

account for residual variation due to unmeasured differences among populations, including 236 

environmental variation, life history variation, and geographical separation (Leek et al., 2017). 237 

We used RDA to fit our final model with the formula (SNP matrix ~ oil exposure + 238 

Condition(latent factors)). We used a permutational test (999 permutations; Oksanen et al. 2017) 239 

to assess the likelihood that oil-exposed and unexposed populations differed by chance, and 240 

visualized results using principal components analysis. We identified individual SNPs that were 241 

significantly correlated with oil contamination using the three standard deviation outlier method 242 

described by Forester et al. (2018). Finally, we tested for differences in genetic variation using 243 

the PERMDISP2 procedure (Vegan; Oksanen et al., 2017), under the assumption that a 244 

significant reduction in genetic variation in oiled populations may be evidence of a bottleneck.  245 

 246 

Methylation analysis  247 

 During the filtering process, loci were annotated with their methylation context, but all 248 

contexts were pooled for distance-based analyses as well as multiple testing correction after 249 

locus-by-locus modeling. We tabulated methylation frequency at each locus (methylated 250 
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cytosines/(methylated+unmethylated cytosines)), and visualized differences between samples 251 

with PCA (Figure 2A). 252 

To identify signatures of DNA methylation variation that were correlated with oil 253 

exposure while controlling for genetic structure, we estimated latent variables with LFMM (Caye 254 

et al., 2019) as above. In addition to the advantages described above, latent factor analysis (or the 255 

related surrogate variable analysis) provides a control for cell type heterogeneity in epigenomic 256 

studies (Akulenko, Merl, & Helms, 2016; Caye et al., 2019; McGregor et al., 2016). We then 257 

modeled the impact of oil exposure to genome-wide patterns of DNA methylation while 258 

controlling for latent variation as well as population structure via RDA (Vegan v. 2.5-2; Oksanen 259 

et al., 2017) with the formula (methylation distance ~ oil exposure + Condition(latent factors) + 260 

the first 5 principal components).  261 

To identify differentially methylated positions (DMPs) between contaminated and 262 

uncontaminated samples, we used binomial linear mixed modeling (MACAU; Lea, Tung, & 263 

Zhou, 2015), using the genetic relatedness matrix and latent factors as covariates to control for 264 

population structure. We corrected locus-specific P-values for multiple testing (qvalue v 2.14.1; 265 

Storey, Bass, Dabney, & Robinson, 2015), and tested for overrepresentation of cytosine contexts 266 

(CG, CHG, CHH) using binomial tests, implemented in R (R Core Team, 2017). Our epiGBS 267 

fragments rarely exceeded 200bp, and we were therefore unable to identify differentially 268 

methylated regions. 269 

  270 

Relationships to gene expression variation 271 

In a previous study using pools of individuals on a custom microarray, we found 272 

differential expression associated with response to the DWH in 3,334 out of 15,950 genes that 273 

were assessed in S. alterniflora (Alvarez et al., 2018). In order to make the epiGBS data 274 

comparable to our pooled microarray design, we concatenated SNPs and methylation 275 

polymorphisms from individuals into in silico sample pools by averaging values at individual 276 

loci across the same three individuals within pools that were used in the gene expression 277 

analysis. We then calculated genetic, expression, and methylation distances between sample 278 

pools and used Mantel and partial Mantel tests to assess the relationship between all three data 279 

types and between methylation and expression, controlling for the effect of genetic distance 280 

(Vegan, Oksanen et al. 2017). 281 
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We also obtained the probability of whether significantly associated SNPs and 282 

methylation positions were likely to be overlapping differentially expressed genes (DEGs) by 283 

chance using a bootstrap method. We drew a number of random SNPs or methylated positions, 284 

with replacement, equal to the number of observed significantly associated SNPs or DMPs, and 285 

counted the number of loci that overlapped with DEGs in our previous study. This process was 286 

repeated 9999 times each for genetic and methylation data. We derived P-values by counting the 287 

number of times a value at least as large as the observed value appeared in the bootstrap 288 

resamples and dividing by the number of bootstrap replicates. 289 

 290 

Greenhouse oil response experiment 291 

We assessed the possibility that native S. alterniflora populations harbored genetic 292 

variation for the response to crude oil via a controlled greenhouse experiment. We collected 10 293 

