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Abstract

GO classifiers and other methods for automatic annotations of novel sequences play an
important role in modern biosciences. It is thus important to assess the quality of different
GO classifiers. Evaluation of GO classifiers depends heavily on the used evaluation metrics.
Still, there has been little research on the effect of different metrics on the produced method
ranking. Indeed most evaluation metrics are simply borrowed from machine learning without
any testing for their applicability to GO classification.

We propose a novel simple comparison of metrics, called Artificial Dilution Series. We
start by selecting a set of annotations that are known a priori to be correct. From this set we
create multiple copies and introduce different amount of errors to each copy. This creates a
“series” of annotation sets with the percentage of original correct annotations (“signal”)
decreasing from one end of the series to the other. Next we test metrics to see which of them
are good at separating annotation sets at different signal levels. In addition, we test metrics
with various false positive annotation sets, and show where they rank in the generated signal
range.

We compared a large set of evaluation metrics with ADS, revealing drastic differences
between them. Especially we show how some metrics consider false positive datasets as good
as 100 % correct data sets and how some metrics perform poorly at separating the different
error levels. This work A ) shows that evaluation metrics should be tested for their
performance; B) presents a software that can be used to test different metrics on real-life
datasets; C ) gives guide lines on what evaluation metrics perform well with Gene Ontology
structure; D) proposes improved versions for some well-known evaluation metrics. The
presented methods are also applicable to other areas of science where evaluation of
prediction results is non-trivial.

Author Summary

Comparison of predictive methods is one of the central tasks in science and bioinformatics is
no exception. Currently predictive methods are increasingly needed as biosciences are
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producing novel sequences at an ever higher rate. These sequences require Automated
Function Prediction (AFP) as manual curation is often impossible. Unfortunately, selecting
AFP methods is a confusing task as current AFP publications show a mixed set of functions
for method comparison called Evaluation Metrics (metrics for short). Furthermore, many
existing popular metrics can generate misleading or unreasonable results in AFP comparison.
We argue that the usage of badly performing metrics in AFP comparison is caused by the
lack of methods that can be used to benchmark the metrics. We propose a testing method,
called Artificial Dilution Series (ADS). It can be used to test any group of metrics on
selected real life test dataset. ADS uses selected dataset to create a large set of artificial
AFP results, where each AFP result has a controlled amount of errors. We use ADS to
compare how different metrics are able to separate generated error proportions. Our results
show drastic differences between different metrics.

Introduction

Biosciences generate sequences at a much higher rate than their structure, function or
interactions can be experimentally determined. This has created a demand for
computational methods that can automatically link novel sequences to their biological
function (Automated Function Prediction, AFP, [1]). Development in this field has been
exceptionally swift and has generated a large collection of AFP methods [2, 3]. Therefore the
comparison (or understanding the comparison) of different methods is an important task a)
for bioscientists who need AFP methods in their sequencing projects b) for bioinformaticians
who are comparing or developing AFP methods and c) for reviewers who are evaluating
novel AFP tools.

Still, the evaluation of the AFP tools is far from trivial, having two major challenges:
Articles use different datasets and different evaluation metrics in their result evaluations.
This makes it unclear to the end-users how different methods perform and to the method
developers how the comparisons should be done. For datasets there are currently some
standards forming, like dataset used in MouseFunc project [4] or datasets used by CAFA
competitions [2, 3]. Furthermore, our own evaluations have also used a filtered set of
well-annotated sequences [5, 6].

However, the main challenge in AFP comparisons is the selection of Evaluation Metric
(EvM, also called Performance Metric). EvM is the very function that defines how good and
bad results are separated from each other [3, 7–9]. Currently the AFP field uses various
EvMs with no clear standards. Table 1 in supplementary S2 Text demonstrates this by
listing EvMs used in various articles. Furthermore, although CAFA competitions [2, 3] have
generated standards, even these have obtained some criticism. Gillis and Pavlidis [10] stated
on CAFA1: “the primary performance metric ... for CAFA is unsatisfactory. ... by this
measure, a null ’prediction method’ outperforms most methods.” Kahanda et al. [11] pointed
that ordering of methods varies drastically between different EvMs. In addition, also CAFA
authors have stated in both CAFA1 [2] and in CAFA2 [3] articles that the EvM for method
comparison is still an open research question. This shows that there is a clear need for
research on AFP related EvMs.

These EvM problems are related to the Gene Ontology [12] structure that is used to store
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functional annotations. It represents the following challenges:

• The GO structure has a very large number of separate classes and genes can belong to
many of them. This generates a multi-labelled and multiclass classification task.

• Hierarchy in the GO structure causes strong and complex correlations between classes.

• Class sizes vary dramatically with most classes being very small. This causes strong
class size imbalance.

We also have additional challenges, caused by the used biological data:

• The set of genes, used in the evaluation, can be quite small when compared to the
number of classes [2]. This makes the correct annotation table very sparse.

• The meaning and definition of true negative GO annotations is ambiguous [13,14].

• Each gene has a varying number of correct annotations.

These challenges point to the selection of EvM being clearly nontrivial. Furthermore, the
EvM selection problem is not limited to AFP comparison, but is a problem that occurs in
many fields [7, 8]. Weaknesses of EvMs have been discussed, for example, with speech
recognition [15] and with the classification of cognitive activities [16]. Finally, EvM often
forms the core of the results section in bioinformatic articles and it can be selected so that it
favors one’s own method [17]. So understanding the strengths and weaknesses of current
EvMs and developing new ones should be important for the whole bioinformatics - machine
learning community. However, we are currently lacking clear standard on how EvM could be
benchmarked for any given application area.

We propose a novel methodology, Artificial Dilution Series (ADS), to address these
challenges. ADS checks the performance and stability of any EvM using real-life GO
annotations. ADS creates artificial classifier results by taking a set of correct GO predictions
and replacing a controlled percentage of correct annotations with wrong ones (creating type
1 and type 2 errors, collectively referred to as noise). The percentage of noise is then
increased in a step-wise fashion, creating a set of separate result datasets with a controlled
level of noise at each step. This process creates a “dilution series” of the original signal in a
collection of altered datasets. This series is then used to test different EvMs to see how well
they separate datasets with different signal levels.

