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Universidad Autónoma de Madrid, Madrid , Spain
Correspondence*:
Rodrigo Amaducci, Pablo Varona
rodrigo.amaducci@uam.es, pablo.varona@uam.es

ABSTRACT

Closed-loop technologies provide novel ways of online observation, control and bidirectional
interaction with the nervous system, which help to study complex non-linear and partially
observable neural dynamics. These protocols are often difficult to implement due to the
temporal precision required when interacting with biological components, which in many
cases can only be achieved using real-time technology. In this paper we introduce RTHybrid
(www.github.com/GNB-UAM/RTHybrid), a free and open-source software that includes a
neuron and synapse model library to build hybrid circuits with living neurons in a wide variety
of experimental contexts. In an effort to encourage the standardization of real-time software
technology in neuroscience research, we compared different open-source real-time operating
system patches, RTAI, Xenomai 3 and Preempt-RT, according to their performance and usability.
RTHybrid has been developed to run over Linux operating systems supporting both Xenomai 3
and Preempt-RT real-time patches, and thus allowing an easy implementation in any laboratory.
We report a set of validation tests and latency benchmarks for the construction of hybrid circuits
using this library. With this work we want to promote the dissemination of standardized, user-
friendly and open-source software tools developed for open- and closed-loop experimental
neuroscience.

Keywords: Closed-loop technologies, Hybrid circuits, Hard real-time, Dynamic-clamp, Activity-dependent stimulation

1 INTRODUCTION

The study of neural systems dynamics is hindered by various factors. The first one is their intrinsic non-
linearity, since they process information in several interacting spatial and temporal scales and are affected
by multiple transient adaptation and learning mechanisms. Also, from all magnitudes involved in these
dynamics, just a few can be accessed simultaneously, making the system partially observable. The third
factor is related to the use of the traditional stimulus-response paradigm in most experimental neuroscience
research, which only allows to record the behaviour of the system under different stimuli and then to
analyze the collected data offline. Thus, highly complex non-stationary neural activity, which has influence
from the context and previous events’ feedback, can not be completely assessed. Closed-loop techniques
provide an efficient way to overcome such difficulties by interacting online with the system, producing
precise stimulus according to the recorded information and presenting valuable insights on transient neural
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processes. This paradigm allows more flexibility in the experiment and favours its automation, as well as
the control of neural dynamics (Chamorro et al., 2012; Roth et al., 2014; Potter et al., 2014; Varona et al.,
2016).

While closed-loop technology allows researchers to conduct online observation, control and interaction
with neural elements, it also presents some drawbacks in its implementation. Some of these difficulties are
related to the complexity of their experimental design, but also to the accomplishment of precise temporal
restrictions, in the scale of milliseconds or lower, which often are required during data acquisition and
stimulation in biological experiments (Christini et al., 1999; Muñiz et al., 2005, 2008, 2009). The capacity
of a system to perform periodic tasks and respond to asynchronous external events in an strict time slot
(neither sooner nor later) is known as real-time (Furht et al., 1991). Therefore, to ensure the compliance
of the previously mentioned temporal margins in an experimental setup, real-time technology is needed.
It is also important to mention that the term ”real-time” may as well be used in neuroscience literature
referred to online recording, feedback or control (Siegle et al., 2017). In this paper we always refer to strict
temporal precision in the millisecond range.

Electronic components easily fulfill the speed and precision requirements needed for most real-time
scenarios, so hardware-based implementations are one possible solution (Robinson and Kawai, 1993;
Le Masson et al., 1995; Broccard et al., 2017). However hardware solutions are typically expensive or
little programmable and manageable, especially if compared to software solutions, which offer maximum
flexibility and a wide range of user-friendly frameworks. Moreover, nowadays personal computers have
enough hardware capacity to comply with standard real-time restrictions. However, modern general purpose
operating systems (GPOS), such as Windows, MacOS or GNU/Linux, are multitask environments with
internal schedulers, which assign computer resources to different running tasks following specific policies
(Stallings, 2012). These schedulers can not be controlled by the users, hence it can not be ensured that
a given task will run without interruptions and, therefore, real-time can not be assured. In order to run
protocols accomplishing a set of established temporal boundaries with software-based real-time, another
system framework, known as real-time operating system (RTOS), is needed.

Numerous real-time tools for experimental neuroscience are already available. Some of them are hardware-
based (Franke et al., 2012; Tessadori et al., 2012; Müller et al., 2013; Desai et al., 2017). Several software
tools have been designed, particularly for dynamic-clamp electrophysiology experiments, both following
soft- (Pinto et al., 2001; Nowotny et al., 2006; Linaro et al., 2014; Ciliberti and Kloosterman, 2017; Hazan
and Ziv, 2017) and hard real-time (Christini et al., 1999; Dorval et al., 2001; Muñiz et al., 2005, 2009; Biró
and Giugliano, 2015; Patel et al., 2017) approaches, using distinct platforms and RTOS, which have diverse
purposes and architectures, hence presenting different advantages and disadvantages.

