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Abstract  

Enhancer RNAs (eRNA) are non-coding RNAs transcribed bidirectionally from active regulatory 

sequences. Their expression levels correlate with the activating potentials of the enhancers, but 

due to their instability, eRNAs have proven difficult to quantify in large scale. To overcome this, 

we use capped-nascent-RNA sequencing to efficiently capture the bidirectional initiation of 

eRNAs. We apply this in large scale to the human lymphoblastoid cell lines from the Yoruban 

population, and detected nearly 75,000 eRNA transcription sites with high sensitivity and 

specificity. We identify genetic variants significantly associated with overall eRNA initiation 

levels, as well as the transcription directionality between the two divergent eRNA pairs, namely 

the transcription initiation and directional initiation quantitative trait loci (tiQTLs and diQTLs) 

respectively. High-resolution analyses of these two types of eRNA QTLs reveal distinct 

positions of enrichment not only at the central transcription factor (TF) binding regions but also 

at the flanking eRNA initiation regions, both of which are equivalently associated with mRNA 

expression QTLs. These two regions - the central TF binding footprint and the eRNA initiation 

cores - define the bipartite architecture and the function of enhancers, and may provide further 

insights into interpreting the significance of non-coding regulatory variants. 
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Introduction 

Regulation of transcription is achieved mainly through binding of transcription factors (TFs) at 

transcription regulatory elements (TREs), such as promoters and enhancers. Genes are expressed 

from promoters, which integrate regulatory signals from proximal and distal enhancers to 

determine the amount of RNA product. Such regulatory networks are key to most cellular 

processes, including development, cell-type differentiation, and stress response, and their 

misregulation can cause disease. In fact, a large majority of disease associated genetic variation 

is estimated to affect TREs (Maurano et al. 2012; Gusev et al. 2014). Therefore, considerable 

efforts have gone into connecting genetic variation to molecular phenotypes at TREs, and to 

understand how those might affect gene expression (Kasowski et al. 2010; Degner et al. 2012; 

McVicker et al. 2013; Banovich et al. 2014; Battle et al. 2015; Garieri et al. 2017; Schor et al. 

2017; Ferreira et al. 2016).  

Enhancer transcription arises in addition to the target promoter activation in species as diverse as 

flies and humans (Kim et al. 2010; Kaikkonen et al. 2013; Hah et al. 2013; Andersson et al. 

2014; Henriques et al. 2018) and its levels track with enhancer activity (Core et al. 2014; 

Henriques et al. 2018). A pair of enhancer RNAs (eRNAs) are generally transcribed in opposite 

directions from core transcription-initiation regions flanking the central transcription-factor-

binding site (TFBS) of the enhancer (Fig. 1A) (Core et al. 2014; Andersson et al. 2015). While 

the production of eRNAs has been used to identify active enhancers across numerous cell types 

and tissues (Andersson et al. 2014), the roles eRNAs play in gene regulation have not yet been 

elucidated (Lam et al. 2014). Complicating eRNA detection and quantification is the fact that 

they are rapidly degraded (Andersson et al. 2014); this makes it less suitable to use methods that 

rely on steady-state RNA, such as RNA-seq or Cap Analysis of Gene Expression (CAGE). 
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Nascent RNA sequencing methods, such as Precision nuclear Run-On sequencing with 5´-

capped (m7G) RNA enrichment (PRO-cap, Fig. 1A) (Kwak et al. 2013; Kruesi et al. 2013; Core 

et al. 2014), overcome this challenge by capturing capped RNA at the synthesis stage.  

The mapping of genetic variation to molecular phenotypes at different stages of gene expression 

has provided important insights into the DNA sequences underlying gene regulation (Pickrell et 

al. 2010; Majewski and Pastinen 2011; Degner et al. 2012; McVicker et al. 2013; Banovich et al. 

2014; Battle et al. 2015; Li et al. 2016; Cannavò et al. 2017). Similarly, mapping genotypes to 

transcription phenotypes at enhancers will help connect changes at enhancers to changes in gene 

expression, revealing potential mechanisms for gene regulation. Recent studies have mapped 

genetic variation to transcription at promoters and enhancers using CAGE, revealing quantitative 

trait loci (QTLs) associated with alternative promoter usage, promoter shape, and expression 

(Garieri et al. 2017; Schor et al. 2017). But, the drawbacks of CAGE in quantifying unstable 

eRNA expression limited comprehensive profiling of enhancer-associated QTLs compared to 

promoter-associated QTLs. Given the properties of PRO-cap that allow it to detect and quantify 

unstable transcription, we anticipate that a much more comprehensive list of enhancer-associated 

QTLs can be identified. 

This study leverages the variation in transcription initiation at transcribed TREs (tTREs), 

measured by PRO-cap in lymphoblastoid cell lines (LCLs) from 67 individuals, to study 

enhancer architecture and activity. We find thousands of genetic variants that affect either 

transcription initiation levels (tiQTLs) or the directionality of initiation (diQTLs) at enhancers. 

