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ABSTRACT 

Bacterial growth efficiency (BGE) is the proportion of assimilated carbon that is converted into 14 

biomass and reflects the balance between growth and energetic demands. Often measured as an 

aggregate property of the community, BGE is highly variable within and across ecosystems. To 16 

understand this variation, we used a trait-based approach with 20 bacterial isolates enriched from 

lake communities to determine how consumer and resource identity affect BGE. We used 18 

phenotypic and genomic approaches to characterize the metabolic physiology of each isolate and 

test for predicted trade-offs between growth rate and efficiency. Across resource types, 20 % of 20 

the variation in BGE could be attributed to the coarse-scale taxonomic resolution of the isolate, 

while 58 % of the variation could be explained by isolate identity. Resource identity explained a 22 

relatively small amount of variation (7 %) in BGE across isolates but accounted for > 60 % of 

the variation within an isolate alone. Metabolic trade-offs and genomic features associated with 24 

BGE suggest that BGE is a species trait, which regardless of resource environment, contributes 

to variation in BGE. Genomic and phylogenetic information from microbiomes may help predict 26 

aggregate community functions such as BGE to better understand the fate of organic matter 

resources in ecosystems. 28 

 

  30 
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INTRODUCTION 

In most ecosystems, heterotrophic bacteria play a pivotal role in determining whether organic 32 

carbon is respired and thus lost as CO2 or is instead converted into biomass and retained in food 

webs (Pomeroy et al. 1998; Ducklow 2008). Many factors control how bacteria process carbon, 34 

but perhaps the most important is reflected in measurements of bacterial growth efficiency 

(BGE). BGE is the proportion of assimilated organic carbon that is converted into bacterial 36 

biomass (del Giorgio and Cole 1998). When BGE is high, more carbon is turned into biomass 

where it can be retained for longer periods of time while also serving as a source of energy for 38 

other members of the food web. In contrast, when BGE is low, microbially assimilated carbon 

has a shorter residence time and is released back to the environment as CO2.  40 

When measured at the community scale, BGE is notoriously variable among habitats and 

has proven difficult to predict (del Giorgio and Cole 1998). While it can be influenced by a range 42 

of chemical and physical properties (Apple and del Giorgio 2007; Hall and Cotner 2007; del 

Giorgio and Newell 2012; Sinsabaugh et al. 2013), variation in BGE may also reflect taxon-44 

specific differences in microbial metabolism. BGE may vary among microbial taxa for a number 

of reasons. For example, BGE results from the physiological balance between cellular growth 46 

and energetic demands.  As such, bacterial growth strategy is predicted to constrain BGE via 

physiological trade-offs (Litchman et al. 2015). For example, it has been hypothesized that 48 

oligotrophs have higher maximum growth efficiency than copiotrophs (Roller and Schmidt 

2015). In addition, consumers that specialize on only a few resources are predicted to be more 50 

efficient at using those resources than more generalist consumers (Dykhuizen and Davies 1980; 

Glasser 1984). As such, consumer properties such as maximum growth rate and the number of 52 

resources used (i.e., niche breadth) could underlie species-specific differences in BGE.  
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Variation in BGE may also be influenced by the resources used to meet energetic and 54 

growth demands. For example, different resources can affect ATP yield depending on the 

metabolic pathways that are used by a bacterial population  (Fuhrer et al. 2005; Flamholz et al. 56 

2013). Also, it is important to recognize that the energy-producing catabolic processes and 

biomass-producing anabolic processes are not independent (Russell and Cook 1995). For 58 

example, cells have the potential to produce >30 ATP from a single glucose molecule if the 

molecule is completely oxidized, but in this scenario, there would be no remaining glucose to 60 

yield new biomass. Instead, to build new biomass, cells must use the intermediate products of 

glycolysis to form proteins and other cellular material, which diminishes the maximum ATP 62 

yield (Gottschalk 1986). Furthermore, biomass production requires materials (e.g., intermediates 

of Krebs cycle) and energy. For example, the synthesis of proteins, which constitute ~70% of 64 

cellular dry mass, requires amino acid building blocks and 4 ATP per peptide bond (Tempest and 

Neijssel 1984; Gottschalk 1986). Therefore, because resources differ in their potential energy 66 

yield and bacteria differ in their ability to extract energy and form biomass from a given 

resource, BGE should vary based on the resources available to bacteria.  68 

In this study we measured BGE in a set of bacterial isolates growing with only a single 

carbon source. In addition to partitioning variation in BGE based on consumer and resource 70 

identity, we tested for hypothesized trade-offs between BGE, growth rate, and niche breadth. 