One example of closed-loop interactions can be found in hybrid circuits, which are networks built by
connecting model neurons and synapses to living cells. They are a powerful tool to explore and characterize
neural system dynamics, as well as a means to assess the role of specific circuit components, e.g. see
(Yarom, 1991; Szücs et al., 2000; Pinto et al., 2000; Varona et al., 2001; Le Masson et al., 2002; Nowotny
et al., 2003; Oprisan et al., 2004; Arsiero et al., 2007; Chamorro et al., 2009; Grashow et al., 2010;
Brochini et al., 2011; Wang et al., 2012; Thounaojam et al., 2014; Hooper et al., 2015; Norman et al., 2016;
Broccard et al., 2017). The most common paradigm to build hybrid circuits consists in using dynamic-
clamp to read the membrane potential of a cell and, after computing a model using this voltage, inject
the resulting current into the same or into a different cell (Robinson and Kawai, 1993; Sharp et al., 1993;
Prinz et al., 2004; Destexhe and Bal, 2009; Nowotny and Varona, 2014). Neuron models range from simple
mathematical approximations to more complex implementations based on Hodgkin-Huxley equations,
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which can reproduce biophysical behaviours with accuracy. Same thing happens for synapse models, which
can cover from simple gap junctions using Ohm’s law to chemical connections defined by non-linear
equations (Torres and Varona, 2012).

Beyond dynamical-clamp protocols, other stimulation and detection techniques that can improve
their performance by using real-time technology are fMRI (Rana et al., 2016), optogenetics (Krook-
Magnuson et al., 2013; Prsa et al., 2017), EEG setups (Arrouët et al., 2005; Sitaram et al., 2016),
neuroprosthesess (Levi et al., 2018), or any kind of activity-dependent stimulation experiment, such
as the ones that use simultaneous electrophysiological and video tracking (Muñiz et al., 2011), acute
mechanical stimulation (Muñiz et al., 2008), electric signalling during behavior (Forlim et al., 2015; Lareo
et al., 2016) or drug microinjection (Chamorro et al., 2009, 2012).

Due to the lack of flexibility in hardware real-time solutions, as well as RTOS heterogeneity and
intrinsic difficulties in their use, many neuroscience researchers overlook this technology when designing
closed-loop experiments. In this paper we introduce RTHybrid, a novel, multiplatform, real-time software
neuron and synapse model library to build hybrid circuits. With this tool we aim to promote the use of
standardized and user-friendly real-time software technology, available in different platforms, to favor the
implementation of closed-loop experimentation in neuroscience research. We provide validation examples
of this tool in the context of hybrid circuit implementations using dynamic-clamp, including detailed
analysis and benchmarking of temporal precision in different RTOS.

2 MATERIALS AND METHODS

2.1 Real-time software

Real-time performance is often wrongly considered as a matter of speed, which is of course important,
when it actually relies on temporal precision: actions must be delivered within a pre-established interval,
neither sooner nor later. Many neurons follow precisely a similar behavioural pattern: slow activity (less
than 1 kHz) but precise subcellular sequential dynamics or spiking coding.

When a computer performs a given task, there is always some latency between the moment when this task
is expected to be accomplished and when it is actually done, as well as some jitter of these latency values,
due to the performance of the operating system scheduler. Moreover, not all tasks are equally sensitive
to high latency values or data loss, hence real-time software can be classified in two types: soft real-time,
when some deadlines can be missed without performance degradation as long as some threshold is not
exceeded (for example, an online music streaming service can lose some data packages and users will not
notice it), and hard real-time, when all deadlines must be met or the system fails critically (computers
controlling a nuclear plant or a satellite, for example) (Shin and Ramanathan, 1994). In this paper, the term
real-time always refers to hard real-time.

Despite how differently a RTOS can be designed, the functioning of all of them rely on two elements:
their scheduling algorithms, which are usually preemptive, meaning that they are able to interrupt a running
process without its permission; and how they manage hardware interruptions (Abbott, 2006). Some of them
are implemented from scratch, while others are based in existing GPOS’ kernels (Hambarde et al., 2014).
Among the later, dual-kernel (a real-time microkernel is used along the standard one) and single-kernel
solutions (the standard kernel is modified to support real-time) are common (Yaghmour, 2003; Dietrich
and Walker, 2005).
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There exist several commercial RTOS implementations, mainly designed for embedded systems, such as
QNX Neutrino, VxWorks and Windows Compact Embedded, among others. Other proprietary real-time
software solutions are MATLAB’s toolbox xPC and National Instruments’ LabVIEW Real-Time, which
can achieve hard real-time precision if external hardware is used for the computation but otherwise are soft
real-time, and Simulink Desktop Real-Time, which provides a hard real-time kernel (up to 1kHz sample
rate) for executing Simulink models running Windows or Mac OS X. The main drawback of these tools is
their high economic cost, which may be unaffordable for many research groups and laboratories. There are
also open-source and free solutions to obtain an RTOS from Linux, an open-source GPOS, which avoid
the stated inconveniences of commercial options and provide similar usability, or even better, in terms of
performance (Aroca and Caurin, 2009; Hambarde et al., 2014). In this paper, three of these patches will be
studied, comparing their performance and characteristics in relation to the task of building hybrid circuits
with living and model neurons: RTAI, Xenomai and Preempt-RT.