Furthermore, we included a secondary test to our analysis by creating various False
Positive (FP) datasets. We run each EvM with them, and compare the obtained result
to scores in the ADS series. A good EvM would place FP sets close to sets from zero signal.
FP sets allow monitoring how each EvM ranks for example the naive predictor [2,3] that was
stated to be the main problem of one EvM [10]. Our supplementary text S2 Text compares
the proposed tests to existing related research.

We tested many EvMs previously applied to GO annotations, using three datasets:
CAFA1 dataset [2], MouseFunc dataset [4] and one consisting of 1000 GO annotated
sequences randomly selected from the UniProt database. We also tested many variations of
EvMs by: a) calculating metric values first for every gene and using the average over the
genes as the final value (Gene Centric) b) calculating metric values first for every GO class
and using the average over the GO classes as the final value (Term Centric) c) calculating
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metric value using simply the list of gene - GO class pairs (Unstructured). Methods section
and supplementary text S2 Text explain the EvMs more in detail.

Our results show that 1 ) Area Under Curve (AUC) tests often fail with FP tests, 2 )
semantic scores [18] are heavily effected by the used semantic score summation method, with
the currently popular methods failing either in tests with ADS or with FP sets and 3 ) a
metric called SimGIC [19] and its variations showed consistently good performance.

We also tested simple modifications on EvMs currently used for evaluation of AFPs.
Some of these improved the performance:

1. We tested AUC with Precision Recall curve and showed that it outperforms ROC AUC
in most tests.

2. We proposed novel semantic similarity summation methods and showed dramatic
improvement in their performance.

3. We combined Smin [20] and SimGIC [19] function and showed that this improved
performance.

Examples 2 and 3 represent novel EvMs. These and all tested EvMs are available in
distributed software1.

Our results show that the most consistent performance, across all the datasets, was
obtained with Term Centric AUC score for Precision Recall curves and with modified
SimGIC functions. Some EvMs showed good performance on two out of three tested
datasets. These were Term Centric ROC AUC score and one version of Lin semantics. These
results point that different types of GO datasets can impose different challenges, suggesting
testing candidate metrics on target data with ADS and FPS. ADS program, all tested EvMs
and our analysis scripts are available for such tests.

Materials and Methods

Generating Artificial Dilution Series

Motivation and Requirements

First, we expect that we have a set of GO class annotations for a set of genes, referred here
as truth set, T . This includes (gene, GO class) pairs that link genes to selected GO classes.
Our aim with Artificial Dilution Series (ADS) is to create several datasets, each representing
functional classifications for genes in T . These datasets, referred here as Artificial Prediction
Sets (APS), imitate a GO prediction set from a typical GO classifier. However, with APS we
know the frequency of correct and erroneous annotations. APS’s are created artificially
without any classifier or similar method from a given set of genes and their correct
annotations.

We require the following features from each APS:

1. APS should include the same genes and approximately the same GO classes as the
starting data T .

1http://ekhidna2.biocenter.helsinki.fi/ADS/
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2. APS generation should use the same ontological structure that is used in the
evaluation of the real results.

3. APS can have signal and noise GO predictions for genes.

4. Signal GO term prediction, tsignal, is either a correct GO term, tcorr, observed in the
real data for the gene in question (Gi). Or it can be a parent node of the tcorr in the
GO graph.

5. Noise GO term prediction, tnoise, is a GO prediction that is not in the same part of GO
tree with any of the tcorr for gene Gi.

6. The proportion of noise prediction in each APS should be controlled with noise
proportion, pnoise.

7. Each prediction should have a prediction score, representing the strength of the
prediction.

8. The proportion of noise predictions should be allowed to increase as the prediction
score is weakened.

Point 1 and 2 ensure that the generated data has similar class counts and correlation
structures as the real datasets. Point 4 is based on the observations with real life GO
prediction tools. Those often predict also near-by nodes, that include almost identical set of
classes with tcorr. Point 5 ensures that tnoise should be considered as bad result with any
reasonable evaluation metric. Point 6 allows us to generate several datasets for each value of
pnoise. With 4, 5 and 6 we are creating datasets that should get clearly different results, for
different pnoise, with a good GO evaluation metric. Points 7 and 8 are based on the
observations from the real life predictions, where classifier score is used to rank the results.
Top ranks in these predictions are often reliable, whereas the lowest rank are often quite
unreliable.

Workflow for ADS pipeline is given in Fig 1. Generation of AP sets is also described as
pseudocode in S1 Text. In the first step two GO prediction sets are created for each APS:
the Positive Prediction set, Ppos, and the Negative Prediction set, Pneg.

Step 1: Create Positive Set

The Positive set, Ppos, is created from a copy of T , in two steps: First, we draw a random
integer Nshift between 0 and the size of Ppos. Further, we select Nshift random rows from
Ppos and for every selected row switch GO term, tcorr, to semantically similar term. For this,
we select a neighborhood of k terms that are immediate parents of the tcorr and select one to
replace tcorr. We refer to this as shifting to semantic neighbors. Figure 1 in supplementary
text S2 Text demonstrates this step.

Second, we introduce a selected percentage of errors, ε, by switching GO terms between
genes for a controlled fraction of annotation lines. We refer to this as the permutation of the
positive set. Here a random pair of annotation lines, a = (genea, ta) and b = (geneb, tb), with
different gene and GO class names, is selected from Ppos. Next, if the GO class ta is
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dissimilar to every GO class annotated to geneb and GO class tb is dissimilar to every GO
class annotated to genea, the GO labels are interchanged (see Fig 2). The similarity between
the two classes, tx and ty, is defined here as Jaccard correlation between the two sets created
from the ancestral classes of tx and ty.

The permutation process is repeated until the required percentage of errors ε is created.
This introduces a controlled fraction of false positives (wrong predictions) and an equivalent
fraction of false negatives (missing correct predictions) among the predictions. We refer to
this fraction as the ADS noise level and the remaining fraction of correct positive
annotations as the ADS signal level (1 – ADS noise level).