S. alterniflora individuals that had been collected from two oil-naïve sites (“Cabretta” and 294 

“Lighthouse”) in the Sapelo Island National Estuarine Research Reserve in Georgia, USA, in 295 

May 2010. We collected plants that were spaced ten meters apart, maximizing the chance that 296 

individuals were of different genotypes (Foust et al., 2016; Richards, Hamrick, Donovan, & 297 

Mauricio, 2004). We grew these individuals in pots under greenhouse conditions for at least 298 

three years before beginning our experiments and propagated multiple replicates of each 299 

genotype by rhizome cutting. Individual ramets were separated and potted in 4 inch pots in a 50-300 

50 mixture of peat and sand (Cypress Creek, Tampa, USA; Alvarez, 2016). 301 

We distributed three potted replicates of each of the 10 genotypes in each of two plastic 302 

containment chambers, for a total of 60 biological samples. One chamber received only 303 

uncontaminated fresh water, while the oil treatment chamber received 2.5% oil (sweet Louisiana 304 

crude) in 62 liters of water, which we previously determined would induce strong phenotypic 305 

response (Alvarez, 2016). Tides were simulated once per day by filling containment chambers 306 

with the water or water-oil mixture and allowing the fluid to drain into a catchment. We 307 

estimated biomass by tallying the number of living leaves and the number of living ramets when 308 

the experiment began, and again seven days after crude oil was added. 309 

 310 

Statistical analysis of greenhouse experiment 311 
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We used generalized linear models (R Core Team 2017) with a Poisson error distribution 312 

to analyze the above-ground biomass at the end of the experiment (measured as the number of 313 

leaves and the number of ramets). Because S. alterniflora reproduces clonally, we assumed that 314 

biomass would represent a reasonable proxy of fitness in our species (Younginger, Sirová, 315 

Cruzan, & Ballhorn, 2017). We also included a covariate for the size of each plant at the start of 316 

the experiment, represented by the number of leaves and the number of ramets at the start of the 317 

experiment. Each model was written as (PhenotypeFinal ~ Treatment * Genotype + 318 

PhenotypeInitial), where asterisks represent main effects and all interactions. We did not explicitly 319 

test for differences between sites since admixture is high between sites on Sapelo Island and we 320 

found no evidence of genetic differentiation (Foust et al., 2016). We assessed significance for 321 

main effects and interactions using type III tests. However, to identify individual genotypes 322 

responding more strongly than others, we conducted post-hoc pairwise comparisons, correcting 323 

for multiple testing using Holm’s correction for multiple testing (emmeans; Lenth, 2018).  324 

 325 

Results 326 

 327 

epiGBS yields informative genetic and methylation loci 328 

 The libraries for 48 individuals (Table 1) generated 6,809,826 total raw sequencing reads, 329 

of which 3,833,653 (56.3%) could be matched to their original mate strand. De novo assembly 330 

using the epiGBS pipeline resulted in 36,131 contiguous fragments ranging from 19-202 bp, an 331 

average length of 123.92 bp, and a total length of 5,441,437 bp. The size of the S. alterniflora 332 

genome is estimated to be 2C values = 6x = 4.2 GB (Fortune et al., 2008), and current genomic 333 

analyses indicate that repetitive sequences (including transposable elements and tandem repeats) 334 

represent about 45% of the total analyzed genomic data set in S. alterniflora (Giraud et al., in 335 

prep). Therefore, we estimate that our epiGBS approach assayed approximately 0.6% of the non-336 

repetitive genome.  However, fragments that were >90% similar were merged, and polyploid 337 

homeologs may have been concatenated. With BLAST, we found 10,103 fragments mapped to 338 

2,718 transcripts in the S. alterniflora transcriptome. We found that 1,571 transcripts (57.8%) 339 

contained multiple epiGBS fragments that align to the same place, and 296 (10.9%) contained 340 

multiple epiGBS fragments that mapped to different places within the same gene. We suspect 341 

that multiple epiGBS fragments map to the same location because some epiGBS fragments 342 
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represent different homeologs of the same region, which mapped to the same location. Only 1% 343 

of reads map to repetitive elements, confirming that Pst1-fragmented libraries were biased away 344 

from highly methylated, repetitive regions (van Gurp et al., 2016). The bisulfite non-conversion 345 

rate was calculated to be 0.36% of cytosines per position, and was estimated from lambda phage 346 

spike-in (van Gurp et al., 2016). Although we found substantial variation in average sequencing 347 

depth among samples, we found no obvious non-random bias in sampling depth across samples 348 