RTAI (Real-Time Application Interface) (Mantegazza et al., 2000) was first developed in 1996, becoming
one of the first and most widely used open-source real-time environments. It is based in a dual-kernel
approach, using a real-time microkernel with a preemptive scheduler, which controls the interrupt requests
(IRQ) and treats the standard Linux kernel as a low priority task. Another dual-kernel solution is Xenomai
(Gerum, 2004), a project which was part of the RTAI project until 2005, when it become a fully independent
tool. Other RTOS follow a single kernel approach, meaning that no auxiliary microkernel is used and that
the standard one is modified instead to work in real-time. All changes made to Linux standard kernel for
this purpose throughout the past decade are included in Preempt-RT (Dietrich and Walker, 2005).

2.2 Experimental setup

2.2.1 Benchmarking tests

Performance on the three RTOS described in the previous section, RTAI, Xenomai and Preempt-RT, was
measured and compared among them and also to a GPOS with no real-time capabilities. Specifications
of the computers used for these tests can be found in Table 1. Most modern computers currently have
multicore processors i.e. one component with several independent processing units. Linux also allows to
isolate specific cores, so the scheduler will not assign them any task, and to manually bound an specific
task to this empty core. We have also analyzed how this core isolation affects the performance in both
real-time and non real-time implementations.

Operating system Kernel version RAM Processor Cores
Non real-time Debian 9 4.9.0-4 16 GB Intel Core i7-4790 3.6 GHz 4
Preempt-RT Debian 9 4.9.0-4 16 GB Intel Core i7-4790 3.6 GHz 4

Xenomai 3.0.5 Ubuntu 16.04 4.9.90 16 GB Intel Core i7-4790 3.6 GHz 4
RTAI 3.4 Ubuntu 10.04 2.6.34.5 4 GB Intel Core i7-2600 3.4 GHz 4

Table 1. Software and hardware specifications of the computers used on the benchmarking tests for each
operating system and RTOS used in this study. Note that the computer used for non-real-time, Preempt-RT
and Xenomai 3 tests was the same (we will call it Computer 1 hereafter) and the one for RTAI was different
(Computer 2).
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The benchmarking procedure consisted in a latency test, measuring the time difference between when an
action was expected and when it really happened (see Fig. 1). The benchmarking program1 consisted in a
periodic loop with a frequency of 20kHz that sent a digital 0 or 1 to a digital acquisition (DAQ) device
alternately on each iteration, thus producing a 100µs square-wave signal. After sending the corresponding
value the program slept until the next interval arrived: the time interval between the real and the expected
awaking time was the measured latency. An Agilent MSO7104A oscilloscope was used as an external
temporal reference and stress2, a workload generator software, was utilized to create a worst case scenario,
with all processor cores and the file Input/Output system running at full capacity. To send the signal to the
oscilloscope a National Instruments PCI-6251 board and a BNC-2090A DAQ device were used.

Figure 1. Representation of a typical real-time process, consisting on a succession of fixed and equal
duration time intervals that are repeated on each iteration of a periodic loop. For any of these intervals, T1
is the time when it should start, but, due to the system capacity or to its resource management algorithms,
the beginning can be delayed until T2. The difference between the real start time (T2) and the expected
one (T1) is known as latency. After T2, the process computes its iterative task, which finishes at T3. If
T3 happens before the next interval start time, the process waits until that moment. On the other hand,
if T3 occurs later than the expected start time of the next interval, as a result of a high latency value, a
long computational time or both, it would cause a failure on the real-time system. Real-time tasks can
be classified according to their tolerance of such events: soft real-time means that some deadlines can be
missed under a certain limit, while hard real-time does not tolerate any failure.

2.2.2 RTHybrid validation tests

In order to validate the proper functioning of RTHybrid, it has been tested in a real experimental
environment. Hybrid circuits were built by connecting bidirectionally a neuron model simulated by the
software and a living neuron, using chemical graded model synapses. For these tests, a computer with a
4-core Intel Core i7-6700 3.40 GHz processor and 16 GB RAM memory, as well as a National Instruments
PCI-6251 board with a NI BNC-2090A DAQ device, were used. Measures of the time taken by each task
in the interaction cycle were also conducted to evaluate their contribution to minimum and maximum
computational cost for each of the real-time platforms analyzed.