We find that these two types of QTLs are enriched at distinct positions within the enhancer 

architecture. Importantly, both variant types show significant association with mRNA 

expression, illustrating their potential functionality in gene regulation. Overall, through our 
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genetic analysis investigating the pattern of enhancer transcription, our data reveal a bipartite 

architecture of enhancers. 

Results 

Capped-nascent-RNA sequencing reveals transcribed regulatory elements with high 

resolution and sensitivity 

 
Figure 1 PRO-cap identifies tTREs with high resolution and sensitivity. (A) Schematic of bidirectional transcription 
at tTREs. PRO-cap measures nascent-capped-RNA levels and identifies the precise TSS positions (5′ end); PRO-seq 
measures the 3′ end of RNAs associated with transcriptionally-engaged polymerase. (B) Transcription and 
chromatin marks at the SLFN5 locus. PRO-cap, PRO-seq, and DNase-seq data are derived from the YRI LCLs, 
RNAP II, H3K27, H3K4me2 and H3K4me3 ChIP-seq data are from ENCODE’s LCL, GM12878. Shaded regions 
indicate PRO-cap-identified tTREs. (C) Receiver operating characteristic (ROC) plots of PRO-cap and CAGE at 
annotated gene promoters (n=12,272) or EP300 bound enhancers (n=18,956). Area under ROC (AUROC) is in 
parenthesis. (D) Histograms of PRO-cap and CAGE log read count distributions at annotated gene promoters and 
EP300-bound enhancers with background distributions shaded (n=1,000,000). 

We prepared PRO-cap libraries from 69 Yoruban lymphoblastoid cell lines (LCLs) 

(Supplementary Table 1) for which a large number of transcriptome and chromatin datasets are 

available (Pickrell et al. 2010; Degner et al. 2012; McVicker et al. 2013; Banovich et al. 2014; 

Battle et al. 2015; Li et al. 2016). We combined all PRO-cap datasets and identified transcribed 
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transcriptional regulatory elements (tTREs), including both enhancers and promoters, with 

bidirectional divergent nascent transcription within 300 basepairs (bp) of one another 

(Supplementary Fig. 1A). We identified 87,826 tTREs (Supplementary Table 2) with high 

sensitivity and resolution, as illustrated by examples at two loci (Fig. 1B, Supplementary Fig. 

1B). We determined how well our approach identifies Refseq annotated promoters and EP300 

bound enhancers and found that it performs substantially better at identifying enhancers than 

CAGE (ENCODE Project Consortium 2012) (Fig. 1C, D).  

We separated the tTREs into promoters and candidate enhancers based on their transcript 

stability (CAGE vs PRO-cap; See methods) and the proximity to annotated (Refseq) gene 

transcription start sites (TSS). Based on the CAGE data, 12,878 tTREs were identified as 

promoters, and the remaining 74,948 tTREs were identified as enhancers (similar numbers were 

obtained using Refseq TSSs, see Supplementary Table 2). Promoters and enhancers show 

expected patterns of transcription initiation (Fig. 2A), RNA polymerase II (Pol II), H3K27 

acetylation, and H3K4 methylation (Fig. 2B, Supplementary Fig. 2A). Globally, tTREs fall 

within accessible DNA regions and contain ENCODE annotated TFBSs, the most enriched 

TFBSs tending to be cell-type relevant (2B, Supplementary Fig. 2B) (Wang et al. 2016; Stelzer 

et al. 2016). The identified enhancers are enriched with regulatory information such as 

expression quantitative trait loci (eQTLs), chromatin accessibility QTLs (DNaseI-sensitivity 

QTLs, dsQTLs), and disease associated variants (GWAS SNPs) (Fig. 2D). Interestingly, the 

regulatory variants are more enriched in enhancers than promoters, which was reproduced using 

DNase hypersensitive sites (DHSs) to identify enhancers (Supplementary Fig. 2C). Together, 

these results demonstrate the regulatory potential of the enhancers, and the superior power of 

using nascent RNA sequencing to identify them. 
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(A) PRO-cap signal at promoters and enhancers. Heatmap shows plus-strand (red) and minus-strand (blue) read 
counts at distal tTREs (putative enhancers) and promoter tTREs, ordered by increasing width. (B) PRO-cap-
identified tTREs have characteristic promoter and enhancer chromatin patterns. Metaplots of PRO-cap, PRO-seq, 
DNase-seq and RNAP II, H3K27ac, H3K4me1, and H3K4me3 ChIP-seq signals at enhancers (Distal tTRE) and 
promoters (Promoter). Promoters are oriented in the direction of the gene. (C) Overlap between tTREs and 
regulatory regions. DHS(YRI): DNase I hypersensitive windows from the Yoruban (YRI) LCLs (n=630,168), 
DHS(ENC): DNase I hypersensitive sites from ENCODE LCLs (including GM12878; n=359,361), TFBS: defined 
by ENCODE Factorbook in GM12878 (n=212,144). ChromHMM: regions defined by ChromHMM as transcription 
start sites (TSS; n=21,342), strong enhancers (EnhS; n=19,362), and weak enhancers (EnhW; n=70,620) in 
GM12878.  (D) PRO-cap tTREs are enriched in genetic variants associated with gene expression (eQTLs), 
chromatin accessibility (dsQTLs), and human disease (GWAS). Shaded regions indicate tTRE boundaries. 