(Figure S1). However, during filtering, we removed ten samples due to stochastic under-349 

sequencing, leaving 38 samples for population analyses (Table 1, Figure S2). 350 

 351 

Genetic differentiation  352 

 Our initial sequencing run yielded 171,205 SNPs across all individuals. After filtering to 353 

common loci, removing invariant sites, and imputing missing data (Figure S2), we obtained 354 

63,796 SNP loci. Of these, 5,753 SNPs occurred in transcripts. As in our AFLP study, we found 355 

significant genetic differentiation that was correlated to oil exposure: oil exposure explained 356 

23.4% of the variance in DNA sequence (P<0.001, Figure 1A, B, Table 2), providing evidence 357 

that selection may have acted on these populations. Pairwise FST calculations showed that all 358 

sites were significantly different from each other (Table 3), with no evidence of isolation by 359 

distance (P>0.05 for latitude, longitude, and interaction). We found 1,631 SNPs that were 360 

significantly associated with oil exposure (defined by a locus score >3 standard deviation units 361 

away from the mean locus score; Forester et al., 2018; Figure 1C), including 169 that overlapped 362 

with the S. alterniflora transcriptome. Of these loci, 41 were annotated using information from 363 

O. sativa, and contained a number of putative regulators of gene expression. Among significant 364 

loci, 1,324 differed in major allele frequency between exposed and unexposed populations by 365 

greater than 5%, and 334 by greater than 20% (Figure 1C). Significantly differentiated loci 366 

appeared no less likely to increase or decrease in major allele frequency based on exposure (809 367 

increasing vs 822 decreasing in frequency). We tested for homogeneity of group dispersion, and 368 

found no evidence of change in variance in oil-exposed populations (P=0.512). 369 

 370 

DNA methylation differentiation 371 

 Our bisulfite sequencing yielded 1,402,083 cytosines that were polymorphic for 372 

methylation across our samples before filtering. After filtering our data to common loci as 373 
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described above, we analyzed 92,999 polymorphic methylated loci, 25,381 of which occurred in 374 

the CG context, 24,298 in the CHG context, and 43,030 in the CHH context (Figure 2C). An 375 

additional 290 had variable context because they co-occurred with a SNP. These proportions of 376 

polymorphic methylation loci did not change significantly due to oil exposure. Methylation calls 377 

were collapsed for symmetric CG and CHG loci across “watson” and “crick” strands so that 378 

methylation on either one or both strands was considered as a single locus. Although DNA 379 

methylation was strongly correlated with oil exposure (Table 2, P<0.001) when controlling only 380 

for latent factors, this differentiation was not significant after controlling for genetic population 381 

structure with principal components of genetic data (Table 2, P>0.1). In the latter model, oil 382 

explained 10% of the variation in methylation. 383 

We found 240 DMPs that differed significantly between exposure types (Q<0.05, Figure 384 

2C; Table S1). The number of observed DMPs in the CG context (125 loci) was significantly 385 

overrepresented relative to their occurrence in our data (P<0.001). We also found DMPs in CHG 386 

(57 loci), and CHH (58 loci) context, which was underrepresented among DMPs relative to their 387 

prevalence in all contigs (P<0.001). Among the significant loci, most had negligible differences 388 

in the magnitude of methylation frequency changes (average 1.4% change between exposed and 389 

unexposed populations). Only 29 experienced a change in magnitude of methylation greater than 390 

5%, and only 7 loci showed a change of greater than 20%. Additionally, 19 DMPs were located 391 

within a fragment that mapped to the S. alterniflora transcriptome, and 49 DMPs occurred in the 392 

same fragment as a significantly differentiated SNP. However, only 4 of those SNPs altered the 393 

trinucleotide context of DNA methylation. 394 

 395 

Correlations with gene expression 396 

 We found no significant relationship between genetic distance and gene expression 397 

distance (Mantel’s R= 0.050, P=0.32), between patterns of methylation variation and genome 398 

wide gene expression (Mantel’s R=0.051, P=0.29), or between methylation and genome wide 399 

expression when controlling for genetic variation (Mantel’s R=0.014, P= 0.41). Only 14 SNPs 400 

that were significantly associated with oil exposure overlapped with DEGs correlated with 401 

exposure to the DWH oil spill (Alvarez et al., 2018). However, our bootstrap test showed that 402 

this overlap could occur by chance (P>0.79). Therefore, our data suggests that if these SNPs are 403 

under selection, they are not necessarily regulating differential expression resulting from coding 404 
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changes in those genes. In addition, although 19 DMPs overlapped coding regions, only 3 of the 405 

