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Conductance-based models of neural activity produce large amounts of data that can be hard to visualize and
interpret. Here we introduce two novel visualization methods to display the dynamics of the ionic currents,
and to investigate how the contribution of each current changes in response to perturbation. We explored the
solutions of a single compartment, conductance-based model of neural activity with seven voltage-gated ionic
currents and a leak channel. We employed landscape optimization to find sets of maximal conductances that
produce similar target activity and displayed the dynamics of the currents. We examined in detail six examples
of a bursting model neuron that differ as much as 3-fold in the conductance densities of each of the 8 currents
in the model. The maximal conductance of each current does not simply predict the importance of the current
for neuronal dynamics. We then compared the effects of systematically reducing the conductances of each
current for neuronal dynamics, and demonstrate that models that appear similar under starting conditions
behave dramatically differently to the decreases in conductance densities. These examples provide heuristic
insight into why individuals with similar behavior can nonetheless respond widely differently to perturbations.
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I. Introduction

Experimental and computational studies have clearly
demonstrated that neurons and circuits with very simi-
lar behaviors can nonetheless have very different values
of the conductances that control intrinsic excitability and
synaptic strength. Using a model of the crustacean stom-
atogastric ganglion (STG), Prinz et al. (2004) showed
that similar network activity can arise from widely differ-
ent sets of membrane and synaptic conductances. Recent
experimental measurements have shown two to six-fold
variability in individual components in the same identi-
fied neurons (Schulz et al., 2006, 2007; Roffman et al.,
2011; Swensen and Bean, 2005). At the same time, the
use of RNA sequencing and other molecular measure-
ments have shown significant cell-to-cell variability in the
expression of ion channels (Temporal et al., 2011, 2014;
Tobin et al., 2009). Together these results suggests that
these activities arise from different cellular and network
mechanisms. Here we use conductance-based models to
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explore how different these mechanisms are and how they
respond to perturbation.

Because of the intrinsic variability, canonical models
that capture the mean behavior of a set of observa-
tions are not sufficient to address these issues (Golowasch
et al., 2002; Balachandar and Prescott, 2018). In order
to incorporate intrinsic biophysical variability Prinz et al.
(2004) introduced an ensemble modeling approach. They
constructed a database with millions of model parame-
ter combinations, analyzed their solutions to assess net-
work function, and screened for conductance values for
which the activity resembled the data (Calabrese, 2018).
One alternative to this approach was later introduced by
Achard and De Schutter (2006). They combined evo-
lutionary strategies with a fitness function based on a
phase-plane analysis of the models’ solutions to find pa-
rameters that reproduce complex features in electrophys-
iological recordings of neuronal activity, and applied their
procedure to obtain 20 very different computational mod-
els of cerebellar Purkinje cells. Here we adopt a simi-
lar approach and apply evolutionary techniques to opti-
mize a different family of landscape functions that rely on
thresholds or Poincaré sections to characterize the mod-
els’ solutions.

In some respects, biological systems are a black-box
because one cannot read out the values over time of all
the underlying components. In contrast, computational
models allow us to inspect how all the components in-
teract and this can be used to develop intuitions and
predictions about how these systems will respond to ex-
treme perturbations. Despite this, much modeling work
focuses on the variables of the models that are routinely
measured in experiments, such as the membrane poten-
tial. While in the models we have access to all state vari-
ables, this information can be hard to represent when
many conductances are at play. Similarly, the effect of
perturbations – such as the effect of partially or com-
pletely removing a particular channel – can be complex

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 25, 2018. ; https://doi.org/10.1101/427260doi: bioRxiv preprint 

mailto:lalonso@brandeis.edu
https://doi.org/10.1101/427260
http://creativecommons.org/licenses/by-nc-nd/4.0/


This manuscript has not been peer-reviewed L.M. Alonso and E. Marder

and also hard to display in an compact fashion. Here we
address these difficulties and propose two novel visual-
ization methods. We represent the currents in a model
neuron using stacked area plots: at each time step we
display the shared contribution of each current to the to-
tal current through the membrane. This representation
is useful to visualize which currents are most important
at each instant and allows the development of insight
into how these currents behave when the system is per-
turbed. Perturbation typically results in drastic changes
of the waveform of the activity and these changes de-
pend on the kind of perturbation under consideration.
We developed a representation that relies on computing
the classical probability of V (t), which allows the visu-
alization of these changes. We illustrate the utility of
these procedures using models of single neuron bursters
or oscillators.

II. Results

Finding parameters: landscape optimization
The numerical exploration of conductance-based mod-

els of neurons is a commonplace approach to address
fundamental questions in neuroscience (Dayan and Ab-
bott, 2001). These models can display much of the phe-
nomenology exhibited by intracellular recordings of sin-
gle neurons and have the major advantage that many
of their parameters correspond to measurable quantities
(Herz et al., 2006). However, finding parameters for these
models so that their solutions resemble experimental ob-
servations is a difficult task. This difficulty arises be-
cause the models are nonlinear, they have many state
variables and they contain a large number of parameters
(Bhalla and Bower, 1993). These models are complex
and we are not aware of a general procedure that would
allow the prediction of how an arbitrary perturbation in
any of the parameters will affect their solutions. The
problem of finding sets of parameters so that a nonlin-
ear system will display a target behavior is ubiquitous in
the natural sciences. A general approach to this problem
consists of optimizing a score function that compares fea-
tures of the models’ solutions to a set of target features.
Consequently, landscape-based optimization techniques
for finding parameters in compartmental models of neu-
rons have been proposed before (Achard and De Schutter,
2006; Druckmann et al., 2007; Ben-Shalom et al., 2012).
Here we employ these ideas to develop a family of score
functions that are useful to find parameters so that their
activities reach a desired target.

In this work we started with a well-studied model of
neural activity described previously (Liu et al., 1998;
Goldman et al., 2001; Prinz et al., 2004; OLeary et al.,
2014). The neuron is modeled according to the Hodgkin-
Huxley formalism using a single compartment with eight
currents. Following Liu et al. (1998), the neuron has
a sodium current, INa; transient and slow calcium cur-
rents, ICaT and ICaS ; a transient potassium current, IA;

a calcium-dependent potassium current, IKCa; a delayed
rectifier potassium current, IKd; a hyperpolarization-
activated inward current, IH ; and a leak current Ileak.

We explored the space of solutions of the model us-
ing landscape optimization. The procedure consists of
three parts. First we generate voltage traces by inte-
gration of eq. (5) (methods). We then score the traces
using an objective function that defines a target activity.
Finally, we attempt to find minima of the objective func-
tion. The procedures used to build objective functions
whose minima correspond to sets of conductances which
yield the target activities are shown in Figure 1. Volt-
age traces were generated by integration of eq. (5) from
fixed initial conditions (supplementary) and were then
scored according to a set of simple measures. The proce-
dure is efficient in part because we chose measures that
require little computing power and yet are sufficient to
build successful target functions. For example, we avoid
the use of Spike Density Functions (SDF) and Fourier
transforms when estimating burst frequencies and burst
durations. In this section we describe target functions
whose minima correspond to bursting and tonic activity
in single compartment models. Our approach can also
be applied to the case of small circuits of neurons (Prinz
et al., 2004).