Step 2: Create Negative Set

The negative set, Pneg, is created by assigning genes in T with random GO annotations.
Here we collect all the unique gene names that occur in T and for every genex we sample a
random GO term, tr, from the GO structure. Again, if tr is dissimilar to all GO classes
linked to genex, we include the pair (genex, tr) into Pneg. This process is repeated 4 times
for every gene.

Step 3: Add Prediction Scores and Merge Sets

Next, all the entries in Ppos and Pneg are assigned prediction scores, sc. Predictions in the
positive set are assigned higher scores. For each prediction in Ppos we sample a sc from
normal distribution with mean = 1 and SD = 0.5 and add it to the prediction, creating the
triplet (genex, tx, sc). For each prediction in Pneg we sample sc from normal distribution
with mean = −1 and SD = 0.5 and add it similarly to the prediction. Note that we assign
higher scores to entries in Ppos than to entries in Pneg. If the score values have to be within
some region, like [0.1], one could run a sigmoid function on the score values.

Finally, the positive set and the negative set are merged to form an APS
APS = Ppos ∪ Pneg. What we now have is a set of GO predictions with A) a set of errors,
represented by Pneg, that can be separated by setting a threshold on sc values and B) a set
of errors hidden into Ppos, that cannot be separated with a threshold (ADS noise level).
Furthermore, A stays constant for all APS’s, whereas B is adjusted with ε.

For metrics that are not based on gene ontology (ROC AUC, Jaccard index, Fmax, Smin
etc.) predictions are extended to include ancestor nodes in GO hierarchy (in line with true
path rule [18]). For metrics that are based on semantic similarity this extension is omitted
since these metrics understand the dependencies between related GO classes [18].

Step 4: Creating AP Sets with All ADS Signal Levels

Full ADS analysis creates AP sets, with ADS signal levels changing incrementally over the
selected signal range, SR = [x1, x2, ..xk], with k different levels. We used SR that spans
from 100% to 0% signal in steps of ten percentage points. However, our implementation
allows to span any range with any number of steps. At each signal level the APS generation
is repeated N times, each time applying shifting to semantic neighborhood and permutation
procedure as described above. This way the final ADS series will contain:
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Fig 1. ADS workflow ADS pipeline iterates specified signal levels (e.g. from 100% to 0%)
at each level creating a large collection of artificial prediction sets (AP sets). Each AP set is
a union of a set containing only false annotations (negative set) and a set containing a
controlled fraction of true annotations (positive set). AP sets are compared against correct
annotations with the tested Evaluation Metric (EvM). Performance can be illustrated
graphically by plotting EvM scores for AP sets at each signal level as box plots. These reveal
how stable EvM is against random variation introduced at different signal levels and how
well EvM is able to track signal retained in different AP sets. Finally EvM performance is
quantified with rank correlation.

• Evenly sampled ADS signal levels between selected signal minimum and maximum.

• N separate AP sets representing each signal level.
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Fig 2. Effect of permutation step Figure demonstrates the ADS permutation step,
where we define the amount of error, on toy data. We start with the known annotations for
two GO classes, A and B. This would give us 100% correct prediction. Next, permutation
step switches GO-terms for a pair of genes, increasing false positives and false negatives by 1
and decreasing true positives and true negatives by 1. Permutations are repeated until the
required noise level is obtained. We require that the interchanged GO classes have only little
overlap in the parental path in the GO graph (for details see figure 1 in S2 Text).
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• Percentage of annotations shifted to semantic neighbors varying randomly across AP
sets at the same signal level.

• Annotations selected for permutation and shifted to semantic neighbors vary across AP
sets at the same signal level.

• Proportion of correct or near correct annotations is changing as a function of ADS
signal level.

So we have datasets that have variations within the ADS signal level that evaluation metric
should be more or less insensitive to and variation across ADS signal levels that evaluation
metric should monitor.

Testing Evaluation Metrics with ADS

Generated AP sets can be compared to the selected correct set T that we used as the
starting material, using the tested evaluation metric. This gives us an output matrix:

Output[i, j] = Metric(T,APS[i, j]), (1)

where Metric is the tested evaluation metric, columns, j = [1, 2, ..k], correspond to different
ADS signal levels and rows i = [1, 2..N ] represents the different repetitions with the same
ADS signal level. With good metric we expect to see little variance in the results within one
ADS signal level (within Output columns) and clear separation between the different ADS
signal levels (between Output columns). We test this in two ways: A) Visually by plotting
Output columns as separate box plots at different ADS noise levels (see Fig. 4) and B)
Numerically by calculating rank correlation, RC, between Output matrix and ADS signal
levels. Boxplot view allows here an overview on the performance of the tested metric. RC
monitors how closely EvM is able to predict the correct ranking of the ADS signal levels. One
could consider linear correlation but that would favor linear correlation over correct rank.

False Positive datasets

In addition to AP sets we also generated a small number of prediction sets, where all genes
were annotated either with exactly the same set of non-informative GO terms or with sets of
randomly chosen GO-terms. These represent various cases where some evaluation metrics
might be fooled to assign good scores to prediction set that contains no signal. We refer to
these sets as the False Positive Sets (FPS). We considered the following alternatives for FPS:

1. Each gene has the same very large set of GO terms as predictions. We call this all
positive set. Most of the terms assigned to each gene are incorrect.

2. Each gene has the very same set of largest classes as predictions. Classes are reported
in their size order for each gene. We call this näıve set.

3. Each gene has a large set of randomly selected classes. We call this random set.
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The motivation for the all positive set is to test the sensitivity of the evaluation metric to
false positive predictions (precision of the classifier is very low). Note that a set where each
gene has all GO classes would be totally unfeasible file to analyze. Therefore, we decided to
select a large set of the smallest classes. Random set shows the performance when both
precision and recall are very low. Näıve set tests if the evaluation metric can be fooled by
bias in null probabilities to consider the results meaningful. Näıve set was originally
proposed in the CAFA competitions [2], where it was referred as naive prediction. Note that
all of these FP sets are totally decoupled from the annotated sequences and contain no real
information about the corresponding genes.