DMPs corresponded to a DEG (Table S1), and our bootstrap test suggests that this was also 406 

likely to occur by chance (P>0.5). However, our data is limited to address the association 407 

between DNA methylation and differential expression of specific genes. 408 

 409 

Genotypes in common garden differ in their response to crude oil 410 

 We found a significant effect of oil exposure on both the number of leaves (F= 13.09, P < 411 

0.001) and the number of ramets (F = 28.75, P < 0.001) at the end of the controlled greenhouse 412 

experiment. Type III tests showed significant genotype-by-treatment interactions for the number 413 

of leaves, but not ramets, at the end of the experiment, suggesting that individual genotypes vary 414 

in their response to crude oil exposure. Post-hoc comparisons identified two genotypes (C and G; 415 

FDR<0.05, Figure 3; Table S2) that lost a significantly greater number of leaves over the course 416 

of the experiment relative to other genotypes, further suggesting the presence of standing 417 

variation among individuals for the response to crude oil exposure. 418 

 419 

Discussion 420 

 Spartina alterniflora displays high levels of genetic and DNA methylation variation 421 

across environmental conditions in its native range (Foust et al., 2016; Hughes & Lotterhos, 422 

2014; Richards et al., 2004; Robertson et al., 2017), potentially providing substrate for both 423 

genetic and epigenetic response to pollution. We previously found that genetic structure and 424 

expression of 3,334 genes were correlated to exposure to the DWH oil spill, but genome-wide 425 

methylation variation was not (Alvarez et al., 2018; Robertson et al., 2017). Higher resolution 426 

epiGBS suggests that both genetic sequence and DNA methylation are correlated with crude oil 427 

exposure in S. alterniflora, but that differentiation in DNA methylation is primarily explained by 428 

differences in allele frequencies. Additionally, our greenhouse experiment shows phenotypic 429 

plasticity and genotypic variation in crude oil response, as measured by differential reduction in 430 

biomass between exposed and unexposed samples. These findings are consistent with genotype-431 

specific mortality, and suggest that the DWH oil spill may have been a selective event in S. 432 

alterniflora populations. 433 

 434 

Genetic and epigenetic response to the DWH 435 
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 We found significant genetic differentiation between oil-exposed and unexposed sites, 436 

which may reflect either stochastic mortality in oil-exposed areas from a severe bottleneck, or a 437 

signature of selection for oil tolerance in affected populations. Spartina alterniflora displays high 438 

phenotypic plasticity, and populations have persisted after exposure to the DWH oil spill, even 439 

after extensive aboveground dieback (Lin & Mendelssohn, 2012; Lin et al., 2016; Silliman et al., 440 

2012). However, our studies and previous accounts of initial losses in live aboveground and 441 

belowground biomass (Lin et al., 2016) suggest that some S. alterniflora genotypes were more 442 

susceptible than others to crude oil stress, and either had not regrown at the time of sampling or 443 

experienced mortality as a result of oil exposure. Although we found no evidence for a reduction 444 

in genetic variation, which may have further indicated selection for tolerant genotypes, the high 445 

ploidy of S. alterniflora makes accurate quantification of total genetic variation challenging. 446 

Further investigations are required to confirm the magnitude of selection, whether mortality 447 

varied by genotype, and if there was a reduction in genetic variation among oil-exposed 448 

populations.  449 

 DNA methylation differences may reflect either the downstream effects of genetic 450 

variants, an induced response to environment, or both (Meng et al., 2016). For example, in 451 

another study of S. alterniflora populations, patterns of DNA methylation were more strongly 452 

correlated than genetic structure with microhabitat, and correlation of DNA methylation to 453 

environment was independent of population structure (Foust et al., 2016). In this study, we found 454 

a multi-locus signature of methylation differentiation (17% of the variation explained by oil 455 

exposure) between oil-affected and unaffected sites before controlling for population structure. 456 