The membrane potential of the biological component of the experiment was recorded using in vitro
electrophysiology in neurons of the pyloric central pattern generator (CPG) of adult Carcinus maenas,
bought in a local fish store and kept in artificial sea water. Before the dissection, the crab was anesthetized
by introducing it in the freezer for 20/30 minutes. The stomatogastric ganglion, dissected following the
standard procedure, was attached to a Petri with Sylgard cold saline dissolution (13-15oC kept by a
microcontroller and always perfused) using pins. The saline had the following composition (in mmol/l):
NaCl 433, KCl 12, CaCl2.2H2O 12, MgCl2.6H2O 20, Hepes 10. To adjust the pH to 7.4-7.6, NaOH 0.1 M
was added. Neurons were identified after desheathing the ganglion by their membrane potential waveforms

1 Source code of the latency test: www.github.com/RoyVII/Latency_tests.git
2 stress software website: www.people.seas.harvard.edu/˜apw/stress/
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and their corresponding spike times in nerves. Intracellular recordings were performed using 3 M KCl filled
microelectrodes (50 MΩ) and a DC amplifier (ELC-03M, NPI Electronic, Hauptstrasse, Tamm, Germany).
For details on the preparation see (Elices et al., 2018).

3 RESULTS

3.1 Real-time benchmarking and comparison

3.1.1 Computers internal clock validation

Tests were conducted to certify that the internal clocks of the systems specified in Table 1 were capable of
working with the required microsecond precision. These consisted in three 10-second tests on each platform,
generating a square-wave signal of period 100µs, which was recorded with an external oscilloscope. When
compared to the signal period measured by the computers, the oscilloscope registered a ±10µs inaccuracy
in the precision of the computers’ clocks (see Table 2). This is an acceptable margin for our purposes with
sampling rates for the hybrid circuit electrophysiology ranging from 10-20 kHz.

Computer 1 Computer 2
µs Min Max Mean ± Std Min Max Mean ± Std

Measured by computer 99.5 100.5 100.0 ± 0.1 99.9 100.1 100 ± 0
Measured by oscilloscope 90.0 110.0 100 ± 3 90.0 110.0 100 ± 3

Table 2. Results of the internal clock precision tests for the computers described in Table 1, in
microseconds. A 100µs signal, generated by the computers, was recorded with each computer and
an external oscilloscope. Minimum, maximum, mean and standard deviation values of the recorded signal
period are displayed at the table. When compared to the signal period measured by the computers, the
oscilloscope registered a ±10µs inaccuracy in the precision of the computers clocks.

3.1.2 RTOS usability comparison

RTAI, Xenomai and Preempt-RT were studied and compared in terms of installation requirements,
usability and user-friendliness. This analysis is summarized in Table 3.

RTAI

Installation requires to patch a vanilla Linux kernel with the RTAI patch and then compile it, which
is a long and tricky operation, even for experimented users. The last version of the official installation
guide dates from 2008 (Monteiro, 2008). Utilization of the real-time functions provided by the platform
is done through its own API, which is very powerful and complete, but documentation and examples are
scarce. The safest way to achieve real-time is implementing the programs as kernel space modules, which
carries many impediments. User space real-time can be reached using the LXRT library, although its use
is discouraged for non-senior RTAI programmers (Racciu and Mantegazza, 2006). Currently, this tool is
still maintained, but not regularly: version 4 last maintenance was in 2013 and in May 2017 version 5 was
released, followed by the 5.1 patch in February 2018.

Xenomai

Patching and compiling a Linux vanilla kernel is the only way of installing Xenomai and its developers
provide an up-to-date guide. Since Xenomai’s main purpose is to offer an open-source alternative to
proprietary RTOS, it includes different APIs, intended to emulate other environments and libraries, such as
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VxWorks, pSOS+ and even POSIX. All of them, as well as their own API, are accessible from user space.
Complete and updated documentation is available for all APIs. Although the user community is not very
large and there are not many examples to be found, there is a mailing-list where questions can be asked.
The project is currently active (Xenomai 3 was released in October 2015) and it is maintained and updated
frequently. An Ubuntu 16.04 distribution already patched with Xenomai 3.0.5 can be downloaded from our
website3.

Preempt-RT

Similarly to the dual-kernel implementations, the typical way to install Preempt-RT is by patching
and compiling a vanilla kernel, following the instructions that can be found at the official website, these
being are significantly simpler than the ones for RTAI and Xenomai. An alternative possibility for Debian
distributions is to install it from its repositories as any other package. Despite the real-time patch, the
system is still a normal Linux, so the standard POSIX library can be used and all its documentation is valid.
In 2015 the project was transferred to The Linux Foundation, becoming the ”official” Linux real-time
solution.

RTAI Xenomai Preempt-RT

Installation Kernel patching Kernel patching - Kernel patching
- Pengutronix Debian repositories

Programming API for C
language

Various APIs emulators,
including POSIX

Standard POSIX code
(works also without real-time)

Documentation Scarce and old
- Up-to-date
- Few examples but
active mailing-list

Plenty: standard POSIX
documentation

Support and
maintenance Discontinued Currently active Currently active

(Linux Foundation project)

Table 3. Usability and accessibility characteristics for each real-time solution explored in this study.

3.1.3 RTOS benchmark analysis

RTAI, Xenomai and Preempt-RT were tested using the method described in 2.2.1. Each trial consisted in
a five minute run of the test program under stress, with a frequency of 20kHz, and was repeated twice on
every platform. We measured the maximum, minimum and mean latency values, as well as the jitter, and
the results can be seen in Fig. 2. Distribution of latency values during these tests is shown in Fig. 3.

