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ABSTRACT

Most natural odors arise from mixtures of multiple odorants. Some such mixtures are perceived

“elementally”, with each odorant component clearly identifiable, while others are perceived “configurally”,

with the mixture adopting a perceptual quality distinct from any of the components. While the perceptual

similarity of two mixtures is presumably related in some way to the similarity of the corresponding

components, given the elemental/configural dichotomy it is unclear if any formal principle can be used to

predict mixture similarity. To investigate this problem, we trained mice to respond to a binary reference

mixture of structurally similar odorants (S+) and then tested generalization of this response to other

structurally related binary test mixtures. Across 5 experiments, we parametrically varied these mixtures

in distinct ways to test candidate models for the perceptual similarity of mixtures. The best-performing

model predicted behavioral responses by considering, for each component of the S+, only the similarity

of the most structurally similar (”nearest neighbor”) component of each test mixture. We conclude that

for mixture generalization tasks the olfactory system may deemphasize or discard information about

mixture components not perceptually “near” enough to any of those in the S+, consistent with a sparse

and elemental rule for perception of structurally-related binary mixtures.

Introduction

Behavioral evaluation of odor perception in animals is essential to interpreting the neural and molecular

bases of olfactory processing. Animals respond to odors innately and through learned behavior shaped

by experience of odors with reward. In either case, one experimental approach for evaluating perceptual

similarity is to consider a target odorant to which the animal responds, and then to vary some physical

quality of the target odorant and determine how strongly the animal generalizes a response to this new
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test odorant. This approach can establish how perceptually similar the test and target odorants are to each

other [Kay et al., 2006, Shepard, 1987, Shettleworth, 2010].

In tests with series of structurally related odorants, the response typically decreases as the test odorant

becomes less similar to the target odor; this approach has worked well with monomolecular odorants

in both insects and mammals [Abraham et al., 2004, Bhagavan and Smith, 1997, Braun and Marcus,

1969, Cleland et al., 2009, 2002, Duncan et al., 1992, Laska et al., 1999, Linster et al., 2009]. When

conditioned to a target odorant, such as an alcohol of a particular carbon-chain length (CCL), animals

typically respond most strongly to the conditioned odorant and less strongly as features such as CCL

increase or decrease away from the conditioned odorant [Cleland et al., 2002]. Changes in the functional

group (e.g. from alcohol to ketone) or its position on the carbon chain can have even stronger effects on

generalization responses [Daly and Smith, 2000, Laska et al., 2008, Smith and Menzel, 1989]. In some

animals, differential conditioning of two odorants that are close in CCL, where one odorant is reinforced

and the other not reinforced, shifts peak responses away from the reinforced odorant and in a direction

away from the unreinforced odorant [Daly and Smith, 2000, Fernandez et al., 2009]. This ‘peak shift’

is thought to result from overlapping excitatory and inhibitory gradients distributed along a perceptual

(coding) dimension represented in an animal’s sensory system [Mackintosh, 1983].

Consequently, CCL may represent a salient olfactory perceptual dimension, even if not a principal one,

or at least part of an ordered series of points in a perceptual state space. That proposition has been also well

supported by studies of sensory and early olfactory coding in both insects and mammals [Cleland et al.,

2002, Daly et al., 2004, Fernandez et al., 2009]. In the invertebrate olfactory system, binary mixtures evoke

neural responses with state space representations that neatly track the ratios of the mixture components

[Fernandez et al., 2009]. However, we need more thorough analyses of the ‘metrics’ of olfactory stimulus

space to approach a fuller understanding of coding dimensions in the peripheral and central nervous

system.