Using genomes of each isolate, we evaluated whether metabolic pathways could explain 72 

differences in BGE among our diverse collection of aquatic bacteria.  Last, to test if resources 

have different effects on the metabolic traits that underlie BGE (production and respiration), we 74 

tested if there were relationships between respiration and production rate when isolates were 

grown on each resource and if the relationships were unique to each resource. Our trait-based 76 
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approach provides a framework for understanding linkages between community structure and 

function due to the physiological constraints on BGE and suggest that large changes in 78 

community composition or available resources may alter BGE in predictive ways.  

 80 

METHODS 

Bacterial Strains — Using a novel cultivation approach, we isolated 20 bacterial strains from 82 

lakes in the Huron Mountain Research Preserve (Powell, MI, USA) by incubating inert carbon 

beads (Bio-Sep Beads) in the water column for one week. Prior to the incubations, the beads 84 

were saturated with a sterile complex carbon substrate, i.e., Super Hume (CropMaster, United 

Agricultural Services of America, Lake Panasoffkee, Florida, USA). Super Hume is a lignin-rich 86 

resource comprising 17 % humic and 13 % fulvic acids, and has been shown to be an analog of 

terrestrial DOC in aquatic ecosystems that can be used by diverse bacteria (Lennon et al. 2013). 88 

We used this enrichment technique to select for bacteria with a range of metabolic potential 

(Ghosh et al. 2009). After the incubation, beads were rolled on R2 agar plates (BD Difco, Sparks 90 

Maryland, USA) and incubated at 25 °C. We picked random colonies from plates and serially 

transferred until axenic. All strains were preserved in 25 % glycerol at -80 ºC.  92 

We identified each bacterial strain by direct sequencing the 16S rRNA gene. We obtained 

genomic DNA from log phase cultures using the FastPrep DNA extraction kit according to the 94 

manufacturer’s specifications (MP Biomedical). We used 10 ng of genomic DNA to amplify the 

16S rRNA gene using the 27F and 1492R bacterial primers (See Supplemental for primer 96 

sequences and PCR conditions). We sequenced the PCR products at the Indiana Molecular 

Biology Institute (IMBI) at Indiana University (Bloomington, Indiana, USA). Raw sequence 98 
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reads were quality-trimmed based on a Phred quality score of 25. Forward and reverse reads 

were manually merged after aligning sequences to the Ribosomal Database Project reference 100 

alignment (Cole et al. 2009) using mothur (Schloss et al. 2009). After merging into full length 

16S rRNA sequences, alignments were checked using ARB (Ludwig et al. 2004) and sequences 102 

were compared to the Silva All-Species Living Tree Project database (Yilmaz et al. 2014) for 

taxonomic identification (Fig. 1).  104 

 

Bacterial Growth Efficiency — To test for differences in bacterial growth efficiency (BGE) 106 

across our isolates, we measured BGE for each isolate when cultured on one of three different 

carbon substrates: glucose, succinate, or protocatechuate (Fig. 2). These carbon sources were 108 

chosen based on differences in their bioavailability and structure but also the required pathways 

for metabolism (see Fig. 2).  110 

To determine BGE we measured bacterial respiration and production rates and then 

calculated BGE as BP/(BP = BR), where BP is bacterial productivity and BR is bacterial 112 

respiration (del Giorgio and Cole 1998).  BP and BR were measured using triplicate cultures of 

each isolate. Cultures of each isolate were grown in R2 broth (BD Difco, Sparks Maryland, 114 

USA) until mid-log phase. We then transferred 100 µL of culture into 10 mL of M9 with the 

appropriate carbon source (25 mM C) and allowed 24 h for the cultures to acclimate. We then 116 

transferred 100 µL of culture into 10 mL of fresh carbon-amended M9 and incubated 1-3 h to 

replenish nutrients. Using these transfers, we were able to establish populations of each isolate at 118 

target cell densities between 104 and 105 cells mL−1. We used the populations to measure BP and 

BR, which were normalized to cell density using plate counts of colony forming units. We 120 
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measured BP using the 3H-Leucine assay (Smith and Azam 1992) with 1.5 mL of culture. We 

added 3H-Leucine to a final concentration of 50 mM and incubated for 1 h. Following 122 

incubation, we terminated production with trichloroacetic acid (final concentration 3 mM) and 

measured leucine incorporation using a liquid scintillation counter. We measured BR using an 124 

automated O2 measurement system (PreSens Sensor Dish System, PreSens, Regensburg, 

Germany) on 5 mL of culture based on the rate O2 consumption during three-hour incubations. 126 

We estimated BR as the slope of O2 concentration during the incubation using linear regression. 