We begin with the case of bursters (Fig. 1A). We
targeted this type of activity by measuring the burst-
ing frequency, the duty cycle, and the number of cross-
ings at a threshold value to ensure that spiking activity
is well separated from slow wave activity. To measure
the burst frequency and duty cycle of a solution we first
compute the time stamps at which the cell spikes. Given
the sequence of values V = {Vn} we determine that a
spike occurs every time that V crosses the spike detec-
tion threshold Tsp = −20mV (red in Fig 1). We build a
sequence of spike times S = {si} by going through the
sequence of voltages {Vn} and keeping the values of n
for which Vn ≤ Tsp and Vn+1 > Tsp (we consider up-
ward crossings). Each element si of the sequence S con-
tains the time step at which the i-th spike is detected.
Bursts are determined from the sequence of spike times
S; if two spikes happen within a temporal interval shorter
than δspt = 100msec they are part of a burst. Using
this criteria we can find which of the spike times in S
correspond to the start and end of bursts. The starts
(bs) and ends (be) of bursts are used to estimate the
duty cycle and burst frequency. We loop over the se-
quence of spike times and determine that a burst start
at si if si+1 − si < δspt and si − si−1 > δspt. After
a burst starts, we define the end of the burst at sk if
sk+1 − sk > δspt and sk − sk−1 < δspt. When a burst
ends we can measure the burst duration as δb = sk − si
and since the next burst starts (by definition) at sk+1

we also can measure the “period” (if periodic) of the os-
cillation as τb = δb + (sk+1 − sk). Every time a burst
starts and ends we get an instance of the burst frequency
fb = 1

τb
and the duty cycle dc = δb

τb
. We build distri-

butions of these quantities by looping over the sequence
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FIG. 1. Landscape optimization can be used to find models with specific sets of features. A Example model
bursting neuron. The activity is described by the burst frequency and the burst duration in units of the period (duty cycle).
The spikes detection threshold (red line) is used to determine the spike times. The ISI threshold (cyan) is used to determine
which spikes are bursts starts (bs) and bursts ends (be). The slow wave threshold (blue line) is used to ensure that slow wave
activity is separated from spiking activity. B Example model spiking neuron. We use thresholds as before to measure the
frequency and the duty cycle of the cell. The additional slow wave thresholds (purple) are used to control the waveform during
spike repolarization.

S and define the burst frequency and duty cycle as the
mean values < fb > and < dc >. Finally, we count
downward crossings in the sequence Vn with two slow
wave thresholds #sw (with tsw = −50 ± 1mV ) and the
total number of bursts #b in S.

For any given set of conductances we simulated the
model for 20 seconds and dropped the first 10 seconds to
mitigate the effects of transient activity. We then com-
puted the burst frequency < fb >, the duty cycle < dc >,
the number of crossings with the slow wave thresholds
#sw and the number of bursts #b. We discard unstable
solutions; a solution is discarded if std({fb}) ≥< fb >
×0.1 or std({dc}) ≥< dc > ×0.2. If a solution is not
discarded we can use the following quantities to measure
how close it is to the target behavior,

Ef = (ftg− < fb >i)
2 (1)

Edc = (dctg− < dc >i)
2

Esw = (
#sw

2
−#b)

2

Here Ef measures the mismatch of the bursting fre-
quency of the model cell with a target frequency ftg
and Edc accounts for the duty cycle. Esw measures the
difference between the number of bursts and the num-
ber of crossings with the slow wave thresholds tsw =
−50 ± 1mV ; because we want a clear separation be-
tween slow wave activity and spiking activity, we ask that
#sw = #b. Note that if during a burst V goes below tsw
this solution would be penalized (factor 1

2 accounts for
using two slow wave thresholds). Let g denote a set of
parameters, we can then define an objective function

E(g) = αEf + βEdc + γEsw, (2)

where the weights (α, β, γ) determine the relative impor-
tance of the different sources of penalties. In this work
we used α = 10, β = 1000, γ = 10, and the penalties
Ei were calculated using T = 10 seconds with dt = 0.1
msecs. The target behavior for bursters was defined by
dctg = 0.2 (duty cycle 20%) (dctg = 0.2) and bursting
frequency ftg = 1Hz.

We can use similar procedures to target tonic spiking
activity. Note that the procedure we described previously
to determine bursts from the sequence of spike times S is
useful in this case too. If a given spike satisfies our defi-
nition of burst start and it also satisfies the definition of
burst end then it is a single spike and the burst duration
is zero. Therefore we compute the bursts and duty cycles
as before and ask that the the target duty cycle is zero.

There are multiple ways to produce tonic spiking in
this model and some solutions display very different slow
wave activity. To further restrict the models we placed a
middle threshold at tmid = −35mV and detected down-
ward crossings at this value. We defined Elag as the lag
between the upward crossings at the spiking threshold
(tspk = −20mV ) and downward crossings at tmid. Elag
is useful because it takes different values for tonic spikers
than it does for single-spike bursters even though their
spiking patterns can be identical. Finally, we found that
the model attempts to minimize Elag at the expense of
hyperpolarizing the membrane beyond −50mV and in-
troducing a wiggle that can be different in different so-
lutions. In order to penalize this we included additional
thresholds between −35mV and −45mV , counted the
number downward crossings at these values #midi , and
asked that these numbers are equal to the number of
spikes #s. With these definitions we define the partial
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errors as before,

Ef = (ftg− < fb >i)
2 (3)

Edc = (dctg− < dc >i)
2

Emid =
∑
i

(#midi −#s)
2

Esw = (#sw)2.

The total error as a function of the conductances reads
as follows,

E(g) = αEf + βEdc + γEmid + δEsw + ηElag. (4)

The values α = 1000, β = 1000, γ = 100, δ = 100 and
η = 1, produce solutions that are almost identical to the
one displayed in Fig. (1B).

In all cases, evaluation of the objective functions re-
quires that the models are simulated for a number of
seconds and this is the part of the procedure that re-
quires most computing power. Longer simulations will
provide better estimations for the burst frequency and
duty cycle of the cells, but will linearly increase the time
it takes to evaluate the objective function. If the simu-
lations are shorter, evaluations of the objective function
are faster but its minimization may be more difficult due
to transient behaviors and its minima may not corre-
spond to stable solutions. In this work we minimized the
objective function using a custom genetic algorithm (Hol-
land, 1992; Goldberg and Holland, 1988). The choice of
the optimization routine and the choice of the numerical
scheme for the simulations are independent of the func-
tions. The same functions can be utilized to estimate
parameters in models with different channel types.
Visualizing the dynamics of ionic currents: currentscapes

Most modeling work focuses on the variables of the
models that are routinely measured in experiments such
as the membrane potential. While in the models we have
access to all state variables, this information can be hard
to represent when several current types are at play. One
difficulty is that some currents like Na and Kd vary over
several orders of magnitude, while other currents like the
leak and H span smaller ranges. Additionally, the rela-
tive contribution of each current to the total flux through
the membrane is different at different times. Here we
introduce a novel representation that is simple and per-
mits displaying the dynamics of the currents in a cohesive
fashion.