However, we found no association between methylation and crude oil contamination after 457 

controlling for genetic variation and latent effects, suggesting DNA methylation is controlled by 458 

genetic variation.  459 

The observed variation in DNA methylation may be controlled by genetic variation via 460 

either a change in the nucleotide context, the presence or absence of particular alleles in cis, or 461 

variation in upstream regulatory elements. Allelic variation that changes trinucleotide context 462 

can alter or eliminate the ability of a methyltransferase to deposit methylation at that site. 463 

However, in our data, we did not find an enrichment of SNPs that affected trinucleotide context 464 

of DMPs. Concurrently, we did not detect an enrichment of oil-associated SNPs in DEGs, which 465 

we would expect if changes in the coding regions of those genes explain the observed gene 466 
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expression variation in oil-exposed individuals. However, our ability to assess the relationships 467 

between SNPs, SMPs and DEGs was limited by the distribution of our RRBS fragments. Further, 468 

changes in allele frequencies, due to either selection or drift, may have generated divergence in 469 

the regulatory machinery maintaining DNA methylation and gene expression profiles among 470 

exposed and unexposed populations.  471 

Although we cannot disentangle whether differential expression causes alternative 472 

methylation patterns or vice versa, we previously identified a DEG that was homologous to the 473 

histone methyltransferase SUVH5, which may modulate fitness effects during oil exposure 474 

(Alvarez et al., 2018). Histone methylation is linked to DNA methylation through the regulation 475 

of CHROMOMETHYLASE3 (CMT3) activity (Stroud, Greenberg, Feng, Bernatavichute, & 476 

Jacobsen, 2013). Given our previous results and those from the present study, we hypothesized 477 

that the differential expression of SUVH5 in response to crude oil exposure would result in 478 

differences in DNA methylation. These differences, in turn, may be maintained via genetic 479 

variation between exposed and unexposed populations either in the SUVH5 homolog itself, or 480 

more broadly within the CMT3-mediated pathway. However, targeted resequencing and further 481 

functional validation in the populations of interest will be required to confirm this hypothesis. 482 

 483 

Reduced representation sequencing compared to AFLP 484 

 As the field of ecological genomics matures, there is a pressing need to develop robust 485 

assays and statistically sound measures of regulatory variation. Reduced representation 486 

methylation sequencing techniques are attractive for ecological epigenomics because they can be 487 

used to infer genome wide patterns of both genetic and methylation variation without a high-488 

quality reference genome (Paun, Verhoeven, & Richards, 2019; Richards et al., 2017; Robertson 489 

& Richards, 2015; van Moorsel et al. 2019). However, they still have serious limitations 490 

particularly for species that do not yet have a fully sequenced reference genome (Paun et al., 491 

2019). Furthermore, it is important to note that the limited number of loci surveyed may have led 492 

to a biased subsampling of the genome. In turn, this can lead to a poor estimation of the “neutral” 493 

level of divergence in the genome, and therefore a biased interpretation of divergence between 494 

these populations (Lowry et al., 2017). 495 

 When comparing epiGBS to MS-AFLP, we expected that the substantial increase in 496 

markers (92,999 compared to 39 polymorphic methylation loci, respectively) would lend greater 497 
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resolution to detect patterns of DNA methylation variation. Our epiGBS survey detected 498 

significant differentiation in both genetic variation and DNA methylation that was correlated to 499 

oil exposure, suggesting that epiGBS provides increased resolution over MS-AFLP to detect 500 

genome-wide methylation differences. However, despite the much larger data set generated by 501 

epiGBS, we only found 240 differentially methylated positions. Although it would be valuable to 502 

identify associations between gene expression and nearby DNA methylation variation, the 503 

minimal overlap between our RRBS fragments and DEGs hindered our ability to associate 504 

methylation and gene expression variation. This is due to the small fraction of the genome that is 505 

assayed, substantial variation in methylation, and that we were unable to identify fragments that 506 

overlapped promoter regions without a reference genome.  507 

 Future RRBS studies will benefit from optimizing protocols that enrich for specific 508 

portions of the genome (e.g. Heer & Ullrich et al., 2018), but generating a draft reference 509 

genome will be imperative to allow for better exploitation of RRBS data and ascertain gene 510 

function (Paun et al., 2019). While sequencing-based techniques provide the potential to identify 511 

functional genomic regions, correct annotations rely on genomic resources in a relevant 512 

reference. In polyploid species like S. alterniflora, the number of duplicated genes and the 513 

potential for neofunctionalization among them creates additional uncertainty for correctly 514 

assigning annotations (Primmer, Papkostas, Leder, Davis & Ragan, 2013). Spartina alterniflora 515 

has various levels of duplicated gene retention, small RNA variation (including miRNAs and 516 