Whether innate or learned, natural odor mixtures typically contain multiple components [Aycı et al.,

2005, Aznar et al., 2001, Grosch, 1998, Raguso, 2008]; even semiochemicals, which elicit strong innate

responses, such as the urine-based odors used for individual recognition of rodents, can be mixtures

of many components [Yamazaki and Beauchamp, 2005]. Some mixtures appear to be perceived as a

single ‘configural’ objects [Thomas-Danguin et al., 2014], in which the elements of the mixture cannot be

distinguished in the mixture. Other mixtures might be perceived as a sum of individual components in

an ‘elemental’ representation [Wagner, 2008]. These odor mixtures can differ based on the composition
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and/or the ratios among the individual components, which gives rise to many dimensions along which

these odors may need to be discriminated. Stimulus	 Carbon	Chain	Length	

Experiment	1	 	 	 	 	 	
(a)	 6	 	 	 	 	
(b)	 	 7	 	 	 	
S+	 	 	 8	 	 	
(c)	 	 	 	 9	 	

Experiment	2	 	 	 	 	 	
(a)	 6	 7	 	 	 	
(b)	 	 7	 8	 	 	
S+	 	 	 8	 9	 	
(c)	 	 	 	 9	 10	

Experiment	3	 	 	 	 	 	
(a)	 6	 7	 	 	 	
(b)	 	 7	 8	 	 	
S+	 	 7	 	 9	 	
(c)	 	 7	 	 	 10	

Experiment	4	 	 	 	 	 	
(a)	 6	 	 	 	 10	
(b)	 6	 	 8	 	 	
S+	 	 7	 	 9	 	
(c)	 	 	 8	 	 10	

Experiment	5	 	 	 	 	 	
(a)	 	 7	 	 	 	
(b)	 	 7	 	 	 	
S+	 	 7	 	 	 	
(c)	 	 7	 	 	 	

	
Figure 1. Experimental design. In each
experiment type (1-5), each row corresponds to
one stimulus, with the S+ and the three test-only
stimuli (a-c) listed for each experiment. For each
stimulus, the molecular components are given
along the row. Each number corresponds to the
carbon-chain length (CCL) n of one component,
with all components being secondary
straight-chain alcohols. For example, a stimulus
with only a ”7” refers to 2-heptanol, while one
with ”7” and ”8” refers to a binary mixture of
2-heptanol and 2-octanol. All odorants were
diluted to 0.1% in mineral oil, except in the vapor
pressure control (experiment 5); in that experiment
the stimulus is always 2-heptanol, with the dilution
(schematized by font size) changing across stimuli.
In some experiments with multiple cohorts, the
identity of the S+ and one of the generalization
stimuli were switched between cohorts as a
robustness check.

Because of the potential complexity of natural odor mix-

tures, it will be necessary to build on the knowledge of

responses to mono-molecular odorants by using a step-wise

approach to more complex mixtures, beginning with system-

atically varying simpler, binary mixtures.

Systematically controlled mixtures will allow for investi-

gation of how animals may use different behavioral strategies

in evaluating mixtures. The strategies could depend on the

nature of the mixture and on the type of reinforcement used

to condition a behavioral response. Foraging moths, for ex-

ample, use only a subset of mixture components from the

floral odors they approach for food [Riffell et al., 2014].

Use of the mouse for these types of behavioral studies

allows for subsequent genetic manipulation, electrophysio-

logical recording, optical imaging and optogenetic stimula-

tion to test the causal relationships between behavior and

events measured in the nervous systems. Mice can typically

easily discriminate monomolecular odorants that differ by

only a single carbon in CCL [Laska et al., 2008]. Such

‘steep’ generalization makes it difficult to evaluate graded

similarities in neural representations. Here we develop a

new behavioral protocol for the mouse in which behavioral

generalization among mixtures can be evaluated through ex-

perimental manipulation. We start with variation in the CCL

of a conditioned monomolecular odorant, which serves as

a reference for strong discrimination. We then condition to

a binary mixture and generate related binary mixtures that

differ from the conditioned stimulus in a variety of system-

atic ways. These mixtures are used to test the role of specific
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hypotheses about mixture generalization. Finally, we show

how the data can be explained by a model in which animals may focus on the use of the most salient

‘predictive’ component of a mixture.

Methods

Subjects

Three cohorts (two to four litters in each cohort) of male C57BL/6 (C57) mice (N=42 total, PND 30-60)

served as subjects. The mice were single-housed in a colony room with a reverse 12:12 hr light cycle (dark

7 AM to 7 PM). They were water restricted, beginning seven days prior to the experiment. During water

restriction, each mouse received 1 mL of water in their home cage at 4:30 pm each day, in addition to any

liquid they earned in the experimental session. Experimental sessions occurred between 9 AM and 4 PM,

up to seven days a week. All animal use and experimental procedures conformed to guidelines established

by the National Institutes of Health (NIH) Guide for the Care and Use of Laboratory Animals and the

Arizona State University Institutional Animal Care and Use Committee.