At any given time stamp we can compute the total
inward and outward currents. We can then express the
values of each current as a percentage of this quantity.
The normalized values of the currents at any time can
be displayed as a pie chart representing the share of each
current type. Because we want to observe how these per-
centages change in time, we display the shares in a bar
instead of a disk. The currentscapes are constructed by
applying this procedure to all time stamps and stacking

the bars. These types of plots are known as stacked area
plots and their application to this problem is novel. Fig-
ure 2 shows the currentscape of a periodically bursting
model neuron over one cycle.

Visualizing changes in the waveforms as a parameter is
changed

To visualize changes in the activity as a conductance
is gradually removed we computed the distribution of
membrane potential V values. This reduction contains
information about the waveform of the membrane po-
tential, while all temporal information such as frequency
can no longer be recovered. The number of times that a
given value of V is sampled is proportional to the time
the system spends at that value. The distribution of V ,
shown in Fig. 3A, is larger than 104 for values between
−52mV and−40mV , and smaller than 103 for V between
−35mv and 20mV . The areas of the shaded regions are
proportional to the probability that the system will be
observed at the corresponding V range. Note that the
area of the dark gray region is 105 while the light gray is
0.5× 104, so the probability that the cell is, at any given
time, in a hyperpolarized state is more than 20 times
larger than the probability that the cell is spiking. The
distribution shows the overall or total amplitude of the
oscillation since the count of V is zero outside a range
(−52mV to 20mV ). As conductances are gradually re-
moved the waveform of the activity changes and so does
the distribution of V values. In Figure 3 we display the
changes in these distributions as gNa is decreased.

The distribution of V features sharp peaks. In many
cases, the peaks in these distributions correspond to fea-
tures of the waveform, such as the amplitudes of the indi-
vidual spikes, or the minimum membrane potential (see
Fig, 3B). This happens because every time the mem-
brane potential reaches a maxima or minima (in time)
the derivative dV

dt is close to zero. The system spends

more time close to values of V where the velocity dV
dt

is small than in regions where dV
dt is large, as it occurs

during the flanks of spikes. Therefore, when we sample
a solution at a random instant, it is more likely that V
corresponds to the peak of a spike than to either flank of
the spike, while the most likely outcome is that V is in
the hyperpolarized range (< −40mV ). Notice also that
in this particular burster there are 12 spikes in the burst
but there are only 7 peaks in the distribution (between
10mV and 20mV ); some spikes have similar amplitudes
so they add to a larger peak in the distribution. This
is not the case for the 80% condition where each peak
corresponds to a maxima or minima of different ampli-
tudes. Figure 3C shows the distributions of V as gNa
is decreased. For each value in the range (1 to 0 with
N = 1001 values) we computed the count p(V, gNa).
The plot shows the distribution log10(p(V, gNa) + 1) in
gray scales. In this example, the cell remains in a burst-
ing regime up to ≈ 80%. The spikes produce thin ridges
that show how their individual amplitudes change. No-
tice the abrupt change in membrane potential as the ac-
tivity switches from bursting (control) to a single-spike
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FIG. 2. Currentscape of a model bursting neuron. A simple visualization of the dynamics of ionic currents in these
models A Membrane potential of a periodic burster. B Percent contribution of each current to the total outward and inward
currents at each time stamp. The black filled curves on the top and bottom indicate total inward outward currents respectively
on a logarithmic scale. The color curves show the time evolution of each current as a percentage of the total current at that
time. For example, at t = T1 the total outward current is ≈ 2.5nA and the orange shows a large contribution of KCa. At
t = T2 the total outward current has increased to ≈ 4nA and the KCa current is contributing less to the total. C Percent
contribution of each current type to the total inward and outward currents displayed as pie charts at times T1 and T2

bursting mode (80%gNa). After the transition the am-
plitude of the spikes are different; two spikes go beyond
0mV and the rest accumulate near −25mV . As gNa→ 0
the oscillations collapse onto a small band at ≈ −20mV
and only one spike is left.

The distributions allow the visualization of the ampli-
tudes of the individual spikes, the slow waves, and other
features as the parameter gNa is changed. To highlight
ridges in the distributions, the center panel in Figure 3D
show the derivative ∂V log10(p(V )) in colors. This opera-
tion is similar to performing a Sobel filtering(Sobel and
Feldman, 1968) of the image in Fig. 3C. The traces on
each side of this panel correspond to the control (right)
and 80%gNa conditions. Notice how the amplitudes of
each spike, features of the slow wave, and overall am-
plitude correspond to features in the probability distri-
bution. This representation permits displaying how the
features of the waveform change for many values of gNa.

The maximal conductances do not fully predict the
currentscapes

We explored the solutions of a classic conductance-
based model of neural activity using landscape optimiza-
tion and found many sets of parameters that produce
similar bursting activity. Inspired by intracellular record-
ing performed in PD neurons in crabs and lobsters we
targeted bursters with frequencies fb ≈ 1Hz and duty
cycles dc ≈ 20%. We built N = 1000 bursting model
neurons and inspected the dynamics of their currents us-
ing their currentscapes. Based on this, we selected six
models that display similar membrane activity via dif-
ferent current compositions for further study. Because
the models are nonlinear, the relationship between the
dynamics of a given current type and the value of its
maximal conductance is non-trivial. Figure 4 shows the
values of the maximal conductances in the models (top)
and their corresponding activity together with their cur-
rentscapes (bottom).

It can difficult to predict the currentscapes based on
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FIG. 3. Membrane potential V distributions. A Distribution of membrane potential V values. The total number of
samples is N = 2.2× 109. Y-axis is logarithmic. The area of the dark shaded region can be used to estimate of the probability
that the activity is sampled between −50mV and −40mV , and the area of the light shaded region is proportional to the
probability that V (t) is sampled between −30mV and 20mV . The area of the dark region is 20 times larger than the light
region. B Membrane potential V and distribution of V (in colors) for three values of the parameter. The gray lines highlight
that the amplitudes of the spikes produce peaks in the distributions. The system is sampled more often at values of V where
it spends more time; when V (t) reaches a maximum or a minimum the velocity ‖ dV

dt
‖ ≈ 0 is small so it is more likely to obtain

a sample at these values. C Distribution of V as a function of V and parameter gNa. The color lines indicate the values of
gNa that correspond to the traces and distributions shown in B. D Waveforms under two conditions and their correspondence
to the ridges of the distribution of V .
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FIG. 4. Currentscapes of model bursting neurons. (top) Maximal conductances of all model bursters. (bottom) The
panels shows the membrane potential of the cell and the percent contribution of each current over two cycles.

the values of the maximal conductances. In most cases it
appears that the larger the value of the maximal conduc-
tance, the larger the contribution of the corresponding
current. However, this does not hold for some current
types in these models. For example, burster (f) shows
the largest A contribution, but bursters (c) and (e) have
larger values of gA. The maximal conductance of the
CaS current is low in model (f) but the contribution of
this current to the total is similar to that in models (a)
and (b). The values of gKCa are similar for bursters
(e) and (f) but the dynamics of this current is visibly
different.