We used theoretical respiratory quotients for each resource to convert O2 depletion into C 128 

respiration assuming aerobic growth.  

 130 

Taxonomic and Phylogenetic Relationships — We compared differences in BGE across 

isolates and resources using linear models. First, we used a taxonomic framework to compare 132 

BGE between isolates (Lennon et al. 2012). Isolates were classified into taxonomic groups based 

on the species tree constructed in ARB. We then used mixed linear models to compare BGE 134 

across taxonomic groups and resources. To test the hypothesis that taxonomy (i.e., at the class 

level) affects BGE, we nested resources within isolate. To test the hypothesis that resource 136 

identity affects BGE, we nested isolates within resource. We identified the best statistical models 

based on the variation explained (R2) and AIC values. Second, we tested if phylogenetic 138 

relationships between isolates explained differences in BGE across isolates. We created a 

phylogenetic tree based on the full-length 16S rRNA gene sequences. We aligned sequences 140 

using the SINA aligner (Pruesse et al. 2012) and checked alignments using ARB. We generated a 

phylogenetic tree using the CIPRES science gateway (Miller et al. 2010). The phylogenetic tree 142 

was created using RAxML-HPC v.8 on XSEDE based on the GTRCAT DNA model (Stamatakis 
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2006; Stamatakis et al. 2008). We created a consensus tree based on 1,000 bootstraps using 144 

CONSENSE (Felsenstein 2008). We used Blomberg’s K to compare trait variation across the 

tree and test if phylogenetic relationships between isolates could explain differences in traits 146 

(Blomberg et al. 2003). Blomberg’s K is a test for phylogenetic signal that determines if trait 

variation is better explained by phylogenetic relationships or Brownian motion. Last, to 148 

determine if the distribution of BGE across isolates was unimodal, we used Hartigan’s dip test 

for unimodality (Hartigan and Hartigan 1985). Hartigan’s dip test is used to determine if a 150 

distribution is unimodal by testing the null hypothesis that there is a dip in the distribution. A 

significant Hartigan’s dip test would suggest that the distribution is unimodal. Alternatively, the 152 

distribution has an internal “dip” (reported as D). All statistical tests were conducted in the R 

statistical environment (R Core Team 2012). We used the nlme package (Pinheiro et al. 2016) 154 

for the mixed linear models, the picante package (Kembel et al. 2015) for the phylogenetic 

methods, and the diptest package (Maechler 2015) for Hartigan’s dip test.  156 

 

Phenotypic Comparisons and Trade-offs — To test the hypothesis that phenotypic differences 158 

and physiological trade-offs underlie BGE variation, we compared the maximum growth rate 

(μmax) and niche breadth of each isolate. First, to test whether BGE was affected by growth 160 

strategy (i.e., copiotrophs vs.oligotrophs), we measured the maximum growth rate of each 

isolate. Bacterial growth rates were measured based on changes in optical density during 18-h 162 

incubations. Bacterial strains were grown in R2 broth in 48-well plates. We incubated plates with 

continuous shaking and measured optical density every 15 min using a plate reader (BioTek 164 

MX). Growth curves were analyzed by fitting a modified Gompertz growth model (Zwietering et 
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al. 1990; Lennon 2007) to the observed growth curves using maximum likelihood fitting. We 166 

used the model fit as our estimate of µmax.  

 Second, to test whether BGE was affected by niche breadth, we generated carbon usage 168 

profiles using BioLog EcoPlatesTM (Garland and Mills 1991). The EcoPlate is a phenotypic 

profiling tool consisting of 31 unique carbon sources. In addition to the carbon source, each well 170 

contains a tetrazolium dye, which in the presence of NADH will be reduced and change color. 

We used this colorimetric assay to generate carbon usage profiles for each strain. We 172 

standardized profiles for each strain by subtracting water blanks (average water blank + 1 SD), 

and relativizing across substrates. Using these data, we calculated resource niche breadth using 174 

Levin’s Index (Colwell and Futuyma 1971).  