Identification of genetic variants associated with transcription 

To investigate how underlying sequences establish the transcriptional signature at tTREs, we 

tested the association between genetic variation across the individuals and the pattern of 

transcription at tTREs. To avoid confounding effects caused by differences in the read 

Distal tTRE Promoter

-1 0 1 -1 0 1

(−
) s

tra
nd

 (R
PK

M
)

(+
) s

tra
nd

 (R
PK

M
)

1
10

10
0

1
10

10
0

A

Relative position from TRE center (kb)

Distal tTRE Promoter tTRE
B Distal tTRE

-1 0 1

Promoter
50

10
50

10
0

10
0

-1
00

0
10

0
0

20
0

PRO−seq

RNAP II

DNase−seq

H3K27ac

H3K4me1

H3K4me3

PRO−cap

-1 0 1
Relative position from TRE center (kb)

-40 -20 -10 -4-1 0 1 4 10 20 40

eQTL

-40 -20 -10 -4-1 0 1 4 10 20 40

-40 -20 -10 -4-1 0 1 4 10 20 40 -40 -20 -10 -4-1 0 1 4 10 20 40

-40 -20 -10 -4-1 0 1 4 10 20 40 -40 -20 -10 -4-1 0 1 4 10 20 40

Relative position from TRE center (kb)

0.
04

0.
08

0.
0

0.
04

0.
08

0.
0

Q
TL

 F
re

qu
en

cy
 / 

bp

0.
01

0.
02

0.
0

0.
01

0.
02

0.
0

0.
00

2
0.

0

0.
00

2
0.

0

dsQTL

GWAS

D

eQTL

dsQTL

GWAS

C

%
 o

ve
rla

p
0

20
40

60
1.

0 tTREs Regulatory elements

TSS

EnhS

EnhW

ChromHMM

80

DHS (Y
RI)

DHS (E
NC)

TFBS

Chro
mHMM

DHS (Y
RI)

DHS (E
NC)

TFBS
TSS

Enh
S

Enh
W

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 8, 2018. ; https://doi.org/10.1101/426908doi: bioRxiv preprint 

https://doi.org/10.1101/426908
http://creativecommons.org/licenses/by-nc/4.0/


	

8	
	

mappability of different alleles, we devised a variant sensitive alignment method that masks out 

allele-mappability biased regions (see online methods and Supplementary Fig. 3A-B). After 

allele-mappability masking, we identified 76,630 tTREs (Supplementary Table 2), about 40% 

of which are variably expressed between individuals (Supplementary Fig. 3C-D).  

We identified genetic variants associated with the pattern of transcriptional initiation: either a 

change in the overall levels (overall PRO-cap read counts) or the directionality (log2 ratio of plus 

strand reads over minus strand reads, i.e. directionality index) of divergent bidirectional 

transcription (Fig. 3A, B). We mapped the genotypes to quantile-normalized PRO-cap read 

counts and directionality indices at tTREs within 2 kb. We named the variants associated with 

changes in overall PRO-cap signal transcription initiation QTLs (tiQTLs), and those associated 

with changes in directionality as directional initiation QTLs (diQTLs). Overall, 16,193 TREs 

have an associated tiQTL, and 4,162 TREs have an associated diQTL (FDR < 0.1, Table 1). 

Among those, we find that 82.7% of tiQTLs and 65.8% of diQTLs are associated with changes 

in transcription at enhancers rather than promoters. These numbers are comparable to QTLs 

affecting chromatin accessibility (dsQTL, (Degner et al. 2012)) from the same population. We 

validated our tiQTL results using allele specific expression analysis and estimated the average 

effect on tTRE transcription initiation to be around 2-fold for the most likely causal SNPs 

(Supplementary Fig 4A-B). Overall, the number and quality of QTLs allows us to observe 

patterns in their location within enhancers and the types of sequences they create or disrupt. 
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Figure 3 Genetic variants are associated with transcription levels and directionality at enhancers and promoters. (A) 
Transcription initiation QTL (tiQTL) schematic (B) Directional initiation QTL (diQTL) schematic (C) tiQTLs 
enriched at enhancer midpoints. A histogram of QTL frequency around enhancer midpoints with the expected 
background distribution with 99% confidence interval (sampled from all SNPs in same region) shown in orange. (D) 
diQTLs are enriched at enhancer TSSs. As in (C), for diQTLs. (E) tiQTLs are enriched at promoter TSSs. As in (C), 
at promoters except oriented so that dominant strand (usually gene) is downstream. (F) diQTLs are enriched at 
promoter TSSs. As in (F), for diQTLs. 
 