RTAI obtained the best performance scores, getting 3.65µs as maximum latency, even running on an older
machine. Xenomai was not far from this performance, with a maximum latency of 5.66µs. Preempt-RT had
slightly worse results, reaching a maximum latency of 15.94µs, but still acceptable for our purposes. The
system without real-time is not reliable when millisecond precision or below is required, as it goes over the
millisecond barrier in these tests (indicated in red in Fig. 3). Nevertheless, as mentioned in section 2.2.1,
Linux operating systems allow to isolate a processing core and bind a specific task to it. In this scenario, the
task running over the isolated core will never be interrupted by any other users tasks, but system processes
can still use this core. When this is done in RTAI or Xenomai it has little impact on their already good

3 Ubuntu 16.04 with Xenomai 3.0.5 Live CD/USB: www.mega.nz/#!CPwCRIJQ!jWVGb08wjSP-02-kiv7KK_bKzcaPERWBp7MjH6coXVs
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latency values, but we observe a remarkable improvement of latency values with both non real-time and
Preempt-RT operating systems. Without an RTOS, it can be an useful tool in soft real-time environments.

NRT NRT Isol RTAI Xenomai 3 Preempt-RT Preempt-RT Isol

100

101

102

103

Ti
m

e 
(u

s)

2990.19

42.76

5.50 5.76

15.04

4.99

2990.87

43.47

3.65

5.66

15.94

5.88

Latency values for each OS
Jitter (max - min)
Max latency
Mean latency

Figure 2. Summarized results of the real-time benchmarking tests for each OS: No real-time (NRT), No
real-time with an isolated core (NRT Isol), RTAI, Xenomai 3, Preempt-RT and Preempt-RT with an isolated
core (Preempt-RT Isol). Time axis is represented in log-scale. Blue bar represents the jitter, calculated as the
difference between the maximum and minimum latency. Orange bar represents the maximum latency. Red
bar is the mean latency, error bars indicate the standard deviation. Numbers on top of each bar correspond
to the largest jitter and latency, respectively. For 20kHz trials the real-time constrain is 50µs, which is only
exceeded in this case by the OS with neither real-time capabilities nor an isolated core.

Unfortunately, regarding the analyzed RTOS, the better their performance is, the worse their usability
and user-friendliness. As summarized in Table 3, RTAI is quite difficult to install and use, even for
experimented users, while Preempt-RT is the most accessible, since there are not many differences with a
normal GPOS. Due to this results, RTHybrid was developed to run over both Xenomai and Preempt-RT to
balance performance and user-friendliness.

3.2 RTHybrid

3.2.1 Software design and implementation

RTHybrid is designed to be an user-friendly and accessible real-time tool for any researcher, regardless
of their budget or computer science and programming knowledge. It is an open-source project that can
be downloaded for free from its Github repository4. Any Linux distribution is supported, including those
running Xenomai 3 and Preempt-RT real-time patches. The code is written using C/C++ language and
compiled with GCC 6.3 and QMake 3.0. Relevant information regarding the hybrid circuit experiment,
such as neuron (both living and model) and synapse types employed, parameters and latency values is

4 Source code for RTHybrid: www.github.com/GNB-UAM/RTHybrid
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Figure 3. Distribution of latency values for each operating system during the real-time benchmarking tests.
Red bars correspond to latency values that have exceeded the 50µs limit established for 20kHz trials, which
is the case for the ”No real-time” scenario. Vertical axes are in log-scale. This analysis was performed on
the same data than Fig. 2.

registered in log files. Detailed instructions on how to download, configure and install both RTHybrid and
all its dependencies are provided at its user manual 5.

Three processing threads have been used to build the program’s architecture in order to address an
optimized real-time software implementation (see Fig. 4). Two execution modes are available: graphical
user interface (GUI) mode or script mode. In the former, an intuitive GUI (see Fig.5) is displayed when the
application is launched, where the user can select the desired models and modify all their parameters as
well as set the experiment configuration (duration, DAQ channels, sampling rate, etc). This GUI has been
designed using the Qt 5.10 framework6. The second option allows to automatically load all experimental
protocols and parameters from an XML text file7, without using the GUI. In this case, various experimental
protocols can be automatically executed one after the other using scripts. Whatever option is chosen, the

5 RTHybrid User Manual: www.github.com/GNB-UAM/RTHybrid/blob/master/docs/RTHybrid_User_Manual.pdf
6 Qt5 website: www.qt.io/
7 libxml2 library website: http://xmlsoft.org/
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Figure 4. Diagram of RTHybrid architecture. The computer receives the membrane voltage from the living
neurons through the DAQ device, computes the neurons and synapses models and sends current back to the
biological cells. The main program process creates two sub-threads, rt thread and writer thread, to manage
the different tasks of the program. Both threads communicate through inter-process communication (IPC)
message queues.

first and main process is in charge of gathering the information from either source and starting two new
threads with it.