 176 

Genomic Comparisons — To test the hypothesis that variation in metabolic pathways could 

explain differences in BGE, we compared the genomes of each isolate. First, we determined the 178 

metabolic pathways found in the genome of each isolate. We characterized each isolate using 

whole genome sequencing. Genomic DNA libraries for each isolate were prepared using the 180 

Illumina TruSeq DNA sample prep kit using an insert size of 250 base pairs (bp). Libraries were 

sequenced on an Illimina HiSeq 2500 (Illumina, San Diego, GA) using 100-bp paired-end reads 182 

at the Michigan State University Research Technology Support Facility. We processed raw 

sequence reads (FASTQ) by removing the Illumina TruSeq adaptors using Cutadapt (Martin 184 

2011), interleaving reads using Khmer (McDonald and Brown 2013), and quality-filtering based 

on an average Phred score of 30 using the FASTX-toolkit (Hannon Lab 2010). Finally, we 186 

normalized coverage to 25 based on a k-mer size of 25 using Khmer. We assembled the genomes 
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using Velvet (Zerbino and Birney 2008) after optimizing assembly parameters for each isolate 188 

with Velvet Optimizer (Gladman and Seemann 2012). We annotated contigs larger than 200 bp 

using Prokka (Seemann 2014), and predicted metabolic and physiological functions using 190 

MAPLE with bidirectional best-hit matches (Takami et al. 2012). We identified functional 

pathway based on the presence of intermediate genes within a pathway. We scored pathways as 192 

functional if more than 80 % of the intermediate genes were recovered in the genomes.   

To test the hypothesis that metabolic pathways affect BGE, we used multivariate methods 194 

to compare the pathways of each isolate. First, we used PERMANOVA to determine if there 

were differences in pathways associated with different levels of BGE. When significant 196 

differences were found, we used indicator species analysis (Dufrene and Legendre 1997) to 

determine which metabolic pathways contributed to group differences in BGE. Next, to 198 

determine if metabolic pathways could explain differences in BGE within a group, we used 

distance-based redundancy analysis (dbRDA) which is a multivariate technique that tests if a 200 

quantitative predictor can explain differences in multivariate datasets (Legendre and Legendre 

2012). Because we scored pathways as present or absent, metabolic distances between isolates 202 

were calculated using the Jaccard Index. We tested for significance using a permutation test. If 

the dbRDA model was significant, we used Spearman’s rank-order correlation to test for 204 

correlations between BGE and individual metabolic pathways. We used the vegan R package 

(Oksanen et al. 2013) for multivariate analyses. 206 

 

Resource Effects — To test the hypothesis that resources have different effects on components 208 

of metabolism that affect BGE, we used a linear model to test for a relationship between BR and 
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BP. Because BP required energy through respiration, we used production rate as the dependent 210 

variable and respiration rate as the independent variable. We used an indicator variable linear 

regression to test for changes in BP rate due to BR. We included resource identity and group 212 

(high- versus low-BGE) as the categorical predictors and BR as the continuous predictor 

(Lennon and Pfaff 2005). In addition, we included all interactions terms. Respiration and 214 

production rates were log10-transformed to meet model assumptions. Last, to determine if the 

relationship between BR and BP rates was isometric (proportional scaling, slope = one) or 216 

allometric (disproportional scaling, slope ≠ one), we used a one-sample t-test to determine if the 

slope was different from one. All statistical tests were conducted in the R statistical environment. 218 

 

RESULTS 220 

Bacterial Growth Efficiency — Using measures of bacterial productivity (BP) and respiration 

(BR), we calculated bacterial growth efficiency (BGE) on 20 isolates each on three resources: 222 

glucose, succinate, and protocatechuate (Fig. 3). All isolates belonged to the Proteobacteria 

phylum with representatives from the Alpha-, Beta-, and Gamma- Proteobacteria subphyla (Fig. 224 

1). Based on mixed-effects linear models we found that isolate and resource identity explained a 

substantial amount of variation in BGE. Across resources, isolate identity explained 58 % of the 226 

variation in BGE, and 67 % of the variation within resource (AIC = -48), and the taxonomic 

order of each isolate explained 20 % of the variation in BGE across resources, and 28 % of the 228 

variation within resource (AIC = -94). Across isolates, resource identity only explained 7 % of 

the variation in BGE across all isolates, but 63% of variation within isolate (AIC = -117).  230 
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Based on Blomberg's K, there was weak phylogenetic signal of BGE among our isolates. 

We did not detect phylogenetic signal for BGE when isolates used succinate (K < 0.001, p = 232 

0.316) or protocatechuate (K < 0.001, p = 0.257), but there was a significant phylogenetic signal 

when isolates used glucose (K < 0.001, p = 0.04). Based on Hartigan’s dip test, we found that 234 

there was a bimodal distribution of BGE among our isolates (D = 0.07, p = 0.58, Supp. Fig. 1). 

Using this distribution, we split isolates into two groups, which we define as the “high BGE”, 236 

and “low BGE” groups.  