We then examined how tiQTLs and diQTLs are linked to the transcriptional architecture of 

enhancers. To enrich for causal SNPs, we filtered ti- and diQTLs based on local minimum p-

values (within 5 kb) and examined the QTL density around enhancer midpoints for both tiQTLs 

(Fig. 3C) and diQTLs (Fig. 3D). While both QTL types are enriched within the enhancer 

regions, the peak of tiQTL enrichment is at the enhancer midpoint, whereas diQTLs are most 

enriched ~70 bp to either side, coinciding with the average relative position of TSSs 

(Supplementary Fig. 4C-D). Based on these results, we hypothesize that the overall 

transcriptional activity is generally regulated from the central TF binding sites, but the 
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directionality of transcription is mostly regulated in the core-promoter-element regions near the 

transcription initiation sites, where the pre-initiation complex (PIC) of RNA polymerase II 

assembles. 

At promoters, we found that both tiQTLs and diQTLs are preferentially enriched nearer to the 

TSSs compared to the central region (Fig. 3E, F, Supplementary Fig. 4E-F). However, 

compared to enhancers, promoter-associated tiQTLs were more likely than diQTLs to be 

specifically enriched at the dominant strand (mostly the direction of the gene). This difference in 

tiQTL enrichment between enhancers and promoters suggests that the two tTRE types have 

different tolerances to genetic variation affecting divergent transcription. 

Transcription associated QTLs affect TF binding motifs and core promoter elements 

To further explore this difference in the placement of tiQTLs and diQTLs within enhancers, we 

compared the underlying sequences. For example, the non-reference allele of the tiQTL 

rs185220, located within a proximal enhancer near the SETD9 promoter (Fig. 4A), creates a 

perfect match to the binding site for SP1 transcription factor at the center of the associated 

enhancer. This alternate allele is also associated with increased eRNA transcription, which is 

concordant with the change in the TF binding sequence in the central region. Conversely, the 

non-reference allele of rs8050061 diQTL disrupts a match to the canonical Initiator element (Inr) 

(Ngoc et al. 2017), coinciding with decreased transcription from the affected strand (Fig. 4B). 
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Figure 4 tiQTLs affect TF binding sites; diQTLs affect core promoter elements. (A) Average PRO-cap signal 
separated by genotype at tiQTL rs185220. The alternate allele creates a perfect match to the SP1 binding motif. (B) 
Average PRO-cap signal separated by genotype at diQTL rs8050061. The alternate allele disrupts a canonical 
human Inr motif. (C) Difference in PWM scores between tiQTL high transcription and low transcription alleles. 
Notch reflects the 95% confidence interval of the median. DNase hypersensitivity QTLs are shown for comparison. 
(D) Motifs most often affected by in-tTRE tiQTLs (>20% increase over background). (E) Difference in Inr match 
likelihood between increased and decreased directionality allele. diQTLs within 10 bp from the TSSs compared to 
tiQTLs within 10 bp from the tTRE center. (F) As in (E), for TATA-box match likelihood. Region selected for 
diQTLs is 40 to 20 bp upstream of TSS. 

 

We tested the generality of the association between tiQTLs and central TF binding motifs using 

TFBS  Position Weight Matrix (PWM) scores, as described previously (Degner et al. 2012; 

Weirauch et al. 2014). On average, the alleles with stronger eRNA transcription have stronger 

PWM score than the weaker alleles (Fig. 4C). The effect size is similar to what was observed in 

QTLs affecting chromatin accessibility (dsQTL), indicating that alteration of TF binding motifs 
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affects both the open chromatin and eRNA transcription. The motifs most disproportionately 

affected are associated with immune-related TFs (Fig. 4D). We suspected diQTLs would affect 

sequence elements at regions near the enhancer TSSs that are analogous to the promoters. We 

defined these regions as the “core”, since they contain core promoter element-like motifs such as 

the Initiator element (Inr) and the TATA box. Inr is highly enriched at PRO-cap identified TSSs 

(Ngoc et al. 2017) (Supplementary Fig. 5) and diQTL alleles associated with a shift in 

directionality towards stronger expression of the strand where the diQTL is located have stronger 

matches to the motif (Fig. 4E). To a lesser degree, the same was also true for TATA-like 

elements, usually found 20-40 bp upstream of the TSS (Fig. 4F). 

Transcription-associated QTLs associate with gene expression 

The most critical question when exploring changes in chromatin phenotypes is whether they 

have an effect on the final output - gene expression. We used a RNA-seq data in the same set of 

LCLs (Pickrell et al. 2010) to define expression QTLs (eQTLs) and test their association with 

tiQTLs or diQTLs. We focused on SNPs in regions immediately surrounding TREs (± 2 kb), and 

found 744 genes within 200 kb with associated eQTLs (FDR < 0.05). Overall, these eQTLs are 

enriched within 200 bp from the enhancer midpoints defined by PRO-cap (Fig. 5A). 

We found that enhancers that contain an associated tiQTLs and/or diQTL are 8.6-fold and 13.2-

fold more likely to contain an eQTL, respectively (Supplementary Fig. 6A). The tiQTLs or 

diQTLs themselves were also directly associated with gene expression (Fig. 5B). Importantly, 

diQTLs that are not tiQTLs also show this stronger association with gene expression 

(Supplementary Fig. 6B). These results indicate that both tiQTLs and diQTLs are associated 

with gene expression and, given the different positioning of tiQTLs and diQTLs within 
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enhancers, that sequences at both the central TFBS and the regions surrounding the TSSs may 

affect enhancer function in gene regulation (Supplementary Fig. 6C). 