SiRNAs) and homeologous expression (Ainouche, Baumel, Salmon, & Yannic 2003; Boutte et 517 

al., 2016; Cavé-Radet, Giraud, Lima, El Amrani, Ainouche, & Salmon, 2019; Ferreira de 518 

Carvalho, 2013, 2017; Fortune et al., 2007), which may result in more opportunities for gene 519 

diversification and subfunctionalization (Chen et al., 2015; Salmon & Ainouche, 2015; Shimizu-520 

Inatsugi et al., 2017). Therefore, while studies with RRBS techniques in non-model plants offer 521 

increased power to detect broad, genome-wide patterns of variation that may be correlated to 522 

ecology, they are still limited for the detection of specific gene function. Improving genomics 523 

resources in a variety of organisms is an essential next step for understanding the molecular level 524 

basis of ecological interactions. 525 

 526 
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Tables and Figures 890 

Table 1 Sampling information across all sites after filtering. Site information includes location 891 
and oil status at each site (exposure). 892 
 893 

Site Location Site Code Exposure No. of individuals 

Grand Isle, LA GIN1 None 8 

Grand Isle, LA GIN2 None 6 

Barataria Bay, LA GIO1 Heavily Oiled 3 

Barataria Bay, LA GIO2 Heavily Oiled 7 

Bay St. Louis, MS MSN None 6 

Bay St. Louis, MS MSO Heavily Oiled 8 
 894 
 895 
Table 2 Association between oil exposure, genetic distance, and methylation distance across 896 
tests. Test statistics and significance determined through RDA. *** indicates significance at P ≤ 897 
0.001. 898 
 899 
 

df F 
Variance 
Explained 

Genetic 1 2.183 *** 0.234 
Methylation         
  Without control for genetic 

var. 
1 1.96 ***  0.167 

  With control for genetic var. 1 1.199   0.099 
  900 
 901 
Table 3 Pairwise Fst among three oil contaminated and three uncontaminated sites. Bold (i.e. all 902 
entries) indicates significance at P < 0.001.  903 
 904 

 GIN1 GIN2 MSN GIO1 GIO2 

GIN2 0.0855     

MSN 0.1045 0.1219    

GIO1 0.0707 0.0909 0.1088   

GIO2 0.0885 0.1091 0.1251 0.0914  

MSO 0.1108 0.1343 0.1507 0.1106 0.1330 

 905 
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906 
Figure 1 A) Visualization of principal components 1 and 2 of allele frequency data (SNP) data. 907 
B) Visualization of principal component 1 and RDA1, which represents the line of maximal 908 
separation between samples based on allele frequency data. C) The locus score, representing 909 
loadings of each SNP to the constrained axis, plotted against the average change in allele 910 
frequency between unexposed and oil exposed populations. Significantly differentiated SNPs are 911 
shown in black. 912 
  913 
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 914 
Figure 2 A) Visualization of principal components 1 and 2 of methylation frequency data. B) 915 
Visualization of principal component 1 and RDA1, which represents the line of maximal 916 
separation between samples based on methylation frequency data, after controlling for genetic 917 
variation and latent factors. C) All methylation polymorphisms, with differentially methylated 918 
positions (DMPs) shown in black. Negative log10 P-values are plotted on the Y axis while the 919 
average change in methylation frequency between unexposed and oil exposed populations is 920 
shown on the X axis. Dotted lines represent a change of at least 20%, either increased or 921 
decreased, due to oil exposure. 922 
  923 
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 924 

 925 
Figure 3 Variation in effect size estimates of the effect of crude oil exposure in individual 926 
genotypes. Estimates were based on estimated marginal means in our greenhouse experiment. 927 
Asterisks represent significance in post-hoc comparisons.  928 
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