 238 

Phenotypic Comparisons — Using linear models, we found phenotypic differences between 

isolates that were related to BGE. While there was no relationship between BGE and µmax (F1,7 240 

= 0.51, r2 = 0.06, p = 0.50) in the low-BGE group of bacteria, we did identify a significant 

negative relationship between BGE and µmax for the high-BGE group of bacteria (F1,7 = 9.52, r2 242 

= 0.54, p = 0.015), and BGE decreased 2.58 % for each per minute increase in µmax.  In contrast 

to our predictions, there was no relationship between niche breadth (Levin’s Index) and BGE for 244 

the low-BGE group (F1,7 = 1.47, r2 = 0.17, p = 0.27) or high-BGE group (F1,7 = 0.92, r2 = 0.11, 

p = 0.37).  246 

 

Genomic Comparisons — We found genomic differences between isolates that were related to 248 

BGE. First, isolates in the high-BGE group had 13 % more metabolic pathways than isolates in 

the low BGE-group (mhigh = 72, mlow = 64, t-test: t18 = -2.36, p = 0.03). Second, the genomes of 250 

the low-BGE group and high-BGE group contained different metabolic pathways 

(PERMANOVA, R2 = 0.14, p = 0.008). Although we were unable to account for variation in the 252 
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metabolic pathways using BGE in the high BGE isolates (dbRDA: F1,7 = 1.05, R2 = 0.13, p = 

0.39), there was a marginally significant relationship between metabolic pathway composition 254 

and BGE in isolates belonging to the low-BGE group (F1,7 = 2.15, R2 = 0.18, p = 0.08) despite 

the fact that correlations between individual metabolic pathways and BGE were weak (all rho 256 

values < |0.7|).  

 258 

Resource Effects — Indicator variable linear regression revealed a positive relationship between 

respiration and production rates (Fig. 5, F9,42 = 4.92, R2 = 0.51, p < 0.001) with there being a 260 

higher y-intercept for the high-BGE group of isolates (Table 1). Resource identity had no effect 

on the BR-BP relationship, but we did find a significant interaction between the resource 262 

protocatechuate and group (Table 1). Last, we did not find evidence that the slope of the BR-BP 

relationship was different from one (t42 = -0.26, p = 0.79) suggesting that the two measures of 264 

bacterial metabolism scale proportionately with one another.  

 266 

DISCUSSION 

We measured bacterial growth efficiency (BGE) in 20 environmental bacterial isolates on three 268 

resources that varied in their bioavailability, structure, and pathways required for metabolism. 

While BGE varied among strains, phylogenetic relatedness did not statistically explain 270 

differences in efficiency. Instead, a substantial amount (20 %) of the variation in BGE could be 

explained by an isolate’s taxonomic order while a much smaller amount of the variation (7 %) 272 

could be attributed to resource identity (Fig. 3). We found evidence for a predicted trade-off 

between maximum growth rate and BGE, but only on the most labile resource (glucose) (Fig. 3). 274 
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Even though we found that resource identity explained 63% of the variation in BGE within an 

isolate, resource identity did not alter the relationship between respiration and production rate 276 

observed across isolates (Fig. 5) suggesting that resource identity has a stronger effect on BGE 

within a species than across species. Together, we propose that growth efficiency is a 278 

physiological trait independent of resource identity, but resource characteristics may modify 

species-specific physiological performances. We propose that taxonomic groups of bacteria may 280 

have fundamentally different growth efficiencies such that changes in community composition 

may alter the fate of carbon resources (i.e., biomass versus CO2) within the ecosystem.  282 

 

Bacterial Growth Efficiency as a Trait 284 

Our results indicate that there are species-specific properties regulating BGE, which may be 

conserved at higher taxonomic levels. This conclusion is consistent with the view that BGE 286 

represents a complex bacterial trait (i.e., aggregate property of numerous cellular functions) with 

ecological significance, and that different groups of bacteria have fundamentally different 288 

strategies for carbon allocation. Our phylogenetic analyses suggest that BGE may be an over-

dispersed trait (at least with glucose) such that the efficiency of closely related bacteria may be 290 

less similar than expected. One potential explanation for this pattern of over-dispersion is that 

our culture collection lacked phylogenetic resolution within some of our taxonomic groups (e.g., 292 

Betaproteobacteria) or that the variation in BGE within a taxonomic group (e.g., order) may not 

be the same across taxonomic groups. Alternatively, BGE may not be a phylogenetically 294 

conserved trait. Though some traits such as phosphorus acquisition, photosynthesis, and 

methanogenesis are phylogenetically conserved deep in the microbial tree of life (Martiny et al. 296 
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2006, 2013), others such as complex carbon metabolism are not (Zimmerman et al. 2013). 

Therefore, it is possible that BGE may be similar to traits such as complex carbon metabolism 298 

that are not deeply conserved, which appears to be common among complex traits (Martiny et al. 