Response to current injection
The models produce similar activity with different cur-

rent dynamics. To further expose differences in how these
activities are generated we subjected the models to sim-
ple perturbation paradigms. We begin describing the re-
sponse to constant current injections in Figure 5. Fig-
ures 5A and 5B show the membrane potential of model
(a) for different values of injected current. In control, the
activity corresponds to regular bursting and larger depo-
larizing currents result in a plethora of different regimes.
The distributions of inter-spike intervals (ISI) provide a
mean to characterize these regimes (Fig. 5C). When the
cell is bursting regularly such as in control and in the
0.8nA condition, the interspike distributions consist of
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FIG. 5. Response to current injections and interspike-intervals (ISI) distributions of model (a). A (top) Control
traces (no current injected 0nA), regular bursting (0.8nA), irregular bursting 1.95nA. B (top) Fast regular bursting (fb ≈ 6Hz),
quadruplets (3.45nA), doublets (3.75nA) and singlets (4.5nA) (tonic spiking). C ISI distributions over a range of injected
current.

one large value that corresponds to the interburst in-
terval (≈ 640msec in control) and several smaller val-
ues around 10msec which correspond to the ISI within
a burst. There are current values for which the activity
appears irregular and correspondingly, the ISI values are
more diverse. Figure 5B shows the response of the model
to larger depolarizing currents. The activity undergoes a
sequence of interesting transitions which result in tonic
spiking. When Ie = 3.45nA the activity is periodic and
there are 4 ISI values, larger currents result in 2 ISI val-
ues and tonic spiking produces one ISI value. Figure 5C
shows the ISI distributions (y-axis, logarithmic scale) for
each value of injected current (x-axis).

All these bursters transition into tonic spiking regimes
for depolarizing currents larger than 5nA but they do
so in different ways. To explore these transitions in de-
tail, we computed the inter-spike interval (ISI) distribu-

tions over intervals of 60sec for different values of the
injected current. Figure 6 shows the ISI distributions for
the six models at N = 1001 equally spaced values of in-
jected current over the shown range. The y-axis shows
the values of all ISIs in logarithmic scale and the x-axis
corresponds to injected current. In control, the ISI dis-
tribution consists of a few small values (< 100msec) that
correspond to the ISIs of spikes within a burst, and a
single larger value (> 100msec) that corresponds to the
interval between the last spike of a burst and the first
spike of the next burst. When the cell fires tonically
the ISI distributions consist of a single value. The ISI
distributions exhibit complicated dependences with the
control parameter that result in beautiful patterns. For
some current values, the cells produce small sets of ISI
values indicating that the activity is periodic. However,
this activity is quite different across regions. Interspersed
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FIG. 6. ISI distributions of the six model bursting neurons over a range of injected current. The panels show all
ISI values of each model burster over a range on injected currents (vertical axis is logarithmic). All bursters transition into
tonic spiking regimes for injected currents larger than 5nA and the details of the transitions are different across models.

with the regions of periodicity there are regions where the
ISI distributions densely cover a band of values indicating
non-periodic activity. Overall the patterns feature nested
forking structures that are reminiscent of classical period
doubling routes to chaos (Feigenbaum, 1978).

Perturbing the models with gradual decrements of the
maximal conductances

Figures 7 and 8 show the activity of the bursters when
each of their channels are gradually decreased. We sim-
ulate the application of blockers by gradually decreasing
the maximal conductances. The figures show 3 seconds of
data for each condition. In all panels, the top traces cor-
respond to the control condition (100%) and the traces
below show the activity that results from decreasing the
maximal conductance. The dashed lines are placed for
reference at −50mV and 0mV . Each panel shows the
traces for 11 values of the corresponding maximal con-
ductance equally spaced between 100% (control) and 0%
(completely removed). Each row of panels corresponds to
a current type and the columns correspond to the differ-
ent model bursters. Figure 7 displays the perturbations
for the inward currents and Figure 8 shows the outward
and leak currents.

The top row in Figure 7 shows the effect of gradu-
ally decreasing the Na current in the bursters. In all
cases, the activity transitions from the control bursting
behavior to a single-spike bursting regime. These transi-
tions occur at different levels and the final traces, when
the Na current is completely removed (panel bottom),
have different frequencies. The effect of decreasing CaT
is less consistent across models. When the CaT is com-

pletely removed, most models transition into a tonic spik-
ing regime but the spread of frequencies is much larger
than in the Na case. The exception is model (a), which
remains a burster but at a much lower frequency and
with duty cycle ≈ 0.5. The intermediate decrements
highlighted in blue also show visible differences. When
gCaT → 0.7gCaT models (a), (b) and (c), show bursting
activity at different frequencies and with different duty
cycles. Models (d), (e) and (f), become tonic spikers at
this condition, but their frequencies are different. Note
that in the case of model (e) the spiking activity is not
regular and the ISIs take several different values. When
gCaT → 0.2gCaT most models spike tonically but now
(e) is regular and (f) shows doublets. Model (a) is the
exception and remains a burster.

Gradually removing CaS has a strong effect in the fre-
quency of bursts and in most models this perturbation
does not affect the burst duration or stability of the os-
cillations. This perturbation is most disruptive in model
(f) where CaS dominates. When gCaS → 0.4gCaS all
models remain bursting but they do so at different fre-
quencies and the burst duration in (f) is halved. Gradu-
ally removing the H current disrupts the stability of the
oscillations. Most models display bursts but the activity
is no longer periodic. When gH → 0.2gH most models
burst and their frequencies are similar to the controls.
Model (e) is the exception and becomes a single-spike
burster.

Figure 8 shows the effect of gradually decreasing the
outward and leak currents. Decreasing the A channel re-
sults again in divergent responses across the population
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FIG. 7. Effects of decreasing maximal conductances: inward currents. The figure shows the membrane potential V
of all model cells as the maximal conductance gi of each current is gradually decreased from 100% to 0% . Each panel shows
11 traces with a duration of 3secs. Dashed lines are placed at 0mV and −50mV . The shading indicates values of maximal
conductance for which the activity the models differs the most.

of bursters. Burster (a) is the only model that stays rela-
tively unaffected by this perturbation, probably because
gA is lowest in this model. The rest of the models tran-
sition into single-spike bursting regimes. This transition
occurs at different simulated blocker concentrations and

the frequencies of the blocked states are different. When
gA → 0.7gA models (a) and (c) remain bursting while
the rest depart visibly from their controls.

