Skip to main content
bioRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search
New Results

Multiplexed biochemical imaging reveals caspase activation patterns underlying single cell fate

Maximilian W. Fries, Kalina T. Haas, Suzan Ber, John Saganty, Emma K. Richardson, Ashok R. Venkitaraman, View ORCID ProfileAlessandro Esposito
doi: https://doi.org/10.1101/427237
Maximilian W. Fries
The Medical Research Council Cancer Unit, University of Cambridge, Hills Road, Cambridge CB2 0XZ, UK
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Kalina T. Haas
The Medical Research Council Cancer Unit, University of Cambridge, Hills Road, Cambridge CB2 0XZ, UK
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Suzan Ber
The Medical Research Council Cancer Unit, University of Cambridge, Hills Road, Cambridge CB2 0XZ, UK
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
John Saganty
The Medical Research Council Cancer Unit, University of Cambridge, Hills Road, Cambridge CB2 0XZ, UK
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Emma K. Richardson
The Medical Research Council Cancer Unit, University of Cambridge, Hills Road, Cambridge CB2 0XZ, UK
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Ashok R. Venkitaraman
The Medical Research Council Cancer Unit, University of Cambridge, Hills Road, Cambridge CB2 0XZ, UK
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: ae275@mrccu.cam.ac.uk
Alessandro Esposito
The Medical Research Council Cancer Unit, University of Cambridge, Hills Road, Cambridge CB2 0XZ, UK
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Alessandro Esposito
  • For correspondence: ae275@mrccu.cam.ac.uk
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Supplementary material
  • Preview PDF
Loading

Abstract

The biochemical activities underlying cell-fate decisions vary profoundly even in genetically identical cells. But such non-genetic heterogeneity remains refractory to current imaging methods, because their capacity to monitor multiple biochemical activities in single living cells over time remains limited1. Here, we deploy a family of newly designed GFP-like sensors (NyxBits) with fast photon-counting electronics and bespoke analytics (NyxSense) in multiplexed biochemical imaging, to define a network determining the fate of single cells exposed to the DNA-damaging drug cisplatin. By simultaneously imaging a tri-nodal network comprising the cell-death proteases Caspase-2, -3 and -92, we reveal unrecognized single-cell heterogeneities in the dynamics and amplitude of caspase activation that signify survival versus cell death via necrosis or apoptosis. Non-genetic heterogeneity in the pattern of caspase activation recapitulates traits of therapy resistance previously ascribed solely to genetic causes3,4. Chemical inhibitors that alter these patterns can modulate in a predictable manner the phenotypic landscape of the cellular response to cisplatin. Thus, multiplexed biochemical imaging reveals cellular populations and biochemical states, invisible to other methods, underlying therapeutic responses to an anticancer drug. Our work develops widely applicable tools to monitor the dynamic activation of biochemical networks at single-cell resolution. It highlights the necessity to resolve patterns of network activation in single cells, rather than the average state of individual nodes, to define, and potentially control, mechanisms underlying cellular decisions in health and disease.

Footnotes

  • ↵‡ Joint senior authors

Copyright 
The copyright holder for this preprint is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY 4.0 International license.
Back to top
PreviousNext
Posted October 02, 2018.
Download PDF

Supplementary Material

Email

Thank you for your interest in spreading the word about bioRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
Multiplexed biochemical imaging reveals caspase activation patterns underlying single cell fate
(Your Name) has forwarded a page to you from bioRxiv
(Your Name) thought you would like to see this page from the bioRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Multiplexed biochemical imaging reveals caspase activation patterns underlying single cell fate
Maximilian W. Fries, Kalina T. Haas, Suzan Ber, John Saganty, Emma K. Richardson, Ashok R. Venkitaraman, Alessandro Esposito
bioRxiv 427237; doi: https://doi.org/10.1101/427237
Reddit logo Twitter logo Facebook logo LinkedIn logo Mendeley logo
Citation Tools
Multiplexed biochemical imaging reveals caspase activation patterns underlying single cell fate
Maximilian W. Fries, Kalina T. Haas, Suzan Ber, John Saganty, Emma K. Richardson, Ashok R. Venkitaraman, Alessandro Esposito
bioRxiv 427237; doi: https://doi.org/10.1101/427237

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Cancer Biology
Subject Areas
All Articles
  • Animal Behavior and Cognition (4687)
  • Biochemistry (10371)
  • Bioengineering (7690)
  • Bioinformatics (26364)
  • Biophysics (13545)
  • Cancer Biology (10715)
  • Cell Biology (15456)
  • Clinical Trials (138)
  • Developmental Biology (8509)
  • Ecology (12837)
  • Epidemiology (2067)
  • Evolutionary Biology (16879)
  • Genetics (11409)
  • Genomics (15489)
  • Immunology (10633)
  • Microbiology (25243)
  • Molecular Biology (10233)
  • Neuroscience (54567)
  • Paleontology (402)
  • Pathology (1671)
  • Pharmacology and Toxicology (2899)
  • Physiology (4350)
  • Plant Biology (9263)
  • Scientific Communication and Education (1587)
  • Synthetic Biology (2558)
  • Systems Biology (6787)
  • Zoology (1470)