Apparatus

Experiments were conducted in a “Slotnick-style” 4-channel pinch-valve olfactometer (described in

[Slotnick and Restrepo, 2005]) and operant chamber purchased from KNOSYS. All odorants were diluted

to 0.1% in mineral oil (Sigma-Aldrich #M3516-1L), except as noted below.

In a previous set of experiments (not shown), we investigated the ability of mice to discriminate between

olfactometer channels based on two potential confounded: the sound of the channels, or previously used

odorant that might have adsorbed to channel components. We did this by training to criterion (described

below) using one odor-containing, rewarded channel, and one blank (air), unrewarded channel. We then

tested the same two channels with blank stimuli and a random reward schedule. We found no significant

preference for the channel that had previous contained odor, indicating that neither of the two confounds

above were a concern in the current experiments.

Experimental events were controlled and recorded by PyOperant (http://bitbucket.org/rgerkin/

pyoperant). The reinforcer was approximately 0.006 mL of chocolate milk (Shamrock Farms; Phoenix,

AZ) diluted in water (1
3rd milk by volume) combined with the sounding of a brief (0.3 s) 9 kHz buzzing

tone at 65 dB from a set of stereo computer speakers. Subjects were given approximately 0.5 mL of the

milk mixture 24 hours prior to the first experimental session to familiarize them with the reward they
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would experience in behavioral experiments.

Procedure

The odorant discrimination training and generalization testing protocol was a modified version of the

Go/No Go task used by Slotnick and colleagues [Slotnick and Restrepo, 2005]. Each experiment consisted

of four phases: Pre-training, Odorant discrimination (full reinforcement), Odorant discrimination (partial

reinforcement), and Generalization Testing. Each subject had only one training session per day, consisting

of 10 blocks, with each block consisting of 10 trials. Testing sessions occurred on separate days from

training sessions.

Pretraining and Odor Discrimination (Full reinforcement)

Pretraining and Odor discrimination training proceeded as described previously [Slotnick and Restrepo,

2005]. During pre-training, subjects were trained to lick the liquid delivery tube and keep their head in

the odor tube for several seconds. No odor was presented during pre-training. Discrimination training

consisted of the standard Go/No Go task in which subjects were trained to lick in the presence of one odor,

the S+, and not in the presence of another odor, the S−. Each odorant discrimination session began with

a “warm up” block of 10 trials in which all trials were S+ in order to establish robust responding to the

S+ [Nevin and Grace, 2000]. The remainder of the session consisted of 9 blocks of 10 S+ trials and 10

S− trials, ordered pseudo-randomly so that no more than 3 trials of the same type (S+ or S−) occurred

consecutively within a block. Once a subject responded with at least 80% correct for two consecutive

sessions, it was advanced to partial reinforcement protocol.

Odorant discrimination (partial reinforcement)

Generalization trials with the novel stimuli were conducted in the absence of reinforcement in order to

prevent the subjects from learning new stimulus-reward associations to those novel stimuli. To ensure

that subjects would nonetheless persist in responding during the generalization phase, they were trained

under low rates of reinforcement during a preceding partial reinforcement phase. Training was identical to

odorant discrimination, except the probability of reinforcement on S+ trials after the “warmup” block was

gradually reduced over four sessions. During the first session, 80% of S+ trials resulted in reinforcement

for correct responding. The following three sessions reduced the frequency of reinforcement on S+ trials

to 60%, 40% and then 20%. The next session after 20% reinforcement was Generalization Testing.
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Generalization testing

During generalization testing, the probability that a subject would respond to each of three generalization

odorants (a, b, and c) relative to the S+ was tested. Generalization testing consisted of “warm up” block,

as per odorant discrimination, and four generalization blocks. Generalization blocks consisted of eight

trials – two trials with each generalization odorant (a, b, and c), and two trials with the S+. Responding to

the generalization odorants was never reinforced. However, to prevent response extinction, responding on

one of the two S+ trials in each block was reinforced, while the other was not. In generalization blocks,

trial order was determined pseudorandomly, in that all four types of trials (S+, a, b, and c) must have

occurred before a second trial of the same type occurred.