2015). Regardless, our data reveal that BGE is a complex bacterial trait that is influenced by 300 

taxonomic affiliation. As such, it may be possible to make predictions about BGE and other 

ecosystem functions given information about composition of resident microbiomes (Goberna and 302 

Verdú 2016). 

 304 

Bacterial Growth Efficiency on Different Resources 

Differences in resource complexity and the metabolic pathways required for degradation may 306 

explain species-specific differences in BGE due to resource identity. Within an isolate, resource 

identity accounted for 63 % of the variation in BGE. Given that different resources are processed 308 

via different metabolic pathways, resource-based variation in BGE within a species is expected. 

For example, BGE was higher when isolates were supplied with glucose compared to when they 310 

were supplied with protocatechuate. Glucose is a simple sugar that is able to be metabolized by 

numerous pathways and converted to acetyl-CoA (White et al. 2012). Protocatechuate, on the 312 

other hand, is a complex aromatic compound that requires a specific metabolic pathway to be 

converted to acetyl-CoA. Furthermore, because protocatechuate is chemically more complex, it 314 

requires more energy (i.e., ATP) to be degraded than more labile resources such as glucose 

(Harwood and Parales 1996). Therefore, resource complexity and the metabolic pathways 316 

required may explain the within-isolate variation in BGE. However, across isolates, we did not 

find resource-specific differences in the relationship between respiration and production rate (Fig 318 
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5, Table 1). Such findings suggest that energetic demands required to use different resources may 

also be species-specific trait. That is, the energetic demands for individual species may be highly 320 

constrained and therefore not change much when growing on different resources. Together, these 

findings suggest that the effect of resources on the efficiency of entire microbiomes may depend 322 

on the composition of bacteria consuming those resources.  

 324 

Bacterial Growth Efficiency Groups 

Across all isolates, we found a bimodal distribution of BGE suggesting that there were two 326 

distinct groups with contrasting efficiencies. One group had low BGE (<5 %) across all 

treatments, and the other group ranged in BGE from 7-30 % (Fig. 4 & 5). Although, the range of 328 

BGE measured across isolates is similar to the range observed in many ecosystems (del Giorgio 

and Cole 1998), our results suggest that some species of bacteria grow relatively inefficiently, 330 

irrespective of resource quality. One explanation is that the minimum cellular energetic demand 

(i.e., cellular maintenance costs) is higher in some bacteria than others (Russell and Cook 1995). 332 

Furthermore, energetic demand may be higher when bacteria are grown in minimal media where 

they must produce all cellular components from a single carbon resource (Tao et al. 1999). 334 

Alternatively, nutrient concentrations (e.g., phosphorus) and other physical properties (e.g., 

temperature) may regulate efficiency (Smith and Prairie 2004) and the effects of these properties 336 

may be species-specific. As such, it is possible that maintenance costs, resource imbalances, and 

the physical growth conditions affected BGE of our isolates. Differences in low-BGE and high-338 

BGE isolates was also reflection in genomic content, including the number and presence-absence 

of metabolic pathways. Together, these findings suggest that there are fundamental differences 340 
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between bacterial species that determine BGE, which can be predicted based on genomic 

content.  342 

 

Physiological Trade-Offs 344 

We found evidence to support a predicted trade-off between maximum growth rate and BGE 

(Fig. 4), which is predicted across microbial and non-microbial systems (Glasser 1984; Roller 346 

and Schmidt 2015). Theoretical models of microbial communities predict a rate-efficiency trade-

off (Allison 2014), and this trade-off has been observed across microbial taxa (Lipson 2015). 348 

Physiologically, the trade-off is based on allocation constraints imposed by the balance between 

energy requirements and biomass yield: organisms with higher maximum growth rates may have 350 

more energetic requirements and thus lower BGE (Russell and Baldwin 1979; Russell and Cook 

1995). Furthermore, processes that limit respiration, such as oxygen availability, have been 352 

shown to suppress bacterial growth rate (Meyenburg and Andersen 1980). Therefore, respiration 

rate is likely a major control on biomass production and BGE. Consistent with this, we observed 354 

a power-law relationship between respiration and production rates (Fig. 5; Table 1). 