Decreasing KCa has a similar effect across models:
burst frequencies decrease and burst durations increase
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FIG. 8. Effects of decreasing maximal conductances: outward currents. The figure shows the membrane potential V
of all model cells as the maximal conductance gi of each current is gradually decreased from 100% to 0%. Each panel shows
11 traces with a duration of 3secs. Dashed lines are placed at 0mV and −50mV . The shading indicates values of maximal
conductance for which the activity the models differs the most.

up to a critical value after which the models spike ton-
ically (with different frequencies). Decreasing Kd dis-
rupts the models in a similar way: all models lose the
capacity to produce bursts. The activity corresponds
to single-spike bursting modes up to a critical decrease

after which the models become quiescent. This tran-
sition occurs at different points across models. When
gKd→ 0.3gKd models (a), (b), (c) and (d) produce os-
cillations at different frequencies and models (e) and (f)
are quiescent. Finally, decreasing the leak current leads
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to different behaviors across models. Models (c) and (e)
remain relatively unaffected except for small changes in
burst frequency (model (f) has no leak channel). In con-
trast, models (a), (b) and (d), transition into a single-
spike bursting modes with different frequencies. This
transition occurs at different conductance values. When
the leak channel is completely removed, only model (d)
becomes quiescent. Note that the membrane potential
of the quiescent state is below −50mV unlike the Kd
case where quiescence corresponds with more depolarized
states.

Effects of gradually removing CaT on all currents
Gradually removing one current impacts the dynamics

of all currents. We illustrate this using currentscapes to
inspect how the contributions of currents change in each
condition. Figure 9 shows the currentscapes of model (f)
as the maximal conductance of the CaT current is gradu-
ally decreased. Each panel corresponds to a different sim-
ulated blocker concentration and shows the membrane
potential on top, and the currentscapes at the bottom.
The top panels show 1 second of data and correspond
to the 100%gCaT (control), 90%gCaT and 80%gCaT
conditions. The center panels show 0.1 seconds of data
for decrements ranging from 70% to 20% and the bottom
panels show 2 seconds for the 10% and 0% conditions. As
CaT is gradually removed the activity transitions from a
bursting regime to a tonic spiking regime.

When gCaT → 90% the neuron produces bursts but
these become irregular and their durations change. De-
creasing the conductance to 80%gCaT results in com-
pletely different activity. The spiking pattern appears to
be periodic but there are at least three different ISI val-
ues. It is hard to see changes in the CaT contribution
across these conditions, but changes in other currents are
more discernible. The contribution of the A current that
is large in the control and 90%gCaT conditions and is
much smaller in the 80%gCaT condition. Additionally,
the Na and KCa currents show larger contributions, the
CaS current contributes less and the H current is neg-
ligible. Further increments in simulated blocker concen-
tration result in tonic spiking regimes with frequencies
ranging from ≈ 20Hz to ≈ 10Hz. The center panels
in Figure 9 show the currentscapes for these conditions
on a different time scale to highlight the contributions
of CaT . The leftmost panel shows the 70%gCaT con-
dition. In this panel, we placed vertical lines indicat-
ing the time stamps at which the peak of the spike and
the minimum occur. Notice the large contribution of the
Na current prior to the peak of the spike, and the large
contribution of the Kd current for the next ≈ 10msec.
When the membrane potential is at its minimum value
the CaT current dominates the inward currents and re-
mains the largest contributor for the next≈ 10msec. The
CaT current reduces it share drastically by the time the
Na current is visible and CaS takes over. The contri-
bution of CaT remains approximately constant during
repolarization and vanishes as the membrane becomes
depolarized and the Na current becomes dominant. The

effect of removing CaT is visible in this scale. The wave-
form of the contribution remains qualitatively the same:
largest at the minimum voltage and approximately con-
stant until the next spike. However, the contribution
of CaT during repolarization becomes smaller, and for
larger conductance decrements results in a thiner band.
Finally, the bottom panels show the cases 10%gCaT and
0%gCaT which correspond to a two-spike burster and
a tonic spiker respectively. Note that even though the
contribution of CaT is barely visible, complete removal
of this current results in a very different pattern. The
activity switched from bursting to spiking and the cur-
rent composition is different; KCa disappeared in the 0%
condition and the A current takes over. Notice also the
larger contribution of the H current.

Effects of completely removing a current
Figures 10 and 11 show the currentscapes for the com-

pletely removed condition for all models and all channel
types. The figures consist of 4×6 panels where the mod-
els are arranged along columns and the current types
along rows. Each panel shows 2 seconds of data. The in-
ward currents are portrayed in Figure 10 and the outward
and leak currents are shown in Figure 11. The top row in
Figure 10 shows the activity and the currentscapes of the
bursters when the Na current is completely removed. All
bursters become single-spike bursters but the frequencies
and the contributions of each current to the activity are
different across models. The calcium currents are suffi-
cient to initiate a burst and elicit a spike in all models.
Completely removing CaT (second row) results in tonic
spiking in most models and here again the currents are
different across models. Note that the activity is similar
in models (b) and (d) and so are their currents. This is
not the case for models (c) and (e), however, which also
display similar activity but have different contributions
from each current. Removing the CaS current (third
row) leads to quiescence in most models, except for model
(e) that remains bursting at a low frequency (τ ≈ 3 secs.).
The currents are similar for models (b), (c), (d) and (f),
with larger A contributions than in (a), and H contribu-
tions not present in (e). Removing the H current does
not disrupt bursting in most models but burst durations
are affected. The exception is model (e) that transitions
into a single-spike bursting regime. Notice the small os-
cillation before hyperpolarization.

The top row in Figure 11 shows the activity and the
currentscapes of the bursters when the A current is com-
pletely removed. This perturbation results in similar ac-
tivities across models. Model (a) has the smallest gA
value and is virtually unaffected by this perturbation, ex-
cept that the burst duration can be different from burst
to burst. The rest of the models transition to single-spike
bursting regimes with different frequencies. The activity
in models (b), (c) and (d) is similar but the ratio of H
and leak currents is different. Models (d) and (f), which
do not have leak and H channels respectively, still dis-
play similar waveforms at a slower pace. Removing KCa
results in tonic spiking in models (a), (e), and (f), and
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FIG. 9. Decreasing CaT in model (f). The figure shows the traces and the currentscapes of model (f) as CaT is gradually
decreased. Top panels show 1 second of data, center panels show 0.1 seconds and the bottom panels show 2 seconds (see full
traces in Figure 8).
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FIG. 10. Complete removal of one current: inward currents. The figure shows the traces and currentscapes for all
bursters when one current is completely removed.

in quiescence in models (b), (c), and (d). In the case of
the spikers the frequencies and the contributions of the A
current are different. Removing the Kd current results in
quiescence and in this case, the currents are distributed
in almost identical proportions across models. Finally,
removing the leak current result in different activities.
Models (a) and (b) become single-spike bursters but their
currents and frequencies are different. Bursters (c) and
(e) increase their frequency but remain mostly unaltered
despite the visible contributions of this current in the
control conditions. Model (d) becomes quiescent and the
total inward and outward currents show the lowest values
(below < 1nA). Model (f) has no leak channel.
Changes in waveform as conductances are gradually
decreased

Figures 12 and 13 show how the waveform of the mem-
brane potential V changes as currents are gradually de-
creased. The panels show the ridges of the probability
distributions p(V ) of the membrane potential V (t) for
1001 values of maximal conductance values (see meth-
ods). The probability of V (t) was computed using 30
seconds of data after dropping a transient period of 120
seconds. It was estimated using Nb = 1001 bins in the
range (−70, 35)mv and N ≈ 2 × 106 samples for each
maximal conductance value. The system spends more

time in regions where dV
dt ≈ 0 and is sampled more at

those values. Therefore, features such as the amplitudes
of the spikes appear as sharp peaks in the probability
distributions. To highlight these peaks and visualize how
they change as currents are gradually decreased, we plot
the derivative or sharpness of the distribution in colors
(see color scale in Fig. 3D).