Experiments

Five different experiments were conducted across three cohorts of mice. Cohort 1 was trained and tested

for experiment 1-5, cohort 2 for experiments 1-3, and cohort 3 for experiment 1. Figure 1 outlines the

stimuli used as the S+ and for generalization testing (a, b, c) in each experiment. For experiments 1 and

5, the stimuli were pure monomolecular odorants. For experiments 2, 3, and 4 all stimuli were binary

mixtures that differed in overlap between the S+ and the test mixtures. Together, these experiments aimed

to test different mixture configurations so that any well-fitting model would have to generalize to a large

portion of mixture configuration space.

1. 1) Single-Linear. This experiment tested generalization in the limiting case of stimuli with only

one component. Each stimulus was a simple dilution of a 2-n-alcohol (where ‘n’ refers to CCL,

e.g. n = 7 refers to 2-heptanol) to 0.1% concentration by volume in mineral oil. The generalization

stimuli (a, b, c) differed from the S+ by either 1 or 2 carbons in CCL, in either direction.

2. 2) Double-Linear. This experiment tested the extension of generalization to binary mixtures by

shifting the CCL of the test odors while keeping the relative difference between the components

the same. Each stimulus was a mixture of a 2-n-alcohol with the corresponding 2-(n+1)-alcohol,

e.g. a mixture of 2-hexanol and 2-heptanol. Each component was diluted to 0.05% concentration by

volume in mineral oil, so the total volume of alcohol was 0.1% as in the first experiment.

3. 3) Double 1-Shared. This experiment tested the differential contributions to generalization of

shared vs distinct components. Each stimulus was a binary mixture, composed as in Double-Linear.
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However, each of the generalization stimuli shared one component (2-heptanol) with the S+, and

differed from it in the other component.

4. 4) Double 1-Distant. This experiment tested the contribution of average CCL to generalization.

In other words, can binary mixtures be represented by the mean location of their components in a

feature space, with generalization around that mean? Each stimulus was a mixture of 2 odorants,

diluted as in the second experiment. However, the generalization stimuli shared no overlapping

components with the S+, but had identical or similar average CCL. For example, the S+ was a

mixture of 2-heptanol and 2-nonanol, with an average CCL of 8, while test stimulus a was a mixture

of 2-hexanol and 2-decanol, also with an average CCL of 8.

5. 5) Vapor Pressure Control. Vapor pressure decreases approximately 3.3 fold with each increment of

CCL in this molecular series. To ensure that the results in experiments 1-4 could not be explained

by simple differences in vapor pressures across the molecular series, experiment 5 trained subjects

on 2-heptanol at 1.0% dilution as the S+, and tested them on 2-heptanol at 0.01%, 0.1% and 5.0%.

Model Types

We modeled the data by considering only the CCL of the molecules composing each stimulus. For a test

stimulus x, the predicted response probability under all models used the same master equation:

f (S+i ,x j) = f1(S+i )∗ f2(S+i ,x j) (1)

where S+i and x j are the CCL of the ith and jth elements of the S+ and the test stimulus, respectively. The

functions are defined as:

f1(xi) = exp(−α ∗ xi) (2)

f2(xi,x j) = exp(−β ∗ |xi− x j|) (3)

with α and β free parameters, obtained by maximum likelihood estimation (see below). f1 represents the

intrinsic salience of an S+ component, and the functional form of f1 is inspired by the vapor pressure

dependence of CCL, which is one component of perceived intensity. f2 represents the generalization

gradient across CCL.

We then considered 3 classes of models (schematized in Fig. 2), varying in computational complexity,

i.e. the number of computations of f across stimulus components.
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Figure 2. Schematic of three candidate models for olfactory generalization. Circles represents components in a
binary mixture, with different colors representing different molecules. Arrows point to possible perceptual
representations of stimuli for computation of mixture simularity. (A) In the Scalar model, each mixture is
represented as a single value, average CCL. This value for the trained mixture is compared against the
corresponding value for the test mixture, with the similarity of those values determining the probability of response.
(B) In the All-to-All model, each mixture is decomposed into components, and comparison between values is “all to
all” between combinations of trained and tested components. All such comparisons are then averaged to determine
response probability. (C) In the Nearest-Neighbor model, each mixture is decomposed, but comparison only occurs
between each S+ component and its “nearest” component (e.g. most similar in CCL) in the test mixture.