The second thread performs all tasks that need to be completed with real-time precision in a periodic loop.
Within each interval of this loop, key operations are fulfilled: interaction with the DAQ device, synapse and
neuron models computation, automatic calibration, drift adaptation, etc. (see Fig. 6). Communication with
DAQ devices is achieved through Comedi open-source drivers for National Instruments’ and several other
manufacturers’ hardware (or Analogy drivers in the case of Xenomai) (Schleef et al., 2012). Automatic
calibration and experiment automation algorithms are included to deal with the differences between models
and living neurons in terms of temporal scale and amplitude (Reyes-Sanchez et al., 2017). They also cover
other possible experimental complications such as the presence of signal drift.

Some tasks are computationally too expensive to be carried out within the temporal restrictions established
in a real-time interval, including essential ones as writing data to a file or printing it on screen. A third thread
is used to write experiment data to files without disturbing the real-time performance. An inter-process
message queue is utilized to send information from one thread to the other. Since it is not a real-time
process, it will wait until there are enough computer resources available, and only then reads from the
queue and stores the data into the files.
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Figure 5. Illustration of RTHybrid graphical user interface to build hybrid circuit interactions. Users
can select neuron and synapse models, as well as their parameters, and the experiment settings, such as
input/output DAQ channels, sampling frequency, duration, etc.

3.2.2 Model library

RTHybrid includes a customizable library of neuron and synapse models to build a wide variety of hybrid
circuits. Table 4 shows the currently included neuron models, which have been selected due to their rich
intrinsic dynamics and suitability to build hybrid circuits. All of them have different characteristics and
require also specific adaptations to work in real-time, which are handled automatically by auto-calibration
algorithms (Reyes-Sanchez et al., 2017). Several numerical integration methods can be chosen by the user,
including Euler, Heun, Order 4 Runge-Kutta (Press et al., 1988) and (6)5 Runge-Kutta (Hull et al., 1972).
Table 5 lists the types of synapse models included in the library at the moment and the different input
parameters that they require to work in a hybrid circuit implementation.

Neuron model Computational cost Adaptation to RT method

Rulkov1
Low

Interpolation

Izhikevich2

Select best integration stepHindmarsh-Rose3

Conductance-based4,5 Expensive
Tabulation (in some cases)

Table 4. Currently available neuron models in RTHybrid. Different models have different computational
costs and need to be adapted to real-time performance using distinct methods. 1(Rulkov, 2002) 2(Izhikevich,
2003) 3(Hindmarsh and Rose, 1984) 4(Ghigliazza and Holmes, 2004) 5(Wang, 1993).
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Synapse model Input parameters
Electrical Vpost and Vpre

Chemical1 Presynaptic spike time and Vpost

Graded1 Vpost and Vpre

Table 5. Currently available synapse models in RTHybrid. Different kinds of model may require different
input parameters to work in a hybrid circuit configuration. V refers to membrane potential of a living or
model neuron. 1(Golowasch et al., 1999) .

Models described with differential equations require minimum integration steps and specific adaptations
to match the duration of events such as spikes or bursts in a given living neuron. This is the case of models
such as (Izhikevich, 2003; Hindmarsh and Rose, 1984; Ghigliazza and Holmes, 2004; Wang, 1993). Other
neuron models, such as the Rulkov map (Rulkov, 2002), generate activity events such as bursts using a
little number of points. In this case, interpolation of the values produced by the model is required to match
the living neuron’s event resolution at the chosen sampling rate. Synapse models also present differences in
their implementation, both in the input parameters required and the computational cost. A simple linear
electrical synapse model is included along with a more complex chemical graded synapse one (Golowasch
et al., 1999). New models can be easily added to the library using C language.

Figure 6 illustrates the average time consumed by each task at each iteration of the loop executed by
RTHybrid real-time thread. This study was performed for several models of the RTHybrid library. The
models were run at a 10kHz frequency for five minutes (300 seconds), i.e., each model test contained 3
million intervals of 100µs duration. Neuron models were bidirectionally connected through a chemical
synapse model to a hardware-implemented Hindmarsh-Rose model that generated bursting activity at
the same characteristic rate of a pyloric CPG cell (Pinto et al., 2000). Synaptic conductances were set to
g = 0.02µS and all other parameters from neuron and synapse models were fixed to produce bursting
behaviour. Burst duration for the models was set at one second per burst. The computer used for these
tests was the one referred as Computer 1 in Table 1, with both Preempt-RT and Xenomai 3 and the same
DAQ device and board described in section 2.2.2. Models selected for this analysis included one low-cost
differential equation implementation (Hindmarsh and Rose, 1984), a fast map model (Rulkov, 2002) and
two conductance-based models with exponential non-linearities (Ghigliazza and Holmes, 2004; Wang,
1993).