There is a parameter that needs to be considered for FPS generation: the number of GO
classes that one reports per gene. We selected this to be quite large (800 GO classes). This
emphasizes the potential inability of the metric to separate noise signal in the FP sets from
true signal in predictions output by classifiers. We used three false positive sets:

1. Näıve-800: all genes assigned to the 800 most frequent GO classes. Here larger GO
class had always a better score.

2. Small-800: all genes assigned to the 800 least frequent GO classes. Here smaller GO
class had always a better score.

3. Random-800: all genes assigned by a random sample of 800 GO classes (sampling
without replacement).

Näıve-800 represents our naive set, small-800 represents our all positive set and Random-800
is our random set. GO frequencies for FPS sampling were estimated from the UniProt GO
annotation2.

In the visual analysis we plot the score for each FP set as a horizontal line over the box
plot of APS scores. A well-performing evaluation metric is expected to assign all FP set
scores close to AP sets with minimal or no signal (signal 0). In visualizations this would
show as a horizontal line at the lowest region of the plot (see fig. 3).

In numerical analysis we summarize FP sets by 1) Finding the approximate point where
the horizontal FP set line crosses the curve, created by the median lines of boxplots (see fig.
3) 2) choosing the corresponding signal level from the X axis as the FP score for FP set in
question and 3) selecting the maximum over all FP sets as the final FP Score (referred later
as FPS). Steps 1 and 2 aim to find the corresponding signal level over ADS sets for each
FP set. Note that in step 2 we limit the signal between zero and one. In step 3 we focus on
the worst result over all tested FP sets. A good EvM should not be sensitive towards any of
FP the sets, making the worst signal (=highest FP score) the best measure for the
insensitivity towards these biases.

Tested Evaluation Metrics

We selected representatives from various types of EvMs that are commonly applied to
function predictors (see S2 Text). We also included modifications of commonly used EvMs.
Tested EvMs can be grouped into different families: rank based metrics, GO semantic

2(ftp://ftp.ebi.ac.uk/pub/databases/GO/goa/UniProt/, 03.2016)
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Fig 3. Combining FP sets with ADS results Here Fmax results from False Positive
(FP) sets are combined with Fmax box plots from ADS. FP results are added as vertical
lines to visualization. Robust metric would score FP lines near the lowest box plot. An FS
signal estimate is obtained by comparing each FP result with medians of each box. Note
that resulting signals are limited between 0 and 1.

similarity based metrics and group based metrics. Note that there is a large variety
of EvMs available, especially in machine learning [7, 9], and we cannot cover them all.
Rather, we try to create an overview of some alternatives.

We evaluated two rank based metrics: Area Under ROC-Curve (AUC or ROC AUC) and
Area Under Precision-Recall Curve (AUC-PR). Both strategies capture the amount of false
positive and false negative errors at different threshold levels. We evaluated three semantic
similarities: Lin [21], Resnik [22] and Ancestor Jaccard (AJacc). AJacc is a novel method. It
is simply a Jaccard correlation between two sets of GO classes: ancestor classes for the first
and ancestor classes for the second GO class. Group based methods compare a set of
predicted and correct GO classes to each other. From this group we evaluated SimGIC [19],
Jaccard correlation and Smin [20].

Most of these metrics have been used actively in AFP evaluation (see table 1 in
supplementary text S2 Text). Although AUC-PR has not been directly used, it is related to
popular Precision-Recall plots. All metrics except rank based metrics can be calculated using
different thresholds over prediction scores. We selected the maximum score as the final score
for each metric over the set of tested threshold values.
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Semantic similarity metrics return a matrix of similarity values between the correct and
the predicted GO classes (see table 2 in Supplementary text S2 Text). This matrix needs to
be summarised into a single score at each tested threshold. As there is no clear
recommendations for this, we tested six alternatives:

A Mean of matrix

B Mean of column maxima

C Mean of row maxima

D Mean of B and C

E Minimum of B and C

F Mean of concatenated row and column maxima

Note that methods A and D have been widely used before [18]. Methods B and C represent
intentionally flawed methods, used here as negative controls. B is weak at monitoring false
positive predictions and C is weak at monitoring false negatives. Methods E and F represent
our novel simple improvements to method D. Our supplementary text S2 Text describes the
used semantics and summation methods more in detail.

Most EvMs can be further modified by using the same core function with different Data
Structuring. By data structuring we refer to the gene-centric, term-centric or unstructured
evaluation. In Gene-Centric evaluation (GC) we evaluate the predicted set of GO
classes against the true set separately for each gene and then summarise these values with
the mean over all genes. In Term-Centric evaluation (TC) we compare the set of genes
assigned to a given GO term in predictions against the true set separately for each GO term
and summarise these values with the mean over all GO terms. In UnStructured
evaluation (US) we compare predictions as a single set of gene-GO pairs disregarding any
grouping by shared genes or GO classes.

In total we tested 37 metrics (summarised in S1 Table). Further discussion and metric
definitions are given in S2 Text.

Used datasets and run parameters

All metrics were tested on three annotation data sets: the evaluation set used in CAFA I [2],
the evaluation set from mouseFunc competition [4] and a random sample of 1000 genes from
UniProt GO annotation 3. These datasets represent three alternatives for evaluating an AFP
tool (see Introduction).

These datasets have different features. CAFA data is the smallest one, having 1642
Gene-GO annotations over 698 genes. After propagation to parent classes these annotations
map to 3493 GO classes, creating a matrix where only 0.91% of the cells have annotation.
UniProt dataset is an intermediate with 5076 Gene-GO annotations over 1000 genes. After
propagation these annotations map to 5104 GO classes, creating a matrix with 0.98% of
cells having an annotation. MouseFunc data is the largest one with 24879 Gene-GO
annotations over 1945 genes. These map to 3334 unique GO classes after propagation,

3ftp://ftp.ebi.ac.uk/pub/databases/GO/goa/UniProt/, 03.2016
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creating a matrix with 1.42% of cells with annotation. Furthermore, the distribution of
annotations is skewed over both the GO classes and genes (for details see S2 Table). Here it
is interesting to see how different densities affect the EvM performances.

We tested all metrics with two values for the k (semantic neighborhood size) parameter:
k = 2 and k = 4. RC and FPS scores for these runs are listed in S3 Table and S4 Table.
Metric scores for all AP and FP sets are available in S1 File and S2 File.