Furthermore, this relationship between respiration and production and the non-zero intercept 356 

suggest that there is a minimum respiration rate required before any biomass can be produced, 

which is commonly interpreted as the cellular maintenance requirement. Therefore, it is possible 358 

that the maintenance energy demand of bacterial species explains the physiological trade-off 

between maximum growth rate and growth efficiency.  360 

Theory also predicts a trade-off between resource niche-breadth and growth efficiency 

(Glasser 1984). This trade-off is based on the assumption that there is an energetic cost to 362 
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maintaining numerous metabolic pathways (Johnson et al. 2012). As such, species with more 

metabolic pathways should have more energetic requirements and thus lower BGE; although, the 364 

effects of genome reduction has been debated (Giovannoni et al. 2005; Livermore et al. 2014). In 

this study, we did not find evidence of a trade-off between resource niche breadth and BGE (Fig. 366 

4). One possible explanation is that the resources used in our phenotypic assay (i.e. Ecolog 

plates) did not reflect the full metabolic potential of our isolates. Alternatively, there may not be 368 

a strong trade-off between niche breadth and efficiency, but further experiments with additional 

isolates and resources would be required to test this prediction more rigorously.  370 

 

Genomic Signatures 372 

In addition to the physiological differences documented among our isolates, we found genomic 

evidence of metabolic pathways that are associated with BGE. Specifically, we found genomic 374 

differences between isolates that belong to low-BGE and high-BGE groups. We discovered that 

isolates in the high-BGE group had 13 % more metabolic pathways than the low-BGE group. 376 

Furthermore, we identified particular pathways that were unique to each group (Table 2). 

Together, our findings suggest that there are genomic features that may contribute to or regulate 378 

BGE. 

In general, the genomic composition of BGE groups appear to reflect differences in 380 

cellular biosynthesis. It is possible that species with particular biosynthesis pathways may 

generate essential cellular components with less energetic demand. For example, the low-BGE 382 

isolates lacked some metabolic pathways, including pyridoxal biosynthesis and histidine 

degradation, which were present in the high-BGE group. The pyridoxal biosynthesis pathway 384 
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produces vitamin B6 from erythrose-4-phosphate (Mukherjee et al. 2011). Because vitamin B6 is 

essential for growth, the isolates lacking the pyridoxal pathway will use alternatives such as 386 

uptake from the environment if they are auxotrophic (i.e., unable to synthesize) or other 

synthesis pathways such as the Deoxyxylulose-5-phosphate synthase (DXS) pathway 388 

(Mukherjee et al. 2011). However, the DXS pathway requires pyruvate (a precursor for Krebs 

cycle) and thus may limit central metabolism and possibly lead to lower BGE. Likewise, the 390 

histidine degradation pathway is used to breakdown histidine into ammonium and glutamate 

(Bender 2012). Alternatively, glutamate can by synthesized from α-ketoglutarate; however, 392 

because α-ketoglutarate is an intermediate component of Krebs cycle this may limit central 

metabolism and possibly lead to reduced BGE.  394 

 

Conclusion 396 

At the cellular level, BGE reflects the balancing energetic and cellular growth demands. We find 

evidence of this based on physiological trade-offs (i.e., maximum growth rate) as well as 398 

metabolic pathways. As such, changes in community composition and resource availability have 

to potential to alter food web and ecosystem function due to changes in BGE. For example, 400 

communities dominated by species with low BGE should yield a net release of CO2 from the 

ecosystem. Alternatively, communities comprised of individuals with high BGE should yield a 402 

net increase in ecosystem productivity. However, variation in BGE can arise within a species due 

to the ways in which it processes different resources. Therefore, changes in the resource supply 404 

will alter the performance of individual taxa, but we predict that these changes will not be as 

strong as changes in BGE that arise owing to differences in community composition. A trait-406 
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based approach can be used to provide a mechanistic link between the structure and function of 

bacterial communities.  408 

 

410 
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TABLES 

Table 1: Indicator variable linear regression coefficients for model testing if respiration rate (i.e., 568 

BR), resource identity, and group (high BGE or low BGE) explain differences in production rate 

(i.e. BP). Glucose and low BGE are used as baseline factors. Resp = respiration rate, Group = 570 

high BGE group. Suc = succinate. Pro = protocatechuate. Model includes all two-way interaction 

terms.  572 

 Estimate Std. Error t-value p-value 

Intercept -2.62 0.63 -4.13 0.0002 

Resp 0.90 0.37 2.43 0.02 

Suc 1.43 0.85 1.68 0.10 

Pro 2.04 1.32 1.54 0.13 

Group 1.86  0.77 2.42 0.02 

Resp * Suc -0.78 0.50 -1.57 0.12 

Resp * Pro 0.52      0.62 -0.84 0.41 

Resp * Group 0.18 0.49 0.36 0.72 

Suc * Group -0.45 0.70 -0.63 0.53 

Pro * Group -2.16 0.86 -2.51 0.02 

 

 574 
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Table 2: Genetic pathways unique to the high BGE isolates. Pathways are functional metabolic 576 

pathways identified from genome sequencing and predicted using Maple. Prob. = probability 

statistic from indicator species analysis: the probability that the “species” (i.e., pathway), is not 578 

unique to the group.  