Variability of the time consumed by the operations performed inside each interval (see Table 6) is
constrained by the use of RTOS, being Xenomai 3 more effective in this task than Preempt-RT. Xenomai 3
achieve much lower latency values, but the use of the Analogy framework, instead of Comedi, translates
into a higher cost when interacting with the DAQ device. Some models have on average low computation
times which may increase occasionally due to their nonlinearities or to a non stable regime for the chosen
integration method. This is the case for the Hodgkin-Huxley type model from (Wang, 1993), which on less
than ten occasions on every trial, out of the three million iterations described previously for Fig. 6, had an
abnormally high computation time. Other models can always be computationally expensive because of
different reasons such as their high dimensionality or multi-compartmental nature. One way to reduce their
integration time and make them more efficient and suitable for real-time environments is to tabulate their
nonlinearities. When the operations within an interval exceed the temporal margin established, RTHybrid
tries to minimize the negative impact on the system by taking time from the next interval and reducing the
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Figure 6. Average time usage for each operation over RTHybrid real-time intervals when different neuron
models are computed. Top panel illustrates the operations that are performed inside each iteration of the
loop executed at the real-time thread of RTHybrid: the process wakes up, interacts with the DAQ device,
performs (if activated) the drift compensation, computes the synapse models, calculates a new point (or
points) of the neuron model, sends the message with data for the writer thread to the queue and sleeps
until the expected beginning of the next interval. Middle and bottom panels show the time consumed, on
average, by each of the previously described operations within a 100µs interval when different neuron
models are computed, on Preempt-RT and Xenomai 3, respectively.

sleeping period, as can be seen in Fig. 7. The presence of latency values above the real-time threshold can
be detected from the log file.

3.2.3 Validation with hybrid circuits

Proper performance of RTHybrid neuron and synapse models was tested building hybrid circuits as
detailed in section 2.2.2. Living neurons from the pyloric CPG were bidirectionally connected through
chemical graded synapse models with neuron models. Four trials per model were conducted, each of them
five minutes long, with one a minute long control period before and after the hybrid circuit interaction.
The first two trials were performed with a sampling frequency of 10kHz, thus cycle interval duration was
100µs. The remaining two trials were run at 20kHz, and the interval was 50µs long. Any latency value
exceeding that limit was considered a real-time failure. All four trials per model were repeated both in
Preempt-RT and Xenomai 3, without core isolation.

Connections in these hybrid circuits mimicked graded chemical synapses with fast and slow dynamics
(Golowasch et al., 1999). The connection from the model to the living neuron was built with a slow synapse.
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Preempt-RT Xenomai 3
Mean ± Std(µs) Max (µs) Mean ± Std(µs) Max (µs)

Wake latency 1.3 ± 0.1 64.649 0.18 ± 0.05 19.844
DAQ read/write 20.8 ± 0.3 55.807 44.5 ± 0.3 49.973
Drift compensation 0.022 ± 0.006 8.654 0.022 ± 0.007 0.711
Synapse models 0.35 ± 0.04 12.486 0.4± 0.1 12.740
Send to queue 1.77 ± 0.09 37.449 1.88 ± 0.08 5.599

Neuron models
Hindmarsh-Rose 0.10 ± 0.01 5.810 0.099 ± 0.005 0.832
Rulkov 0.03 ± 0.01 9.319 0.021 ± 0.008 0.709
Ghigliazza-Holmes 0.49 ± 0.04 4.937 0.51 ± 0.05 6.159
Wang 2.4 ± 0.2 136.114 3 ± 1 122.707

Table 6. Duration analysis for each operation performed inside the real-time cycle described in Fig. 6 on
every iteration. Mean and maximum times are shown in microseconds. The use of RTOS constrains the
variability of these times, with Xenomai 3 being more efficient at this than Preempt-RT. Duration of each
model computation differs greatly from the others due to their distinct mathematical descriptions.

Figure 7. Illustration of how RTHybrid recovers from an unusual high time-consuming operation. In this
case, during iteration N of a test on Preempt-RT with Wang model (Wang, 1993), the computation time of
the neuron model was abnormally high, reaching almost 140µs and, therefore, exceeding the real-time
constrains. RTHybrid handles this kind of situation by taking time from iteration N + 1 to finish the
pending operations from iteration N , and reducing or skipping the waiting time, so on iteration N + 2 the
proper behaviour of the system is restored.

A fast graded synapse was used for the connection from the living neuron to the model. Synapses were
inhibitory, resulting in a rhythmic antiphase behaviour between both neurons. The slow synapse had a
conductance of g = 0.02µS, release threshold of Vth = 15% of the maximum amplitude range and kinetic
parameters k1 = 14.0 and k2 = 4.0. The conductance of the fast synapse was g = 0.4µS, except for
the Hindmarsh-Rose model that had g = 0.8µS, and the release threshold was set to Vth = 25% of the
maximum amplitude range for all but the Ghigliazza-Holmes model neuron, which used Vth = 50%.
Input voltage scaling factor was set to 1000 and output current/voltage conversion factor to 1nA/V .
Neuron model parameters were set to produce bursting behaviour and the duration of each burst was set to
automatically match the living neuron activity. Signal amplitude and temporal scaling was automatically
performed by RTHybrid calibration algorithms (Reyes-Sanchez et al., 2017).