Results

All discussed results are generated using analysis scripts that are available from our web
page (http://ekhidna2.biocenter.helsinki.fi/ADS/). We first show differences within groups
of EvMs, then show differences between datasets and finally show best performing methods
over all datasets.

ADS shows large differences in results for popular evaluation
metrics

We first compare popular evaluation metrics: US AUC, Fmax, Smin, Resnik with summary
method D and A and Lin with summary method D to see if ADS can find performance
differences. Visualisations for these metrics are plotted in Fig 4 (for exact values see S3
Table).

Results with UniProt data show drastic differences between the tested evaluation metrics.
We see a very clear separation across ADS signal levels in the box plots for Fmax
(RC = 0.990) and Smin (RC = 0.991), and next best separation for US AUC. The opposite
is shown by three examples of semantic similarity measures: they have very unstable
distribution in the obtained scores. Resnik scores show here the worst separation. Note that
it is clearly impossible to estimate the original amount of signal based on these semantic
similarity measures.

One could argue that the comparison of fully random data and data with strong signal is
enough for metric evaluations. Our results, however, show that in most plots the first
(signal = 1) and last (signal = 0) box plot do not fully reveal how good the evaluation
metric is. For Lin score and Resnik score two extreme box plots might seem as acceptable
with clear separation. However, the intermediate levels reveal surprising instability in the
methods.

With FP datasets we see different methods failing. Now AUC based method shows the
worst performance as it ranks FP dataset as equally good as signal = 1 datasets. Note, that
these FP datasets do not convey any real annotation information, but rather represent
artefacts related to GO structure. Only Resnik with method A shows good performance with
FPD signal. Altogether, only Smin method shows here reasonably good performance in both
tests.

In addition, results clearly show that neither of two tests, ADS or FP datasets, is enough
to show all weaknesses all by itself. It rather seems that they show orthogonal views on the
evaluated methods, and are both important.
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Fig 4. Six popular evaluation metrics compared with ADS Visual analysis of ADS
results for six evaluation metrics: US AUC, Fmax, Smin, Resnik score A and D, and Lin
score D. Scores for AP (Artificial Prediction) sets at each ADS signal level are plotted as
boxplots and scores for FPD (False Positive Data) sets as horizontal lines. RC value shows
rank correlation of the AP sets with ADS signals and FPS shows largest signal from FP
sets. RC should be high and FPS should be low. Note the drastic differences between
methods. Resnik and Lin show weak performance with changing signal range, whereas AUC
ranks FP datasets equally good with best signal level. Smin is the only method here that
performs reasonably well in both tests. Note that we flipped the sign of Smin results for
consistency of the analysis.

ADS confirms known flaws in AUC metric

Next we focus on the performance of AUC methods, using standard ROC AUC (here simply
AUC) and AUC under Precision-Recall curve (here AUC-PR). ROC AUC has been used in
this field but AUC-PR has not been used. We look at the Unstructured (US), Gene-Centric
(GC) and Term-Centric (TC) versions of both AUC methods. We show here results for
MouseFunc data.

Standard AUC has been criticised for being a noisy evaluation metric with sensitivity to
sample size and class imbalance [7, 23]. Dilution series demonstrates that AUC metrics score
somewhat good correlation with the signal level, but fail with FP sets (S3 Table and Fig 5).
Surprisingly some of the AUC methods even rank the FP sets as good as signal = 1 datasets
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(Fig 5, top row). This means that one could not separate a near perfect prediction result
from false positive dataset, when using this evaluation metric.
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Fig 5. AUC metrics compared with ADS Here we compare standard AUC and
AUC-PR (AUC under Precision Recall curve) metric. We test both as unstructured (US),
Gene Centric (GC) and Term Centric (TC) versions. Note the very bad performance on FP
sets with US AUC and GC AUC. TC AUC-PR shows good performance with both ADS and
FP sets. RC and FPS are explained in previous figure text.

Bad FPS performance of some AUC measures is caused by the identical treatment of
small and large classes in US and GC analysis. However, a positive result for large class is
more probable from a random dataset. This is worsened by the extreme class size differences
in GO data. It should still be noted that this problem was corrected in mouseFunc
competition [4] by dividing GO classes to subsets based on class sizes and in CAFA 2 [3]
competition by analysing each GO class separately. This later metric is represented here as
TC AUC. Indeed, the TC analysis, displayed in the last column, shows clear correction to FP
signal. This is seen in all datasets and is in agreement with the theory of the TC method.

When AUC and AUC-PR are compared we see that FP sets get weaker signal with US
AUC-PR and GC AUC-PR but the problem still exists. However, in correlation scores
AUC-PR metrics consistently outperform AUC metrics. AUC - AUC-PR difference might be
explained by problems related to ROC AUC definition (see supplementary S2 Text). So as
TC AUC-PR assigns low scores to FP sets and achieves high correlation it is here our
recommended method. Furthermore, these results argue strongly against the usage of US
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AUC and GC AUC.

ADS reveals drastic differences between semantic summation
methods

Here we compare GO semantic similarities, Resnik, Lin and Ancestor Jaccard (AJacc), each
coupled with six different semantic summation methods, A-F (see Methods). Results are
shown in Fig 6 and S3 Table. Fig 6 is organised so that the columns represent the compared
semantic similarities and rows represent summation methods. We look for a combination that
delivers good separation in boxplots and ranks FP datasets next to datasets with signal = 0.

This comparison shows the power of ADS results. First clear observation is the stronger
difference between different summation methods than between compared semantic measures.
One can clearly see that 1 ) Methods A and C fail at separating signal levels in ADS series
and 2 ) Methods B and D fail at ranking FP datasets next to the signal = 0 datasets. 3 )
Only methods E and F show strong performance in both ADS and FP tests. Furthermore,
intentionally flawed methods (B and C) were marked as weak either by ADS or FP test.

Second, Resnik shows always weakest performance from the compared semantic
similarities. This metric shows frequently the largest scatter in the box plots, when
compared to the other semantic similarities. This is in agreement with the fact that Resnik
has no upper boundary, whereas Lin and AJacc are bounded from above and below.

Third, the best performance is shown by Lin metric with methods E and F. These achieve
high performance here in both ADS and FP tests.