  
Figure 5 ti- and diQTLs at enhancers associate with changes in gene expression. (A) eQTLs are enriched at 
enhancers. A histogram of QTL density around enhancer midpoints. (B) Distribution of P-values for mRNA 
association for diQTLs, tiQTLs and background SNPs (all SNPs within 2 kb of enhancer). Violin plots are marked 
with quantiles, the median colored red. *** indicates P<1x10-16, Wilcoxon rank-sum test. (C) Diagram explaining 
the separation of candidate enhancer tTREs into functional regions. NCNC stands for non-center, non-core. (D) 
eQTL frequency in different enhancer regions. NCNC: non-center-non-core, NCC: non-center-core. Each colored 
bar is compared to Far Out in a Fisher’s exact test. * indicates p<0.05,  n.s. indicates not-significant.  

To further explore the model that both the center and TSS cores are important for enhancer 

function, we hypothesized that eQTLs would be enriched in those regions relative to the regions 

outside them. We separated enhancer regions into: the center, the core promoter-like region from 

which transcription arises (core), the space between them (non-core-non-center, NCNC), the 

space outside of the core but within the enhancer region (out), and those beyond the enhancer 

region (Fig. 5C).  

Using the far-out region as a baseline, we find a significantly higher eQTL frequency within the 

center and the core (Fisher’s exact test, P < 0.05, Fig. 5D). Importantly, the core region remains 

high in eQTL frequency and significance when the region overlapping the center (lilac in Fig. 
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4C) is ignored (non-center-core: NCC). The out and NCNC regions have no significant increase 

in eQTL frequency. Additionally, we compared the eQTL frequency between the core and the 

out or NCNC regions, normalizing for the distance from the center, using bootstrapping to 

estimate an empirical significance level (Supplementary Fig. 6D-F). We find that the core 

regions are significantly enriched with eQTLs compared to the out regions (p < 10-16), and 

marginally enriched compared to the NCNC region (p = 0.107). These support our hypothesis 

that the core eRNA initiation regions are important for target gene expression, in addition to the 

central transcription factor binding regions. 

Discussion 

We explored the activity and architecture of transcribed transcriptional regulatory elements 

(tTREs) by studying variation in transcription initiation across human LCLs. We identified 

genetic variants associated with enhancer and promoter transcriptional activity and directionality. 

The pattern of enrichment for these genetic variants and the types of motifs they affect suggest 

that overall transcriptional activity at enhancers is regulated from the central transcription-factor 

binding region (TFBS) and directionality is regulated from the surrounding core initiation 

regions. Both variant types are associated with gene expression at a higher rate than expected, 

indicating that both the central TFBS and the flanking core initiation regions affect transcription 

at enhancers and their role in gene expression. This conclusion is supported by regional 

enrichment of eQTLs within enhancers. 

Identification of enhancers based on capped nascent RNA sequencing provides a direct measure 

of transcriptional activity and, therefore, shows higher sensitivity than previous methods. A 

direct measure of transcriptional activity is critical, as non-productive transcripts such as eRNAs 

are rapidly degraded in the nucleus (Andersson et al. 2014). Other transcription-based 
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approaches, such as CAGE and nuclear short RNA analysis, are impeded by this instability. As 

we showed, CAGE performs well in identifying promoters but detects enhancers less efficiently 

than PRO-cap. Additionally, focusing on the bidirectional nascent transcription start sites 

(nTSSs) using PRO-cap enabled us to filter out spurious transcription from only one strand, 

which increases the specificity. Although it is possible that enhancer transcription can be 

unidirectional, our nascent transcription analysis detected mostly bidirectional and divergently 

paired PRO-cap peaks, and observed very few unpaired peaks. 

The fact that genetic variants affecting enhancer directionality are associated with changes in 

gene expression brings up an interesting question of mechanism. While the change in 

directionality towards or away from the sense strand of the gene will obviously affect its 

expression levels at promoters, how directional initiation at enhancers affects gene expression is 

less clear. In some cases, modulating the polymerase initiation at only one of the two initiating 

sites could impact the overall enhancer activity, though in other cases overall transcriptional 

activity is not affected by the diQTLs. In the latter case, it is possible that, despite the prevailing 

model that enhancers are orientation-independent, there may be distance and orientation-specific 

effects on their target genes, potentially involving eRNAs. While our current list of diQTLs is 

limited due to the sample size, increasing power with a larger scale analysis would allow testing 

of these possibilities. 

Overall, our data show the power of combining capped-nascent-RNA sequencing with human 

population genetics to explore the architecture of human enhancers. These results suggest a 

bipartite model for enhancers, where sequences at both the central TFBS and the core promoter 

regions surrounding the TSSs are important for enhancer function. Our model also supports the 

hypothesis that eRNA transcription itself can be functional. In practice, this will have an 
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important implication for assessing the significance of disease-associated non-coding genetic 

variants, adding eRNA start sites as the regions of interest. 