Figure 12 shows this analysis for the inward currents.
The top rows correspond to removing the Na current in
the models. Note that the minimum value of V in control
(left) is close to −50mV and a small increment in gNa
results in a larger amplitude. The colored curves inside
the envelopes correspond to the spikes’ amplitudes and
features of the slow waves. For instance, when the Na
current is completely removed (right) the amplitude of
the oscillation is ≈ 40mV and the activity corresponds
to a single-spike bursting mode. The spike amplitude is
given by the edge of the colored region and the curve near
≈ −20mV indicates the burst “belly”: the membrane hy-
perpolarizes slowly after spike termination and there is
a wiggle at this transition. Removing CaT in model (a)
does not disrupt bursting activity immediately. Notice
that the amplitude of the bursts remains approximately
constant over a range of concentrations. The dim red and
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FIG. 11. Complete removal of one current: outward currents. The figure shows the traces and currentscapes for all
bursters when one current is completely removed.

yellow lines at ≈ 20mV show that the amplitudes of the
spikes are different and have different dependences with
gCaT . When the model transitions into a tonic spik-
ing regime, the amplitude of the spikes is the same and
there is only one amplitude value. This value stays con-
stant over a range but the minimum membrane potential
decreases and the overall amplitude therefore increases.
The model returns to a bursting regime for values of
gCaT smaller than 30%gCaT . Notice that in model
(a) the membrane potential during bursts goes below
−50mV , unlike in the control condition. Notice that the
waveform of the membrane potential changes abruptly as
gCaT is reduced and the models transition into a spik-
ing regime. Model (f) is less resilient to this perturbation
since this transition takes place at lower conductance val-
ues. Removing CaS does not much change the waveform
, but it alters the temporal properties of the activity. The
models remain bursting up to a critical concentration and
the amplitude of the spikes do not change much. The fea-
tures of the slow wave do not change much either except
in model (f). Model (c) is less resilient to this perturba-
tion since it becomes quiescent at lower concentrations
than the other models. The effect of gradually remov-
ing H appears similar to CaS in this representation. In
this case again, the morphology of the waveform is less

altered than its temporal properties (except in model (e)
where a transition takes place).

Figure 13 shows the same plots for the outward and
leak currents. Removing the A current has little effect in
model (a) and this translates into curves that appear as
parallel lines indicating spikes with different amplitudes
that remain unchanged. The rest of the models exhibit
a transition into a different regime. The waveforms of
this regime appears similar to the waveforms which result
from removing gNa (see Fig. 7) but in this representa-
tion it is easier to observe differences such as the overall
amplitude of the oscillation. The amplitude decreases as
gNa is decreased and increases as gA is decreased. Re-
moving KCa has a similar effect than removing gCaT in
that the models transition into a tonic spiking regimes.
The difference is that the spiking regimes which result
from removing KCa have smaller amplitudes and also
correspond to more depolarized states. In the case of the
KCa current the model transitions into a tonic spiking
regime that is different from the tonic spiking regime in
the gCaT case. All models are very sensitive to removing
Kd and a low values result in single-spike bursting modes
with large amplitudes. Model (c) is most resilient to this
perturbation and exhibits a large range with bursting
modes. These oscillations break down in a similar way
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FIG. 12. Changes in waveform as currents are gradually removed. Inward currents. The figure shows the ridges of
the probability distribution of V (t) as a function of V and each maximal conductance p(V, gi). The ridges of the probability
distributions appear as curves and correspond to values of V where the system spends more time, such as extrema. The panels
show how different features of the waveform such as total amplitude, and the amplitude of each spike, change as each current
is gradually decreased.

to the Na case and display similar patterns. As before,
the top edge corresponds to the amplitude of the large
spike and the curves in the colored region correspond to
extrema of the oscillation. After spiking, the membrane
remains at a constant depolarized value (≈ −20mV ) for
a long period and produces a high frequency oscillation

before hyperpolarization. The amplitude of this oscilla-
tion increases as Kd is further decreased, and this results
in a white curve that starts above 0mV and ends above
0mV . The beginning of this curve corresponds to a high
frequency oscillation that occurs after spike termination.
This type of activity is termed plateau oscillations and
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FIG. 13. Changes in waveform as currents are gradually removed. Outward and leak currents. The figure shows
the ridges of the probability distribution of V (t) as a function of V and each maximal conductance p(V, gi). See Figure 12.

was reported in models of leech heart interneurons (Cym-
balyuk and Calabrese, 2000) and in experiments in lam-
prey spinal neurons (Wang et al., 2014). These features
are hardly visible in the traces in Fig. 8 and are high-
lighted by this representation. Finally, the Leak case
appears as a mixture of the Na and A cases. The cells
remain bursting over a range of values and some of them
transition into a single-spike bursting mode that is dif-

ferent from the KCa case.

Changes in current contributions as conductances are
gradually decreased

The key to the visualization method in Figs. 12 and 13
is to consider V (t) not as a time series but as a stochastic
variable with a probability distribution. The same proce-
dure could be applied to the time series of each current.
However, because the contributions of the currents are
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different at different times and at different maximal con-
ductance values, it is not possible to display this informa-
tion using the same scale for all channels. To overcome
this we proceed as in the currentscapes and instead focus
on the normalized currents or shares to the total inward
and outward currents (the rows of matrices Ĉ+ and Ĉ−,

see methods). The current shares Ĉi(t) correspond to
the width of the color bands in the currentscapes and
can also be represented by a time series that is normal-
ized to the interval [0, 1]. The probability distribution of

Ĉi(t) permits displaying changes in the contributions of
each current to the activity as one current is gradually
removed. Interpreting these distributions is straightfor-
ward as before: the number of times the system is sam-
pled in a given current share configuration is proportional
to the time the system spends there.