Group Prob. Pathway Reference Function 

High BGE 

0.01 M00124  Pyridoxal biosynthesis, erythrose-4P � pyridoxal-5P 

0.03 
M00045 

Histidine degradation, histidine � N-formiminoglutamate 
� glutamate 

0.03 M00565 Trehalose biosynthesis, D-glucose-1P � trehalose 

 580 

 

  582 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 27, 2018. ; https://doi.org/10.1101/427161doi: bioRxiv preprint 

https://doi.org/10.1101/427161
http://creativecommons.org/licenses/by/4.0/


FIGURE LEGENDS 

Fig. 1: Maximum likelihood phylogenetic tree of lake bacterial isolates used to study BGE 584 

variation. Nearest relatives and other type-strains are included as taxonomic references. Isolates 

are organized by and labeled with taxonomic class. The outgroup (Aquifex) is included as the tree 586 

root. Scale bar represents 0.01 base substitutions.  

Fig. 2: Carbon resources used to study BGE variation in environmental isolates. A: Glucose – 588 

the baseline resource used to compare BGE across isolates. Glucose can be degraded by the 

Embden-Meyerhof-Parnas, pentose phosphate, or Entner-Doudoroff pathway. Ultimately, these 590 

pathways produce pyruvate (and then acetyl-CoA), which enters Krebs cycle and is used to 

produce energy and intermediate for biomass synthesis, when cells are grown aerobically. 592 

Alternatively, glucose can be fermented into organic acids (e.g., lactate), but these reactions yield 

less energy (Gottschalk 1986). B: Succinate – is a simple organic acid. Succinate is an 594 

intermediate of Krebs cycle and thus it does not require previous degradation. Additionally, 

succinate can be used directly to produce energy via succinate dehydrogenase (White et al. 596 

2012). C: Protocatecuate – is a complex resource with a aromatic core. Typically, it is degraded 

to acetyl-CoA and Succinyl-CoA via the β-ketoadipate pathway (Harwood and Parales 1996). 598 

Protocatechuate is commonly used to study aromatic resource degradation in ecosystems, and the 

β-ketoadipate pathway is commonly found in bacteria across the phylum Proteobacteria (Buchan 600 

et al. 2000).  
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Fig. 3: Bacterial growth efficiency (BGE) of each isolate for each resource. BGE was calculated 604 

based on measured production (BP) and respiration (BR) rates using the following equation: 

BGE = BP / (BP + BR). Cladogram is based on the consensus phylogeny. Taxonomic class and 606 

order are included based on the ribosomal database taxonomy: α = Alphaproteobacteria. β = 

Betaproteobacteria, γ = Gammaproteobacteria, Xan. = Xanthomonadales, Aero. = Aeromondales, 608 

Pseudo. = Pseudomondales.  

 610 

Fig. 4: Phenotypic traits associated with BGE. A: Maximum growth rate, a measure of growth 

strategy, demonstrates a trade-off (negative relationship) with BGE in the high BGE group (F1,7 612 

= 9.52, r2 = 0.54, p = 0.015), but not the low BGE group (F1,7 = 0.51, r2 = 0.06, p = 0.50). B: 

Levin’s Index, a measure of niche breadth, does not demonstrate a trade-off with BGE in either 614 

the high or low BGE groups (high: F1,7 = 0.92, r2 = 0.11, p = 0.37; low: F1,7 = 1.47, r2 = 0.17, p = 

0.27). High and low BGE groups were determined based on bimodal distribution of BGE.  616 

 

Fig. 5: Relationship between respiration and production rates. Respiration and production rates 618 

were compared using an indicator variable linear regression (F9,42 = 4.92, R2 = 0.51, p < 0.001). 

According to the regression model, production rate increases with respiration rate proportionally 620 

(i.e., slope not significantly different from one, t42 = -0.26, p = 0.79). In addition, group (high vs. 

low BGE) was a significant factor and isolates in the high BGE group had a greater y-intercept 622 

(p = 0.02). Symbols indicates isolate group (high and low BGE), and color indicates the resource 

being used. Symbol size is scaled by growth efficiency.  624 
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FIGURES 626 

Fig. 1:  
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Fig. 2:  
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Fig. 3:  
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Fig. 4: 638 

 

  640 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 27, 2018. ; https://doi.org/10.1101/427161doi: bioRxiv preprint 

https://doi.org/10.1101/427161
http://creativecommons.org/licenses/by/4.0/


Fig. 5: 
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