Methods 

Preparation of PRO-cap/PRO-seq libraries from human lymphoblastoid cell lines (LCLs). 

Human LCLs were acquired from the Coriell Biorepository. Unrelated individuals were selected 

from the Yoruban (YRI) population as described in Degner et al. (Supplementary Table 1). 

LCLs were cultured in RPMI 1640 media (Gibco) with 2 mM L-glutamine (Gibco) and 15% 

Fetal Bovine Serum (Gibco) supplements without antibiotics at 37°C under 5% CO2. Mid-log 

phase cultures were seeded at 2×105 cells/ml density in 15 ml suspension culture, and maintained 

for 24 hr before the cell harvest. Batches of 10 randomly selected cultures were prepared at a 

time for a total of 100 samples (PRO-cap: 70 individuals + 10 replicates, PRO-seq: 10 

individuals + 10 replicates). One individual was dropped out due to unsuccessful PRO-cap 

library generation and two because they lacked phased genotype data (Supplementary Table 1). 

Replicate batches, grown from independent cultures, were processed at least 2 months apart. 

Briefly, LCLs were pelleted by centrifugation at 800×g for 3 min in 4°C, washed twice by 

resuspension in 10 mL 4°C Phosphate Buffered Saline (PBS) and centrifugation at 800×g for 3 

min, followed by resuspension in 50 µl of storage buffer (50 mM Tris-Cl pH 8.0, 25% glycerol, 

5 mM magnesium acetate, 0.1 mM EDTA, 5 mM DTT). Cells were instantly frozen in liquid 

nitrogen, and stored at -80°C. Upon thawing, cells were incubated in polymerase run-on 

reactions with ribonucleotide triphosphate (NTP) substrates at a final concentration of 19 µM 

biotin-11-CTP, 19 µM biotin-11-UTP, 0.19 mM ATP, and 0.19 mM GTP at 37°C for 3 min. 

This was followed by nascent-RNA sequencing library preparation as described previously 

(Mahat et al. 2016). 
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Alignment of the PRO-cap/PRO-seq reads to the reference genome. We followed a 

previously described PRO-seq/PRO-cap data processing procedure (Mahat et al. 2016) and 

combined alignments for each method (see Supplementary methods for details).  

Identification of nascent transcription start sites (nTSSs) and transcribed transcriptional 

regulatory elements (tTREs). We combined all PRO-cap dataset reads and identified ~1.4 

billion (1,417,065,796) unique read molecules mapped to the hg19 genome. We then used a 

bidirectional read count filtering approach comparable to capped RNA analysis described 

elsewhere to identify bidirectional transcribed tTREs (Andersson et al. 2014) (Supplementary 

Figure 1A, see Supplementary Methods for details).  

Evaluation of the sensitivity and specificity of PRO-cap. To assess the predictive power of 

PRO-cap to find transcriptional regulatory elements, we used the transcription start sites of the 

genes with greater than 1 RPKM as the TSS standards from the mRNA-seq data in the YRI 

LCLs (Pickrell et al. 2010) (n = 12,272), and ENCODE FACTORBOOK defined EEP300 

binding sites in GM12878 cell line as the enhancer standards (n = 18,956). We used the 

randomly selected 1 million genomic regions in 500 bp windows as described in the previous 

section as a background distribution. We calculated the true positive rate as a function of 

different RPKM thresholds using TSS or EP300 standards, and calculated the false positive rate 

as the fraction of background regions above the thresholds. We generated receiver operating 

characteristic (ROC) curves for PRO-cap detecting TSS and EP300 sites, and compared the 

PRO-cap ROC with an available cap analysis of gene expression (CAGE) data in GM12878 

(RIKEN CAGE; GSM849349) (Figure 1B-C).  

Classification of tTREs into promoters and enhancers. To classify the tTREs into gene 

promoters and enhancers/regulatory elements, we used two criteria: 1) distance to annotated 
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refseq TSSs, 2) overlap with CAGE sites. For the refseq based promoter annotations, we defined 

the tTREs with at least one nTSSs within 500 bp of refseq TSSs as the promoters (n=14,986). 

We then defined tTREs greater than 2 kb away from any refseq TSSs as distal enhancers 

(n=34,922). For the CAGE based promoter and enhancer classifications, PRO-cap and CAGE 

counts at the nTSSs are collected for the plus and the minus strands separately, and RPM 

normalized. nTSSs with CAGE counts significantly above the background were called promoter 

TSSs. To estimate the background CAGE read counts, we first selected nTSSs that are at least 1 

kb away from any annotated refseq TSS (n=38,658), and calculated the CAGE read counts for 

both the plus and the minus strands at these background regions. We calculated the p-values of 

the nTSS CAGE read counts based on the empirical background distribution, and found 13,833 

nTSSs that have CAGE readcounts that are significantly higher than the background using FDR 

< 0.1 (P < 0.0145, CAGE RPM >= 1.18655). Of the 13,833 nTSSs, 995 were bidirectional pairs, 

yielding 12,878 tTREs as promoters, 995 of which are bidirectional. We defined the remaining 

74,948 tTREs as enhancers. 