Figure 14 shows the probability distributions of the
current shares as CaT is gradually decreased in model
(f) (see also Figure 9). The panels show the share of each
current as CaT is gradually decreased and the probabil-
ity is indicated in colors. In control the Na and CaT
current shares are distributed in a similar way. Both
currents can at times be responsible for ≈ 90% of the in-
ward current, but most of the time they contribute with
≈ 20%. The Na current is larger right before spike repo-
larization and the CaT contributes with about ≈ 90% of
the small (≈ 5nA) total inward current. For larger decre-
ments the system transitions into tonic spiking and the
contribution of the Na current is more evenly distributed
over a wider range. The contribution of the CaT current
is predominantly ≈ 15% and trends to zero as gCaT → 0.
Note also that as the contribution of CaT decreases, the
contribution of CaS increases to values larger than 75%
while in control it contributes with ≈ 50%. The con-
tribution of the H current is evenly distributed between
0% and ≈ 80%, it becomes negligible between ≈ 80% and
≈ 20% and becomes dominant after 20%. The A current
behaves similarly to the H. It contributes with ≈ 90%
of the (small ≈ 2nA) total outward currents right be-
fore burst initiation and its contribution decreases dras-
tically when the system transitions into tonic spiking. As
CaT is removed further the A current is more likely to
contribute with a larger share. The contribution of the
KCa current decreases as gCaT is decreased and some
of it persists even when gCaT is completely removed. Fi-
nally, the contribution of the Kd current does not appear
to change much and nor does its role in the activity.

Figure 15 shows the effect of gradually decreasing each
current on all currents in model (c). The figure features
8 × 8 = 64 panels. The rows indicate which channel is
removed and the columns show the effect of this pertur-
bation on all the currents. The first row shows how the
shares of each current to the activity change as the Na
current is decreased. For instance, the effect of decreasing
gNa on the Na current (indicated by *) is as expected,
with the maxima of the distribution trending to zero as
gNa→ 0. The effect of removing gNa on the other cur-
rents is non-trivial and is displayed along the same row.

The rows show the same analysis for other channels in-
dicated in the figure label. Notice that while the effect
of removing a current on that same current (diagonal
panels) is relatively predictable, the rest of the currents
become rearranged in complicated ways. Finally, note
that in all cases for small decrements there are no neg-
ligible currents since for each of them, there are periods
of time where they contribute to at least ≈ 20% of the
total current.

III. Discussion

There is an ever larger availability of experimental data
to inform detailed models of identified neuron types (Mc-
Dougal et al., 2017). Experimenters have determined the
kinetics of many channel types both in vertebrate and
invertebrate neurons. There are also model databases
with thousands of parameters which permit the develop-
ment of large scale models of neural tissue (Bezaire et al.,
2016). One difficulty in ensemble modeling is the neces-
sity of incorporating the biological variability observed
in some of the parameters – such as the conductances
– at the same time that we require the models to cap-
ture some target activity. In other words, we may be
interested in modeling a type of cell that displays some
sterotypical behavior, and would like to obtain as many
different versions of such models. Two main avenues to
this problem were introduced in the past. One consists
of building a database of model solutions over a search
domain and screening for target solutions: this considers
all possible value combinations within an allowed range
up to a numerical resolution and then applies quantita-
tive criteria to determine which solutions correspond to
the target activity (Prinz et al., 2004). An alternative ap-
proach consists of designing a target function that assigns
a score to the models’ solutions in such a way that lower
scores correspond to solutions that meet the targets, and
then optimizing these functions (Achard and De Schut-
ter, 2006; Druckmann et al., 2007; Ben-Shalom et al.,
2012).

Both approaches have advantages and shortcomings.
In the case of the database approach, trying all posible
parameter combinations in a search range becomes pro-
hibitively expensive as more parameters are allowed to
vary. One advantage of this approach is that it provides
a notion of how likely it is to find conductances within a
search range that will produce the activity. In the land-
scape approach we find solutions by optimization and –
without further analysis – we do not know how likely is
a given solution type. This approach has the advantage
that it can be scaled to include large numbers of param-
eters. Additionally, if a particular solution is interest-
ing, we can use genetic algorithms on successful target
functions to “breed” as many closely related models as
desired. Ultimately, any optimization heuristic requires
blind testing random combinations of the parameters,
and developing quantitative criteria for screening solu-
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FIG. 14. Changes in waveform of current shares as one current is gradually decreased. The panels show the
probability distribution of the share of each current Ĉi(t) for model (f) as CaT is decreased

tions in a database results in some sort of score function,
so both approaches are complementary. A successful tar-
get function can determine if a random perturbation re-
sults in disruption of the activity and this can be used to
perform population-based sensitivity analyses (Devenyi
and Sobie, 2016).

Regardless of the optimization approach most work is
devoted to the design of successful target functions. Dif-
ferent modeling problems require different target func-
tions (Roemschied et al., 2014; Fox et al., 2017; Migliore
et al., 2018) and one challenge in their design is that
sometimes we do not know a priori if the model contains
solutions that will produce good minima. In addition, a
poorly constrained target function can feature multiple
local minima that could make the optimization harder,
so even if there are good minima they may be hard to
find. One difference between the landscape functions in
Achard and De Schutter (2006) and the ones utilized
here is the way that model solutions are compared to
a target time series. They utilize a phase-plane method
to compare the waveform of the membrane potential to
some target time series. The functions introduced here
use an analysis based on Poincaré sections or thresholds
to characterize the waveform and to define an error or
score. Instead of targeting a particular waveform we ask
that some features of the waveform – such as the fre-
quency and the burst duration – are tightly constrained,
while other features – such as the concavity of the slow
waves – can be diverse. This is motivated by the fact
that across individuals and species, the activity of the
pyloric neurons can be diverse but the neurons always
fire in the same sequence and the burst durations have a
well-defined mean. Our approach is successful in finding
hundreds of models that display a target activity in min-
utes using a commercially available desktop computer.
Application of evolutionary techniques to optimize these
functions provides a natural mean to model the intrinsic
variability observed in biological populations.

One of the main benefits of computational modeling is
that once a behavior of interest is successfully captured
we then possess a mechanistic description of the phenom-
ena that can be used to test ideas and inform experiments
(Coggan et al., 2011; Lee et al., 2016; Devenyi and So-
bie, 2016; Gong and Sobie, 2018). As the models gain
biophysical detail these advantages wane in the face of
the complexity imposed by larger numbers of variables
and parameters. Numerical models can generate large
ammounts of data that can be hard to visualize and inter-
pret. The development of novel visualization procedures
has the potential to greatly assist intuition into the de-
tails of how these models work (Gutierrez et al., 2013).
Here we introduced a novel representation of the dynam-
ics of the ionic currents in a single compartment neuron.
Our representation is simple and displays in a concise way
the contribution of each current to the activity. This rep-
resentation is easily generalizable to multi-compartment
models and small networks.