1. Scalar: Each stimulus is considered as having only one element, represented by the mean CCL of

its components. The probability of response (pr) is a function of the difference between the mean

CCL of the S+ and that of the test stimulus, i.e.:

pr = pr0 ∗ f (S+mean,xmean) (4)

2. All-to-All: Each stimulus is represented by N = 2 elements, corresponding to the CCL of each

component. pr is a function of the differences between each combination of elements across the S+

and the test stimulus, summed and normalized.

pr = pr0 ∗
1

N2

N

∑
i=1

N

∑
j=1

f (S+i , test j) (5)

3. Nearest Neighbor: Each stimulus is represented by N = 2 elements as in All-to-All, but pr is a
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function only of the difference between each element i of the S+ and the single nearest (component

most similar in CCL) element of the test stimulus array, with index i†.

pr = pr0 ∗
1
N

N

∑
i=1

f (S+i , testi†) (6)

Figure 3. Results of behavioral experiments. Animals were trained to
discriminate the S+ (indicated by an open square) from a background (mineral
oil) control. Black circles represent the novel generalization test stimuli (Gen, e.g.
the a,b and c stimuli for each experiment in Fig. 1) not experienced during
training. The Y axis indicates the response probability to each testing and
training odor. Error bars indicate the standard error of the mean. Separate lines
indicate experiments on three different cohorts of mice. A) Exp. 1 Single-Linear:
X-axis shows CCL of stimuli, where each stimulus was a secondary
straight-chain alcohol, e.g. 2-heptanol. B) Exp. 2 Double-Linear: Same as A,
except stimuli are binary mixtures of molecules at equal concentration. As in A,
adjacent stimuli are 1-carbon apart in CCL. C) Exp. 3 Double-1-Shared: Similar
to B, except each binary mixture contains 2-heptanol in common. D) Exp. 4
Double-1-Distant: Similar to B, except each test mixture has the same or similar
mean CCL as the S+. E) Exp. 5 Vapor Pressure Control: Test stimuli vary from
the training stimulus by concentration, but are otherwise identical. Response
probability is a linear function of concentration. n=4 or 5 mice from each cohort
used in each experiment.

Each model was fit to

the pooled data, expressed

as response probabilities for

each test stimulus in each

experiment, using maximum

likelihood estimation to ob-

tain the parameters a, b, and

pr0. The first two parame-

ters were each assigned one

value shared by all experi-

ments. We allowed pr0 to

vary according to the exper-

iment type (although it was

still fixed for all subjects and

stimuli within each experi-

ment), to account for vari-

able baseline response mo-

tivation across experiments.

Goodness-of-fit is reported

as the mean-squared error

between the model fit and

the observed response proba-

bilities, and is fundamentally

bounded at the low end due

to binomial variability (Fig-

ure 5, “Noise”).
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Data pooling

The first three experiments were replicated in two to three cohorts of mice (Methods). The identity of the

S+ systematically differed across replications, in order to balance the test stimuli in either direction of

CCL. We observed similar results across cohorts and S+ identities (Figure 3), so we pooled the data for

modeling purposes such that one component of the S+ was designated as the reference component. All

other components in the S+ or the test stimuli were then labeled according to the difference in CCL among

their components relative to the reference (Figure 5, dashed lines). For example, for an S+ consisting of

2-heptanol and 2-octanol, we designated 2-heptanol as the reference, 0, and 2-octanol as +1. Together the

S+ could be labeled (0,+1). A test stimulus of 2-octanol and 2-nonanol is then labeled (+1,+2). This

allowed us to present data from experiments using different S+ identities together on the same plot (Figure

5).

Code

All code and analysis is available at http://github.com/quolf/nearest-neighbor.