DNA sequence motif analysis. We used the RTFBSdb suite (Wang et al. 2016) that clusters 

transcription factor binding motifs based on similarity, chooses a representative motif for each 

cluster based on the expression data, and computes enrichment for known motifs. We filtered 

CIS-BP motifs based on expression in our LCLs using our PRO-seq data, clustered the motifs 

with agnes clustering into 400 clusters, and chose a representative motif for each cluster based on 

expression in our PRO-seq data. We used this motif list to look for motif enrichment within 

tTRE centers. 

Regulatory variant enrichment analysis. We used previously defined lists of expression QTLs 

and DNase I hypersensitivity QTLs and lifted the coordinates over to the hg19 genome (n=1,090 
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and 8,899 respectively). For the disease associated GWAS SNPs, we used the NIH GWAS 

Catalog entries as of March, 2015 in hg19 (n=12,239). We used the refseq annotation based 

distal enhancer and promoter classifications for the tTREs, and calculated the per base QTL 

enrichment relative to the tTRE midpoints. For comparison, we also generated enrichment plots 

relative to the DNase I hypsersensitivity sites (ENCODE DHS; n=52,292 promoter DHS, 

226,832 distal enhancer DHS) in all LCL cell lines (Supplementary Figure 2C).  

Variant sensitive alignment of the PRO-cap reads to individual genomes. In summary, we 

reconstructed the individual phased haplotype genomes, masked out any tTRE regions with 

ambiguous mappability, then re-aligned the PRO-cap reads to the individual haplotype genomes 

(Supplementary Figure 3A-B). Because of removing allele mappability biased regions, we re-

calculated read per million (RPM) of the read counts sum across all individuals for each tTRE, 

and used a RPM cut-off of 0.5 to further select tTRE peaks for testing associations (n=76,630). 

See supplement for details. 

Normalization of the transcription initiation phenotypes for association testing. First, we 

normalized the read counts to the sequencing depth. We added the plus and the minus strand read 

counts in each tTRE window, then divided the raw read counts by per million total read counts in 

the tTRE windows for each individual. Then we used a quantile normalization, where the 

distribution of read counts in an individual is matched to a reference distribution. For the 

reference distribution, we applied a “median of the ratio” normalization method that is used in 

the DEseq RNA-seq analysis software (Dillies et al. 2013). We used this “median of the ratio” 

normalized distribution for the quantile normalization of the read counts (Supplementary Table 

2). 
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Identification of variably expressed tTREs. To identify tTREs that are variably expressed, we 

used normalized PRO-cap read count data that contain partial replicates (n=8; Supplementary 

Figure 3C). For each tTRE, we calculated the deviation from the mean of the normalized read 

counts between replicates and between different samples. Then we used Wilcoxon’s rank sum 

test to test the alternative hypothesis that the differences between samples are greater than 

between the replicates for each tTRE, and calculated p-values. We estimated the number of 

variably expressed tTRE by analyzing the complete distribution of the p-values as described 

previously (Storey et al. 2007). Under the null hypothesis, p-values should have a uniform 

distribution with a density of 1, but the observed p-values are only uniformly distributed for large 

p-values. The density of the portion of the p-value distribution that is uniform is ~0.244, 

indicating that up to ~75.6% of tTREs can be considered variably expressed. Using an FDR of 

~0.2, we identified 29,694 variably expressed nTSSs. 

Transcription initiation QTL (tiQTL) association testing. We tested the association between 

the nascent transcription initiation phenotypes at each tTRE region and the genotype of SNPs 

and short indels within a cis range of 2 kb from the midpoint of the nTSS regions. We took the 

variant sensitive normalized PRO-cap readcounts, and identified tiQTLs using the MatrixEQTL 

R package (Shabalin 2012). We used allele-mappability-bias-masked tTRE regions on 

autosomes (n=76,118), and variant sites with a minor allele frequency greater than 5% in our 

haplotype-phased individuals (n=9,808,709). A total of 994,993 pairs were tested. We tested up 

to 20 principal components (PCs) as co-variates in 2 kb cis-tiQTL tests and found that 16 PCs 

gave the largest number of significant tiQTLs (FDR>0.1). 16,193 tTREs are associated with at 

least one tiQTL in 2 kb cis regions. 
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Directional initiation QTL (diQTL) association testing. We tested the association between the 

relative direction of the divergent bidirectional nascent transcription initiation pairs at the two 

nTSSs in each tTRE, and the genotypes of the genetics variants. To compute a metric for the 

directionality of tTREs, we calculated the directionality index as ratio of plus-strand (1 - 250) 

and minus-strand (-250 - 0) read counts, log2 transformed the ratio and quantile normalized the 

resulting index using the same method we used for diQTLs. The association of these 

directionality phenotypes with genotype was assessed, as for tiQTLs, using MatrixEQTL. We 

determined that using 8 principal components as covariates in association testing gave the largest 

number of significant associations. 