Figure 8 shows the validation tests results for the Rulkov and Izhikevich models, which are the ones with
simpler mathematical descriptions, and Fig. 9 refers to Hindmarsh-Rose and Ghigliazza-Holmes models.
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For each model there are four panels displaying different information about the hybrid interaction. The
worst performance trials for each model, understood as those with higher latency values, were selected for
the analysis. Recorded membrane potential from both neurons is displayed in panel A, scaled to the living
neuron range, portraying the robust antiphase rhythm achieved due to the bidirectional inhibitory graded
chemical synapse used in all cases, as shown at panel B. Panel C represents Preempt-RT test latency values,
showing that in all cases the 100µs limit established for 10kHz trials, represented by the right-most red
vertical line, was fulfilled. However, this RTOS was not able to keep 20kHz constrains, indicated by the
left-most red vertical line, during these experiments. This was not the case for Xenomai 3, portrayed at
panel D, whose latency values were far under the 50µs barrier set during 20kHz trials. Due to this outcome,
the results displayed correspond to Preempt-RT 10kHz and Xenomai 20kHz trials.

Figure 8. Hybrid circuit built with a pyloric CPG neuron and a simulated neuron using models from
(Rulkov, 2002) and (Izhikevich, 2003). For both models, each of the four panels represent: A) membrane
potential of the neurons (adapted to the living neuron range) B) synaptic currents C) Preempt-RT latency
values D) Xenomai 3 latency values. On the latency figures, left-most red line represents the 20kHz limit
and the right-most, the 10kHz limit.
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Figure 9. Hybrid circuit built with a pyloric CPG neuron and a simulated neuron using models from
(Hindmarsh and Rose, 1984) and (Ghigliazza and Holmes, 2004). For both models, each of the four panels
represent: A) membrane potential of the neurons (adapted to the living neuron range) B) synaptic currents
C) Preempt-RT latency values D) Xenomai 3 latency values. On the latency figures, left-most red line
represents the 20kHz limit and the right-most, the 10kHz limit.

4 DISCUSSION

Characterization and control of neural systems dynamics, as well as experimental protocol automation
can largely benefit from the use of closed-loop techniques, and specifically from hybrid circuits built
by connecting model neurons and synapses to living cells. RTHybrid provides a software neuron and
synapse model library aimed to build hybrid circuits in an easy and user-friendly manner. Developed for
Linux, this program is open-source and can be downloaded for free from www.github.com/GNB-UAM/
RTHybrid, where installation and user manuals can also be found. RTHybrid has a simple GUI to design
and configure the experiments. This tool also incorporates a command-line mode where configuration
XML files can be loaded, a useful feature for experiment automation and scripting.

16

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted September 27, 2018. ; https://doi.org/10.1101/426643doi: bioRxiv preprint 

www.github.com/GNB-UAM/RTHybrid
www.github.com/GNB-UAM/RTHybrid
https://doi.org/10.1101/426643


Amaducci et al. RTHybrid

Temporal precision requirements for closed-loop interactions in RTHybrid is fulfilled by using hard
real-time software technology. An extensive analysis of available RTOS was conducted to select the most
suitable platforms to implement RTHybrid. The software has been developed to run over Preempt-RT and
Xenomai 3 frameworks for Linux due to their balance between performance and accessibility. RTHybrid
model library includes a wide variety of neuron models: from computationally-unexpensive paradigms,
such as (Rulkov, 2002; Izhikevich, 2003), to realistic conductance-based Hodgkin-Huxley type (Ghigliazza
and Holmes, 2004; Wang, 1993). The library also contains several synapse models: from simple gap
junctions implementations to configurable graded chemical synapses (Golowasch et al., 1999). All of them
are adapted to work under hard real-time restrictions. Moreover, calibration algorithms are integrated in the
library to automate the adaptation of model amplitude and time scales to the living neuron behavioural
range (Reyes-Sanchez et al., 2017).

Models currently included in the RTHybrid library are suitable for a wide variety of hybrid circuit
experiments implemented using dynamic clamp. Beyond electrophysiological protocols, RTHybrid can
also be easily generalized to drive open- and closed-loop interactions in optogenetic and drug microinjection
paradigms. Future development in parallelization and GPU computing will be considered to implement
large scale network or highly-realistic biophysical models.

Many researchers and laboratories overlook closed-loop techniques despite their advantages due to the
difficulties in the installation and use of the required technology. With RTHybrid, we aim to encourage the
use of open-source, standardized and user-friendly real-time software tools, available in different platforms,
to facilitate the implementation of closed-loop experimentation in neuroscience research.
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Muñiz, C., Forlim, C. G., Guariento, R. T., Pinto, R. D., Rodriguez, F. B., and Varona, P. (2011). Online
video tracking for activity-dependent stimulation in neuroethology. BMC Neuroscience 12, P358.
doi:10.1186/1471-2202-12-S1-P358
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