Results

Experiments

In the experiment 1 (“Single-Linear”; Figure 1) we tested the direct molecular similarity between the S+

and each of the generalization stimuli (a− c). The results (Fig. 3a) show that for each of three mouse

strains generalization responses decreased with increasing CCL differences between the S+ and the test

stimuli, as reported previously for both mammals and insects [Chaudhury et al., 2009, Daly et al., 2001,

Laska et al., 2008, Yoder et al., 2014]. Increasing the CCL of the S+ by one carbon had no significant

effect on the shape of the generalization function (Fig. 3a).

In experiment 2 (“Double-Linear”; Figure 1), the S+ and the test stimuli were a monotonic series of

binary mixtures. Generalization to the test stimuli occurred as a function of the degree of overlap of the

mixtures with the S+ (Fig. 3b). However, the test stimuli that contained one component in common with

the S+ (‘b’ and ‘c’ in Fig. 1) elicited higher responses than the corresponding S+-adjacent test stimuli in

experiment 1. This indicates that the generalization gradient is shallower for such binary mixtures than for

corresponding monomolecular mixtures (Fig. 3b; gaussian width = 0.75 +/ 0.02 for experiment 1, 1.09 +/-

0.05 for experiment 2). Some generalization asymmetry was observed in one mouse cohort, but this was

not significant after a false discovery rate correction for multiple comparisons.
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Figure 4. Mean-squared error (MSE) for each model fit. Models were fit
to all experiments using the same parameters, except for baseline response
probability which was allowed to vary across the five experiments. Error
bars reflect the standard deviation of MSE, derived from 100 synthetic
datasets using the observed response probabilities and binomially
distributed numbers of responses per experiment. The green line represents
the average MSE expected from simple binomial sampling variability, i.e.
from a finite number of Bernoulli trials, and reflects the theoretical limit of
model accuracy. The dashed lines reflect +/- 1 standard deviation of this
MSE, which was calculated by drawing new Bernoulli trials from the
observed mean response probabilities for each animal for each stimulus for
each experiment. The Nearest-Neighbor model yielded the best fit of the
three models, although it was not significantly more accurate than the more
computationally complex All-to-All model.

In experiment 3 (“Double-1-

Shared”; Figure 1), the test stim-

uli were binary mixtures that dif-

fered by one component from the

S+. In this experiment, general-

ization was almost totally flat (Fig.

3c), indicating that the identity of

the differing component was al-

most irrelevant. The animals ap-

peared to generalize to the com-

mon component, although over-

all response to the S+ was lower

than observed in the other exper-

iments. We initially suspected

that this experiment may have just

been a ’failure’, but given that it

replicated with a second cohort,

that other experiments interleaved

with it showed robust responses, and that inspection of the olfactometer revealed no defects, we concluded

that this may have just reflected natural variation. A reviewer suggested discarding it, but we concluded

that this would be a dangerous precedent in the absence of any overwhelming, fundamental theoretical

objection to the experimental outcome.

In experiment 4 (“Double-1-Distant”; Figure 1), the two components of each generalization test

stimulus were distinct from those of the S+, but they spanned a similar range of CCL or had the same

mean CCL. Only a low level of generalization was observed (Fig. 3D), with a narrow generalization width

(0.66 +/- 0.05) similar to that observed in the ‘Single-Linear’ experiment.

In experiment 5 (“Vapor Pressure Control”; Figure 1) the test stimuli were identical to the S+ (2-

heptanol), except they all varied in concentration. Alcohols of lower molecular weight tend to have

higher vapor pressures. Therefore, in experiments 1-4 generalization could have been driven primarily

by similarity to the partial pressure of the vapor phase of the S+. In some cases, different vapor phase

concentrations of an odorant can produce qualitatively different percepts, so it is possible that a subject’s
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response probability might not be monotonic in concentration. To control for this possibility, we performed

an experiment using a single odorant (2-heptanol), with the test stimuli differing from the S+ only in

concentration. We found that response probability was approximately linear across concentration, with

no deviation reflecting a specific preference for the concentration of the S+. Had vapor pressure of the

molecule been responsible for a controlling perceptual feature of the odor, the response probability would

have peaked at the concentration corresponding to the S+. Therefore differences in vapor pressure did not

principally drive response probability differences in experiments 1-4.