Smin and SimGIC show similar performance with ADS

The third tested group of metrics are the methods that compare a) the set of predicted GO
classes and their ancestral classes to b) the set of correct GO classes and their ancestral
classes. Some methods, like SimGIC and SimUI [18], calculate Jaccard correlation between
the two sets, whereas Smin calculates a distance between the sets. Most of these metrics
include Information Content (IC) weights [18] in their function. We have two alternatives for
IC, but limit the results here to IC weights proposed in Smin article [24] (for a discussion
about the two versions of information content, ic and ic2, please refer to the Supplementary
text). We further include gene centric and unstructured versions of these functions:

SimGIC Gene-Centric original version (weighted Jaccard)

SimGIC2 Unstructured modified version of SimGIC

Smin1 Smin original version

Smin2 Gene-Centric version of Smin

GC Jacc Gene-Centric unweighted Jaccard (original SimUI)

US Jacc Unstructured version of SimUI (unstructured Jaccard)

Supplementary text discusses these metrics more in detail.
Results are shown in Fig 7 and S3 Table.We observe that both Smin and SimGIC show

high performance in ADS test achieving very similar and nearly perfect correlation to signal
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Fig 6. Semantic similarities with different summation methods. Here we represent
every combination between three semantics (Resnik, Lin, AJacc), in columns, and six
semantic summation methods (A, B, C, D, E, F), in rows. Note that the summation
methods affect the performance here more than actual semantic. The novel methods, E and
F, outperform the previous standards, A and D.
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level. However, in FP test SimGIC shows better performance. Also US Jacc shows quite
good performance, but GC Jacc is weaker. Further, we see that introducing gene-centric
terms in Smin2 resulted in a notable increase in FP scores in all three data sets. SimGIC2,
our unstructured version of SimGIC, showed a minor improvement in correlation scores on
all three data sets. In overall the Unstructured versions (Smin1, SimGIC2 and US Jacc)
outperformed Gene Centric versions (Smin2, SimGIC, GC Jacc) in correlation values, FPS
values or both. Performance of Smin and SimGIC metrics across different datasets was
surprisingly similar. So our recommendation is to use Smin1 and SimGIC2. Alternatively,
one can use US Jacc, which does not require calculation of information content values and
shows quite good performance.
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Fig 7. Smin and SimGIC metrics Here we compare two versions of Smin, SimGIC and
Jaccard each. Performances are quite similar with the exception of GC Jacc that shows
weaker correlation. Smin1 and SimGIC2 are slightly better methods here.

Metric rankings vary between datasets

Next we wanted to compare all the discussed evaluation metrics to see which of them
performed best. Fig 8 gives a summary of our results for the UniProt dataset. In this figure
we plotted RC against FPS for all metrics tested on the UniProt dataset. Metrics of high
quality are expected to appear at the upper left corner of the plot. Metrics that fail with FP
tests will be more towards the right. Metrics failing in correlation will be lower in the plot.

Upper panel in fig 8 shows large differences in performances. Especially semantic
similarity metrics (shown in blue) show drastic scatter on Y-axis. AUC metrics (red) show
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Fig 8. Top metrics for UniProt dataset. US and GC Jacc are plotted in black, Fmax,
AUC and AUC-PR in red, Smin and SimGIC in green, semantic similarity metrics in blue.
Quality metrics appear at the upper left corner of the plot (high correlation and low False
Positive Signal). This part is zoomed in the lower panel.
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drastic scatter along X-axis. This is in agreement with the results in earlier chapters. Clearly
unstructured and gene-centric Area Under Curve methods (GC AUC, US AUC, US
AUC-PR, GC AUC-PR) and semantic similarities based on signal summation methods A, B,
C and D should not be used.

Next we look at the metrics that show best performance in our analysis (lower panel in
Fig 8). We see good performance here with TC AUC, TC AUC-PR, Lin F, Lin E and
SimGIC-Smin cluster (shown in green).

However, when we look at the other two datasets we see a different ranking (Fig. 9). In
MouseFunc data we see Semantics (like Lin E and Lin F), simGIC2 and US Jacc as
top-performers. Performance of TC AUC-PR and especially TC AUC have gone down. For
CAFA dataset we see opposite with TC AUC-PR, TC AUC, US Jacc and simGIC methods
showing top-performance. Now semantic methods show clearly weaker performance.

Note that these datasets differed from each other in size and density, with CAFA data
being the smallest and sparsest data, UniProt data being intermediate and MouseFunc data
being the largest and the most dense dataset. Results suggest that a) Gene Centric semantic
methods perform well until the size and sparsity of CAFA data is reached b) Term Centric
AUC and AUC-PR perform well except with denser mouse data and c) simGIC methods
seem more or less constant. This suggests that selecting the best evaluation metric is
actually data-dependent, promoting ADS style tests.

Selecting overall best Evaluation Metrics

Finally we collect the previous results of top-performing methods into Table 1. We show RC
(Rank Correlation) and FPS (False Positive Set) values for top performing metrics from each
dataset. In addition, we show the same results for selected currently popular methods. Note
that although US AUC-PR is not used as such, it corresponds to popular Precision Recall
plots, where large area under the curve is what is visually sought.

Again a good method should have high RC values and low FPS values. Therefore, we
show in RC tests five highest scores in each column with bold and five lowest scores with
underlined italics. In FPS tests we show five lowest scores in bold and five highest scores
with underlined italics. So a good metric should have many bold numbers and especially it
should not have any underlined italics.

Furthermore we wanted to highlight the consistent good performance of metrics by setting
a threshold on RC, tRC , and threshold on FPS, tFPS, and requiring that RC > tRC and
FPS < tFPS. We highlight the failures of these tests in Table 1 with light red colour. For
RC values we observe that top performers would be selected with threshold tRC = [0.94, 0.98].
Here we set tRC = 0.97. For FPS values we consider that the top performers would be
selected with tFPS = [0.1, 0.25]. We set tFPS = 0.15. We point that these threshold values
should be taken with a grain of salt. They can be set differently to emphasise more RC or
FPS. However, both tests should be clearly monitored for metric selection.