Local-minimum p-value filtering of QTLs for more likely causal SNPs. We split the genome 

into 5 kb windows, staggered by 1 kb so that each SNP is in 5 different 5 kb windows. In each 

window we keep only the SNP with the lowest P-value, independent of which tTRE or gene it 

affects. If there were two or more SNPs with the lowest P-value, none were kept. 

Measuring the effect of tiQTL SNPs on TF sequence motifs. We tested the effect of tiQTLs 

on TF binding likelihood as described by Degner et al. (13). We limited our analysis to the 

tiQTLs at the center-region (midpoint ±40 bp) of tTREs and imposed a stricter filtering 

requirement by keeping only those QTLs where the most significantly associated SNP has a P-

value an order of magnitude lower than the next most significant. Reference and alternative 

alleles were categorized into “enhancing” and “repressive” alleles based on the relative PRO-cap 

readcounts around the tTREs. We used CIS-BP human transcription factor frequency matrices to 

generate position weight matrices (PWMs), and queried a 40 bp region surrounding each tiQTL 

for strong matches to the PWMs (motif score > 13). We repeated this analysis for both alleles 

and compared the resulting motif scores for enhancing and repressive alleles. We then took these 
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motif score differences in these strong-matched TF motifs to obtain the overall effect of each 

variation on TF binding potential. For comparison, we also performed this analysis on dsQTLs 

(Degner et al. 2012) that fall within the most highly affected window (100 bp windows) and 

dsQTLs outside the affected windows. 

Identifying motif enrichment among motifs disrupted by tiQTLs. We used motifbreakR 

(Coetzee et al. 2015) to calculate the motif disruption score for each tiQTL for the 400 motifs 

selected from the CIS-BP motif database with RTFBSdb. A motif is considered disrupted by the 

tiQTL if there is a significant match to a motif in at least one allele (p < 0.01) and there is at least 

a 0.5 bit difference in motif matching scores between the alleles. We then count the number of 

times each motif is disrupted by a tiQTL and compare it to the number of times that same motif 

is disrupted by randomly selected SNPs within the same region (+/- 200 bp from tTRE 

midpoint).  

Measuring the effect of diQTL SNPs on Initiator elements. Initiator (Inr) element likelihood 

is calculated using published human Inr frequency matrix (Ngoc et al. 2017) by taking the 

natural exponent of the PWM scores. First, we selected diQTL SNPs within 5 base pairs (bp) 

from the defined nascent transcription start sites (nTSSs) of tTREs. We calculated the strand 

specific Inr likelihood difference between the two alleles and included diQTLs that generate 

differences in Inr likelihood score (>5). We oriented the diQTL directionality effect sizes 

towards the strand in which the Inr scores are calculated, and assigned the Inr likelihood 

difference as (high directional allele – low directionality allele). For comparison, we selected 

tiQTL SNPs within 5 bp from the center of tTREs, calculated Inr likelihood differences in 

between relatively higher directional allele to the lower directional allele towards the direction of 

the Inr element, and plotted the distribution of DInr likelihood similar to diQTLs. 
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Measuring the effect of diQTL SNPs on TATA-like elements. We focused on the area 40 to 

20 bp upstream of tTRE TSSs and looked for instances of TATA, or inversions thereof. We 

oriented the diQTLs as explained for Inr and calculated a delta TATA score (high directionality - 

low directionality allele). A perfect TATA got a score of 4, a single inversion (A -> T, T -> A) 

such as TTTA or TAAA got a score of 2, and two inversions got a score of 1. Anything else 

scored 0. 

Expression QTL association testing. Using only SNPs that fall within 2 kb of TREs (same 

range as the ti- and diQTLs), we tested the association between SNPs and gene expression. By 

limiting our analysis only to the region we are interested in, we increase our power to detect 

significant associations. We used RNA-seq data from Pickrell et al. (11), merged replicates by 

taking an average across replicates for each gene, and performed the same quantile normalization 

as above. We used matrixEQTL to identify eQTLs within a cis-distance of 200 kb (fdr < 0.05). 

We determined that using 13 PCs as covariates gave the largest number of significant 

associations. 

Overlap between eQTL- and diQTL/tiQTL-containing tTREs. We identified enhancers that 

contain associated diQTLs and/or tiQTLs within 200 bps of the enhancer midpoint. We then 

computed the proportion of those that overlap an eQTL and compared that ratio with the 

proportion of enhancers without such QTLs that overlap an eQTL.  

Gene expression association of tiQTLs/diQTLs. We computed a p-value for the association of 

each filtered tiQTL and diQTL with gene expression using matrixEQTL and a cis-distance of 

200 kb, reporting all p-values. We then compared the distribution of p-values (-log10) with those 

for all SNPs within 2 kb of TREs.  
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Regional eQTL enrichment analysis. Enhancers were split into regions according to figure 4C. 

Center is +/- 25 bp from the midpoint and core is +/- 25 bp from the TSS. The number of eQTLs 

in each region was counted and normalized to the total number of SNPs in the region.  

Data access  

The sequencing libraries from this study have been submitted to the NCBI Gene Expression 

Omnibus (GEO) with accession number GSE110638. Custom scripts available upon request. 
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