Modeling

To quantitatively account for the generalization observed in each of the five experiments, we considered

three potential approaches for computing the perceptual similarity of mixtures, and then fit a simple

model for each. These models shared a similar core feature–simple functions of absolute and relative

CCL–but differed in which sets of mixture components are involved (Figure 2). Each model contained 3

parameters: the baseline response probability (pr0), the salience of individual components as expected

from e.g. differences in the partial pressure of the vapor phase (due to differences in vapor pressure) (α),

and the steepness of generalization for components differing in CCL (β ). Figure 2 qualitatively illustrates

the set of computations in the three different models, and a quantitative description is provided in the

Methods. The code used to implement the computations can be found at http://github.com/quolf/

nearest-neighbor.

Computational complexity varied across the three models (Figure 2). It was simplest in the “Scalar”

model, consisting only of a single comparison of average CCL between the S+ and the test mixture. It was

most complex in the “All-to-All” model, consisting of N2 comparisons, one for each pair of components

across the S+ and the test mixture (each having N = 2 components). The “Nearest-Neighbor” model was

intermediate in complexity; it consisted of only N comparisons, one for each component in the S+ and its

corresponding ‘nearest’ component in the test mixture.

Model fits

We estimated the parameters for each model that maximized the likelihood of the observed response

probabilities, using the same parameters (for each model) across experiments and cohorts. Figure 4 shows

the average mean squared error across all five experiments. While the the Scalar model showed the poorest

fit, the All-to-All and Nearest-Neighbor models fit the data better, with the latter yielding the lowest mean

squared error (Fig. 4). Identical rank-ordering of results was obtained by evaluating the likelihood function
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directly (not shown). While the difference between the All-to-All and Nearest-Neighbor models was not

statistically significant, maximum likelihood estimation of model parameters indicated that the observed

data was ∼ 6x as likely under the Nearest-Neighbor model than under the All-to-All model, and ∼ 110x

more likely than under the Scalar model.

Figure 5. Model fits for the Nearest-Neighbor model. For each experiment in
Fig. 3, the data were normalized so that the first component of the S+ is defined
to have a relative CCL of 0. Each stimulus is then described according to the
CCL of its components relative to the S+. The resulting “pooled” experimental
results are then averaged across mouse strains (dotted line). The solid line gives
the prediction from the Nearest-Neighbor model for each experiment. The same
parameters were used across fits to the three models (Fig. 2), except for the
baseline response probability, which was allowed to vary by experiment. This
baseline response probability allowed us to account for the variability in
responsiveness across experiments, whether it resulted from random or
systematic variation. To the extent that experiment 3 showed weak responses, the
baseline response probability parameter effectively gives this experiment a
smaller weight in the estimation of other model parameters.

Even with a perfect

model, some deviation be-

tween model and data is ex-

pected due to binomial vari-

ability, i.e. the finite number

of trials. We assessed this

by generating synthetic data

using the same observed re-

sponse rates to each stim-

ulus, with the same num-

ber of trials. The devia-

tion between the observed

and the synthetic data (aver-

aged across 1000 synthetic

data sets) reflects the lower

bound of model fit error,

and thus a theoretical up-

per bound of model per-

formance. The Nearest-

Neighbor approaches this

theoretical upper bound, sug-

gesting that it is unlikely that a much better model can be constructed, at least with so few parameters.

When each experiment is considered separately, the Nearest-Neighbor had the lowest mean squared error

(of the three models) for four out of the five experiments. Fig. 5 shows model fits for the Nearest-Neighbor

model to the pooled data.
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Discussion

In order to understand how perceptual similarity is determined across mixtures, we conducted five olfactory

generalization experiments with binary mixtures of straight-chain aliphatic alcohols. In each experiment,

we trained mice to associate a single mixture (S+) with reward and then tested the generalization of

their conditioned responses during exposure to the S+ or to related mixtures. Across experiments, the

relationship between the S+ test stimuli was varied to determine what features of the S+ were most

effectively generalized during testing.