Top performing metrics

The upper block of Table 1 shows some metrics with encouraging performance. TC AUC-PR
shows nice performance with highest ranking RC values. Its FPS values are almost 0.1, but
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Fig 9. Top metrics for CAFA (top panel) and MouseFunc (lower panel)
datasets. Here we repeat the lower visualization in fig 8 on other datasets. Note how the
performance of the EvMs varies between the datasets.
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we consider this already to be acceptable performance in FPS tests. Therefore we mark it as
recommended method. TC AUC shows almost equally good performance with very good
FPS results. However, its RC result from mouse data is drastically lower. Still, we mark it as
potential recommendation. Lin score with method E shows best consistent performance
among the semantics in the upper block. Differences are seen especially in RC values.
However, also Lin E fails in RC test on CAFA dataset. Therefore we mark it also only as a
potential recommendation. Finally ic2 SimGIC2 and ic SimGIC2 show quite good
performance across the tests, with ic SimGIC2 passing through all tests. We mark also ic2
SimGIC2 as recommended method although it fails in FPS test with UniProt data. Note
that ic2 SimGIC2 goes only little over the selected threshold (0.15) and in another datasets
it stays clearly below tFPS.

We are surprised to see that the ic2 Smin1 [20] has somewhat elevated FPS signal,
although it uses ic weights to emphasise small classes. It is even more surprising to see that
simple US Jacc outperforms ic2 Smin1 in FPS tests. This could be related to internal
stabilizing, done in Jaccard correlation. Furthermore, they have quite similar performance in
RC tests. Indeed, we mark also US Jacc as potential recommendation, although it fails in
FPS test with UniProt data. However, we still point that FPS results for Smin are not
drastically bad and that it has the strongest RC results in the table. Finally, as a summary,
the best performances were here seen with TC AUC-PR and with two versions of SimGIC2.

Problems with popular metrics

The lower part of Table 1 shows currently popular methods that fail badly. Note that
popular Fmax and US AUC-PR show high FPS values and semantic distances show very
weak RC values. Although Fmax is preferred for its simplicity, our results show that even
the simple US Jacc would be better, as it shows similar RC values but has roughly 30%
lower FPS scores. Furthermore, the weighted Jaccards (SimGIC and SimGIC2 metrics)
correct FPS error even further. US AUC-PR shows even worse FPS results. Note that again
TC AUC-PR would correct this problem while maintaining almost the same level of RC
values. In addition the results for semantic similarities in the lower block are very weak, with
the weakest RC scores in the comparison.

Overall, these results suggest that TC AUC-PR and two versions of SimGIC2 show
consistently best performance. TC AUC, US Jacc and Lin Score E are optional methods
that would have to be evaluated on the dataset. In addition, our result discourage the usage
of Fmax, US AUC-PR and semantics with summary methods A and D.

Discussion

GO classifiers and other methods for automatic annotations of novel sequences play an
important role in modern biosciences. It is thus important to assess the quality of different
GO classifiers. This evaluation depends heavily on the used evaluation metrics as they define
how methods will be ranked in the evaluation. However, little research has been done on
evaluation metrics, although they affect on how the field will develop.

Artificial Dilution Series (ADS) is a novel method to systematically assess how reliably
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Rank Correlation results False Positive Set results
UniProt cafa2012 mouse UniProt cafa2012 mouse Rec weakness

TC AUC 0.965 0.972 0.909 0.000 0.001 0.000 (*) RC in mouse
TC AUC-PR 0.988 0.987 0.976 0.094 0.098 0.093 *

Lin score E 0.981 0.919 0.982 0.066 0.000 0.030 (*) RC in CAFA
Lin score F 0.980 0.833 0.977 0.034 0.000 0.000 RC in CAFA

AJacc score E 0.946 0.911 0.981 0.043 0.000 0.028 weak RC
AJacc score F 0.942 0.837 0.975 0.029 0.004 0.015 weak RC
ic2 SimGIC2 0.987 0.983 0.986 0.161 0.113 0.073 *
ic2 SimGIC 0.985 0.980 0.982 0.176 0.098 0.103 FPS elevated
ic SimGIC2 0.981 0.973 0.981 0.140 0.099 0.062 *
ic SimGIC 0.977 0.966 0.973 0.152 0.087 0.085 FPS elevated
ic2 Smin1 0.991 0.989 0.991 0.220 0.162 0.140 FPS elevated

US Jacc 0.988 0.984 0.990 0.208 0.105 0.076 (*) FPS elevated
Current popular evaluation metrics

Fmax 0.990 0.989 0.990 0.282 0.153 0.167 high FPS
US AUC-PR 0.990 0.987 0.988 0.398 0.287 0.226 high FPS
Lin score A 0.756 0.815 0.807 0.000 0.000 0.000 weak RC
Lin score D 0.871 0.779 0.944 0.439 0.280 0.334 weak in all tests

Resnik score A 0.729 0.829 0.779 0.000 0.000 0.000 weak RC
Resnik score D 0.756 0.864 0.905 0.367 0.337 0.397 weak in all tests

Table 1. Summary of results for best performing and currently popular metrics. Here we
show RC (Rank Correlation) and FPS (False Positive Score) results for best performing methods. We also
show same results for some currently popular methods. Good method should have high RC scores and low
FPS scores. Rec column shows our selected recommendations (See text for details). Five best results in
each column are shown with bold font. Five weakest results in each column are shown with underlined
italics. Light red colour highlights cases where metric fails a test (see text for details). Note how methods
in lower block show consistent weak performance either in RC or FPS tests.

different evaluation metrics cope with the task of selecting GO classifiers of the highest
quality. Thus ADS is a valuable new tool for developing and complementing the existing
evaluation methodology. Using ADS we have revealed drastic differences between popular
evaluation metrics and metrics that give extremely overoptimistic ratings to false positive
annotations.

We demonstrate ADS by testing a large number of existing evaluation metrics and their
variations. We were able to show that:

• One should only use Term Centric (TC) AUC methods.

• AUC-PR frequently outperforms ROC AUC.

• Our novel summary methods, E and F, clearly outperform existing semantic similarity
summary methods.

• Lin was the best semantic here and Resnik the weakest.
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• simGIC and Smin show similar performance but simGIC methods have lower signal on
FP tests.

• Among simple evaluation metrics, the unstructured Jaccard correlation outperforms all
others, including the popular Fmax metric.