We employed these procedures to build many similar
bursting models with different conductance densities and
to study their response to perturbations. The responses
of the models to current injections and gradual decre-
ments of their conductances can be diverse and complex.
Inspection of the ISI distributions revealed wide ranges
of parameter values for which the activity appears irreg-
ular, and similar regimes can be attained by gradually
removing some of the currents. Period doubling routes
to chaos in neurons have been observed experimentally
and in conductance-based models (Hayashi et al., 1982;
Hayashi and Ishizuka, 1992; Szucs et al., 2001; Canavier
et al., 1990). The sort of bifurcation diagrams displayed
by these models upon current injection are qualitatively
similar to those exhibited by simplified models of spik-
ing neurons for which further theoretical insight is pos-
sible (Touboul and Brette, 2008). Period doubling bi-
furcations and low dimensional chaos arise repeatedly in
neural models of different natures including rate mod-
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FIG. 15. Changes in waveform of current shares as one current is gradually decreased. The panels show the
probability distribution of the share of each current Ĉi(t) for model (c) as each current is decreased
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els(Ermentrout, 1984; Alonso, 2017). The bursters stud-
ied here are close (in parameter space) to aperiodic or
irregular regimes suggesting that such regimes are ubiq-
uitous and not special cases.

Overall our results show that in these model neurons,
similar membrane activities can be attained by multiple
mechanisms and that these underlying differences cor-
respond to different current compositions at each stage
of the cycle. Because the dynamical mechanisms driv-
ing the activity are different in different models, per-
turbations can result in qualitatively different scenarios.
Our visualization methods allow us to gather intuition
on how different these responses can be and to explore
the contribution of each current type to the neural activ-
ity. Even in the case of single compartment bursters, the
response to perturbations of a population can be diverse
and hard to describe. To gain intuition into the kind
of behaviors the models display upon perturbation, we
developed a representation based on the classical proba-
bility of the membrane potential V . This representation
permits displaying changes in the waveform of V as each
current is blocked. This representation successfully cap-
tures the important observation that the models respond
to simulated blockers in different ways, but that there are
also similarities among their responses. A concise repre-
sentation of the effect of a perturbation is a necessary
step towards developing a classification scheme for the
responses.

IV. Methods

Model equations
The membrane potential V of a cell containing N chan-

nels and membrane capacitance C is given by:

C
dV

dt
= Ie −

8∑
i=1

Ii. (5)

Each term in the sum corresponds to a current Ii =
gim

pihqi(V − Ei) and Ie is externally applied current.
The maximal conductance of each channel is given by gi,
m and h are the activation and inactivation variables, the
integers pi and qi are the number of gates in each chan-
nel, and Ei is the reversal potential of the ion associated
with the i-th current. The reversal potential of the Na,
K, H and leak currents were kept fixed at ENa = 30mV ,
EK = −80mV , EH = −20mV and Eleak = −50mV
while the calcium reversal potential ECa was computed
dynamically using the Nernst equation assuming an ex-
tracellular calcium concentration of 3× 103µM . The ki-
netic equations describing the seven voltage-gated con-
ductances were modeled as in Liu et al. (1998),

τmi
(V )

dmi

dt
= m∞i

(V )−mi (6)

τhi
(V )

dhi
dt

= h∞i
(V )− hi.

The functions τmi
(V ), m∞i

(V ), τhi
(V ) and h∞i

(V ) are
based on the experimental work of Turrigiano et al.
(1995) and are listed in refs. (Liu et al., 1998; Turri-
giano et al., 1995). The activation functions of the KCa

current require a measure of the internal calcium concen-
tration [Ca+2] (Liu et al., 1998). This is an important
state variable of the cell and its dynamics is given by,

τCa
d[Ca+2]

dt
= −CaF (ICaT +ICaS)− [Ca+2]+Ca0. (7)

Here CaF = A × 0.94 µM
nA is a current-to-concentration

factor and Ca0 = 0.05 µM (A = 0.628). These values
were originally taken from Liu et al. and were kept fixed.
Finally, C = 10nF . The number of state variables or
dimension of the model is 13. We explored the solutions
of this model in a range of values of the maximal conduc-
tances and calcium buffering time scales. The units for
voltage are mV , the conductances are expressed in µS
and currents in nA. Voltage traces were obtained by nu-
merical integration of eq. (5) using a Runge-Kutta order
4 (RK4) method with a time step of dt = 0.1msec (Press
et al., 1988).
Currentscapes

The currentscapes are stacked area plots of the nor-
malized currents. Although it is easy to describe their
meaning, a precise mathematical definition of the images
in Figure 2 can appear daring in a first glance. Fortu-
nately, the implementation of this procedure results in
simple python code.

The time series of the 8 currents can be represented
by a matrix C with 8 rows and nsecs × 1

dt = N columns.
For simplicity, we give a formal definition of the cur-
rentscapes for positive currents. The definition is iden-
tical for both current signs and is applied independently
for each. We construct a matrix of positive currents C+

by setting all negative elements of C to zero, C+
i,j = Ci,j |

Ci,j > 0 and C+
i,j = 0 | Ci,j ≤ 0. Summing C+ over rows

results in a normalization vector n+ with N elements
n+j =

∑
i C

+
i,j . The normalized positive currents can be

obtained as Ĉ+ = C+/n+ (element by element or entry-

wise product). Matrix Ĉ+ is hard to visualize as it is.

The columns of Ĉ+ correspond to the shares of each pos-
itive current and can be displayed as pie charts. Here,
instead of mapping the shares to a pie we map them to a
segmented vertical “churro”. The currentscapes are gen-
erated by constructing a new matrix CS whose number
of rows is given by a resolution factor R = 2000, and the
same number of columns N as C. Each column j of Ĉ+

produces one column j of CS . Introducing the auxiliary
variable pi,j = Ĉ+

i,j ∗R we can define the currentscape as,

CSi,j = k |
k∑
m

pm,j ≤ i < pk+1,j +
k∑
m

pm,j . (8)

The integer k ∈ [0, 7] indexes the current types and we

assume
∑k=0
m pm,j = 0. The black filled curve in Figure
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2B corresponds to the normalization vector n+ plotted in
logarithmic scale. We placed dotted lines at 5nA, 50nA
and 500nA for reference throughout this work. The cur-
rentscapes for the negative currents are obtained by ap-
plying definition (8) to a matrix of negative C− currents
defined in an analogous way as C+. Finally, note that
matrices Ĉ+ and Ĉ− are difficult to visualize as they
are. The transformation given by definition (8) is useful
to display their contents.

ISI distributions
We inspected the effects of injecting currents in our

models by computing the inter-spike interval ISI distri-
butions. For this we started the models from the same
initial condition and simulated them for 90 seconds. We
dropped the first 30 seconds to remove transient activity
and kept the last 60 seconds for analysis. Spikes were
detected as described before. We collected ISI values for
N = 1001 values of injected current equally spaced be-
tween −1nA and 5nA.

V distributions
To sample the distributions of V we simulated the sys-

tem with high temporal resolution (dt = 0.001msec ) for
30 seconds, after dropping the first 120 seconds to remove
transients. We then sampled the numerical solution at
random time stamps and kept 2×106 samples V = {Vi}.
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