While generalization was poor for single molecule stimuli (Figure 5a), as expected, binary mixtures

of the same stimuli were sufficient to produce generalization of the S+ (Figure 5b-d). We developed a

family of models based on possible interactions between molecular components of the S+ and ensuing

test stimuli, and fit them to the data from all five experiments. The Mean model reflected one type of

‘configural’ strategy for olfactory identification, assigning a single value to each mixture, reflecting the

mean CCL of the components. That model predicts that increasing the CCL of one mixture component

can be offset by decreasing the CCL of another. This model was a poor fit to the data, and we were unable

to devise a variant with better performance that also relied on representing each binary mixture with a

single scalar value (not shown). The All-to-All model was a much better fit, suggesting that there is still

some ‘elemental’ information in each mixture being utilized by the animals in their perceptual decisions.

However, despite using more information than the Nearest-Neighbor model, the All-to-All model did not

perform better, and in fact performed worse (though not significantly so), suggesting that some mixture

components may be irrelevant to generalization, and that including them in a model calculation simply

adds noise to response predictions. This is surprising because the complexity of the task could have

required a model with many more degrees of freedom, but instead was well-fit by the Nearest-Neighbor

model, which had relatively few. It is admittedly difficult to imagine a prior, biologically-inspired case for

the Nearest-Neighbor (how would the olfactory system truly extract elements and then implement such a

comparison?). However, typically, when exploring the space of statistical models, implementations with

small number of parameters that nonetheless nearly saturate fit quality can illustrate important general

principles about how a system can be expected to operate. The Nearest-Neighbor model was remarkably

simple and effective, suggesting that an important predictor of generalization may be the similarity of the

most similar component of the test mixture to a given component of the S+.

How might this principle apply with more complex mixtures, containing far more than 2 components?
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We note that, unlike the other model variants, the Nearest-Neighbor model has the interesting property

of reducing to a ‘fractional overlap’ rule as the number of components becomes large, as observed

in mixture discriminability studies in humans [Bushdid et al., 2014] and other mammals [Romagny

et al., 2015]. In other words, for large N, the same equations predict that the response probability

will be roughly determined by the fraction of components in the test stimulus which are identical to

components in the S+. This is true even though the model operates without giving special preference to

identical components, simply because identical components, if present, will naturally be nearest-neighbors.

Although generalization is a distinct phenomenon from discrimination [Cleland et al., 2009], this may

nonetheless suggest that the ‘fractional overlap’ rule is simply a large N generalization of a more basic

theoretical principle of elemental coding. Indeed, evidence for elemental coding in complex mixtures is

observed in human imaging data [Howard and Gottfried, 2014]. Alternatively, there might be a strategy-

switch between elemental and configural approaches to mixture perception that depends on task demands,

including mixture complexity [Chandra and Smith, 1998, Coureaud et al., 2011].

CCL is an intuitive molecular feature but this does not mean that the olfactory system makes any use

of it. The most predictive models of olfactory perception instead use complex features from computational

chemistry software that may better map onto patterns of olfactory receptor activation [Keller et al., 2016,

Snitz et al., 2013]. Indeed, elemental rules for mixture generalization may break down with sufficient

complex mixtures, as nonlinear effects of and interactions between component concentrations may make

simple elemental concentration scaling rules inapplicable. This may explain why qualitative differences in

odor character at varying concentrations are more common in complex than in simple mixtures.

One recent study predicted perceptual similarity of mixtures using the ‘angle difference’ of feature

vectors in a high-dimensional space of such molecular features [Snitz et al., 2013]. Applying their

model (with parameters fit from human data on discrimination) to the mouse data we acquired resulted

(unsurprisingly) in a poor fit to our mouse generalization data (not shown). With a sufficiently large corpus

of species- and paradigm-specific data, this model might be more successful in predicting generalization

using complex mixtures.

We used CCL as the only molecular feature of interest; whether similar results might be observed

for variation in functional group, hydrophilicity, molecular weight, or some other feature is a question

that ambitious future experiments can address. Because CCL is so easily parametrically controlled,

and because we observed generalization even for mixtures with only a 1-carbon difference in CCL, we

are optimistic about the use of CCL in future experiments with additional degrees of freedom. For
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example, components ratios could also be modified, since even binary mixtures with 100-fold ratios

between components are perceived differently in rodents than the corresponding pure odorants [Yoder

et al., 2015]. Such investigations could be paired with recording or imaging of the olfactory system in

order to understand the neurophysiological bases of odor generalization and possible implementations of

any of the rules discussed above.
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