The most consistent good performance is seen with TC AUC-PR, ic2 SimGIC2 and ic
SimGIC2. TC AUC shows good performance with two datasets but has weaker RC score
with mouseFunc dataset. Lin score with method E shows also good performance on two
datasets but has a weaker RC score on CAFA dataset. These latter cases show that selection
of best evaluation metrics is dataset dependent. Note that our analysis scripts and ADS are
freely available, allowing testing with any GO datasets.

One motivation for the ADS project is the development of better evaluation metrics for
GO classifier comparisons. We tested, for example, the following variations on existing
metrics:

1. We modified the summary methods for semantic similarities.

2. We included Area Under Precision Recall curve (AUC-PR) besides the Area Under
ROC curve.

3. We tested SimGIC function with unstructured calculation.

Here 2, 3 and and some alternatives in 1 improved performance. All these modifications are
small and simple to implement to existing evaluation codes. Furthermore, we distribute a
separate stand alone C++ program that calculates all the evaluation metrics tested here.
This allows end users to apply these metrics in practice.

Our set of compared evaluation metrics included also metrics that were expected to show
weaker performance in tests. These were included as negative controls in our analysis to
ensure that ADS system truly works. Indeed, we were able to recognize that US AUC and
GC AUC show very bad performance with FPS tests. This is in agreement with the results
by Ferri et al [7] with AUC, pointing to its weakness with un-even class sizes. Also semantic
summation method B showed bad performance with FPS tests and semantic summation
method C showed bad performance with ADS RC values. These two methods were expected
to show bad performance (see supplementary S2 Text). Our results marked these as very
weak methods, pointing that our analysis works.

The importance of a good evaluation metric is best demonstrated by problems of flawed
metrics. A metric with sensitivity to our naive FPS signal, EvMnaive, would allow ”cheating”
in method comparison. For example, when the classifier lacks predictions for a gene G it
could gain better result from EvMnaive simply by returning a set of naive predictions for G.
However, the best alternative in this case should be that the classifier does not return any
prediction. Also, a bad EvMnaive would evaluate the correct GO class as an equally good
prediction as any of its parents. This would promote predicting large unspecific GO classes
for all genes, although the small classes would represent more biological information.
Likewise, a metric penalising false positives weakly would promote methods to predict as
many classes as possible or a metric penalising false negatives weakly would promote
predicting as few GO classes as possible. Note that these artefacts are often hard to observe
without the comparisons we represent.
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ADS is designed for comparison of evaluation metrics that are used in GO class prediction
for proteins. However, similar problems with evaluation metrics occur in other areas of
biosciences. Complex hierarchical classifications are used for example with diseases
(International Classification of Diseases and health related problems, ICD-10) for classifying
disease genes. Also the usage of ontologies in biosciences is growing [25], creating more
similar classification challenges. Furthermore, similar hierarchical structures are seen outside
biosciences (for example in WordNet [26]). Furthermore, evaluation metrics are shown to fail
even without hierarchical structures simply when there is a class imbalance problem [16].
Note that most real-life datasets have class imbalance.

The motivation for the ADS project came from our own GO classifier work [5, 6], where
we noted that standard classifier metrics gave misleading results. Indeed, we expect that the
method developing community and researchers doing comparisons between GO prediction
methods will benefit most from this work. However, the benefits do not end there. Currently
it can be difficult for readers and reviewers to estimate the importance of new predictive
bioinformatics methods as different articles can use different metrics and different test
datasets. Indeed, the reliability of scientific findings [27,28], over-optimistic results [29] and
every method claiming to be the new best method [17] have generated discussion. We hope
that the ADS project would improve this situation by developing robust and transparent
standards to selection of evaluation metrics to bioinformatics publications.

Conclusion

Science needs various predictive methods, making the comparison and evaluation of these
methods an important challenge. The central component of these comparisons is the applied
Evaluation Metric. However in the case of Automated Function Predictors the selection of
the evaluation metric is a challenging task, potentially favoring wrong methods. In this
article we have described Artificial Dilution Series (ADS) which is, to our knowledge, the
first method for testing various classifier evaluation metrics using real datasets as a platform
for controlled amounts of embedded signal. ADS allows a simple testing of evaluation metrics
to see how easily they can separate different signal levels. Furthermore we do testing with
different False Positive Sets that represent various datasets that the evaluation metric might
be fooled to consider as meaningful. Our results show clear performance differences between
compared evaluation metrics. We also test some modifications of existing evaluation metrics
and show that some of them improve the performance. This work provides a platform for
selecting evaluation metrics for specific Gene Ontology datasets. Also this platform can
considerably simplify the development of novel evaluation metrics. Furthermore, the same
principle should be applicable to other datasets inside and outside of biosciences.
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Supporting Information

S1 Text ADS pseudocode Pseudocode for generations of ADS.

S2 Text Supplementary text Text shows an example on how the signal and noise is
defined in ADS. Text also shows labels, definitions and discussion of tested metrics. Finally,
we discuss the summary methods for semantic similarities and motivations for our novel
summary methods.

S1 File Metric scores Metric scores for all generated AP and FP sets (k = 2).

S2 File Metric scores Metric scores for all generated AP and FP sets (k = 4).

S1 Table Abbreviations and features for all compared EvMs We represent a
summary table of all the compared EvMs. Table shows the used abbreviation, core function,
used data summary method, used threshold function over the classifier prediction score, used
IC weighting and summary method for semantic similarities. In addition we mark the EvMs
that have been popular in AFP evaluation, ones that are partially novel and ones that we
consider to be simple. We also mark EvMs that we expect to perform badly as negative
controls. More detailed description of these EvMs is in suppl. text S2 Text.

S2 Table Features of the three used datasets Table explains the size and density of
the three used datasets (CAFA1, MouseFunc, UniProt). Datasets are explained in main text.
Table shows skewed distribution of GO classes per gene by representing selected quantiles
from this distribution. This is shown separately for each dataset with and without the
propagation to parent classes. We also show the same size distribution for the GO classes,
again showing the skewness of the size distribution.

S3 Table ADS results RC and FPS scores for tested metrics (k = 2).

S4 Table ADS results RC and FPS scores for tested metrics (k = 4).
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