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Leveraging mouse chromatin data for heritability 
enrichment informs common disease architecture and 
reveals cortical layer contributions to schizophrenia

Although genome-wide association studies (GWAS) 
have implicated thousands of variants in an array of 
human phenotypes, the variation underlying these 
signals and cellular contexts in which variants act 
have remained largely unclear (Visscher et al. 2017). 
Discernment of disease-relevant variants and cell 
populations is essential for comprehensive func-
tional investigation of the mechanisms of disease. 
 Schizophrenia has been robustly investi-
gated through GWAS with the number of associat-
ed loci increasing from twelve to 179 independent 
associations in the last decade (O’Donovan et al. 
2008; Pardiñas et al. 2018). However, this increase 
has not been accompanied by the elucidation of dis-
ease mechanisms or an increase in the identification 
of causal variants. To date, support for mechanisms 
and/or causal variants have been established for 
two loci (Sekar et al. 2016; Song et al. 2018). The 
inability to construct and test mechanisms for schizo-
phrenia largely stems from the inability to separate 
disease-relevant variants from those in linkage dis-
equilibrium (LD) and from the lack of knowledge 
about what cells are important for disease risk.
 Recent studies have begun to identify cell 
populations for schizophrenia by leveraging GWAS 
summary statistics and stratified linkage disequilib-

Paul W. Hook1 and Andrew S. McCallion1, 2, 3, *

Affiliations
1 Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
2 Department of Comparative and Molecular Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
3 Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
* To whom correspondence should be addressed: andy@jhmi.edu

rium score regression (S-LDSC) (Finucane et al. 
2018; Skene et al. 2018). These studies have fo-
cused on human and rodent transcriptional data, 
with the finest resolution of cell populations provided 
by mouse single-cell RNA-seq data (scRNA-seq). 
This approach relies upon the imposition of win-
dows around the transcription start sites of genes 
with cell-dependent expression. Crucially, mouse 
data can be leveraged by using corresponding hu-
man orthologs. The results from these studies have 
supported a role for cortical excitatory and inhibi-
tory neurons in schizophrenia risk (Finucane et al. 
2018; Skene et al. 2018). However, these studies 
only capture signal driven by variants residing in 
selected windows, excluding much of the regula-
tory landscape. As most variants identified through 
GWAS occur in non-coding DNA (Maurano et al. 
2012), these studies have systematically over-
looked the capacity to use these biological signa-
tures in an agnostic manner to construct hypothe-
ses indicting putative, distal cis-regulatory elements.
 Ideally, human chromatin data with the same 
cell population resolution as transcriptome data 
would be used to provide a regulatory context for 
variants. However, human chromatin data analyzed 
with S-LDSC have been limited to easy-to-access 

Genome-wide association studies have implicated thousands of non-coding variants across human 
phenotypes. However, they cannot directly inform the cellular context in which disease-associated vari-
ants act. Here, we use open chromatin profiles from discrete mouse cell populations to address this 
challenge. We applied stratified linkage disequilibrium score regression and evaluated heritability en-
richment in 64 genome-wide association studies, emphasizing schizophrenia. We provide evidence 
that mouse-derived human open chromatin profiles can serve as powerful proxies for difficult to ob-
tain human cell populations, facilitating the illumination of common disease heritability enrichment 
across an array of human phenotypes. We demonstrate signatures from discrete subpopulations of 
cortical excitatory and inhibitory neurons are significantly enriched for schizophrenia heritability with 
maximal enrichment in discrete cortical layer V excitatory neurons. We also show differences between 
schizophrenia and bipolar disorder are concentrated in excitatory neurons in layers II-III, IV, V as well 
as the dentate gyrus. Finally, we use these data to fine-map variants in 177 schizophrenia loci, nomi-
nating variants in 104/177 loci, and place them in the cellular context where they may modulate risk.
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cell populations (Ulirsch et al. 2019) or heteroge-
neous adult tissues, broad cell types, and in vitro 
cell lines (like those data available through the EN-
CODE consortium) (Finucane et al. 2018; Tansey 
and Hill 2018; ENCODE Project Consortium 2012; 
Fullard et al. 2018). Mouse data has the potential 
to overcome these barriers by providing high res-
olution of the same populations as scRNA-seq. 
Recently, mouse single-cell ATAC-seq was used to 
annotate variants and explore heritability of a vari-
ety traits, including schizophrenia (Cusanovich et 
al. 2018). This study implicated many of the same 
populations in schizophrenia as previous studies 
that leveraged expression data. However, which 
variants are relevant to disease and in which cells 
those variants may act was not explored. Further-
more, only a limited number of GWAS SNPs are 
included in S-LDSC analysis and only differential-
ly accessible peaks were analyzed (Cusanovich 
et al. 2018), limiting the SNPs and regulatory ele-
ments for which hypotheses could be generated.
 Previously, we have successfully used mouse 
chromatin data to prioritize common human variants 
for pigmentation and Parkinson disease (Praetorius 
et al. 2013; McClymont et al. 2018). In this study, we 
set out to address whether mouse-derived human 
open chromatin profiles could be used to prioritize 
cell populations and variants important to schizo-
phrenia. In this way, data from narrowly-defined cell 
populations that are inaccessible in humans could 
be used to provide context for variants and allow for 
the construction of hypotheses. We evaluate a limit-
ed number of strategies for converting mouse open 
chromatin peaks to human peaks and use heritabili-
ty enrichment (S-LDSC) to prioritize 27 selected (25 
mouse and two human) cell populations across 64 
GWAS with an emphasis on schizophrenia. Final-
ly, we combine statistical fine-mapping of variants 
with mouse-derived human open chromatin data to 
prioritize variants in schizophrenia loci and predict 
a cellular context in which those variants may act.

Results
A uniform pipeline for processing of mouse 
ATAC-seq data
We obtained publicly available ATAC-seq data de-
rived from lineage identified cell-types sorted ex vivo 
from mice and from mouse brain single nuclei analy-
ses (Table S1) (Preissl et al. 2018; Matcovitch-Natan 
et al. 2016; Gray et al. 2017; Mo et al. 2015; Hughes 
et al. 2017; Hosoya et al. 2018; McClymont et al. 
2018). In total, we obtained 25 mouse ATAC-seq 
datasets encompassing subclasses of six broader 
cell types (dopaminergic neurons, excitatory neu-

rons, glia, inhibitory neurons, retina cells, and T-cells) 
(Table S1). These datasets were selected to maximize 
the range of cell types for analysis, while ensuring in-
clusion of classes with predicted roles in schizophre-
nia (Howes and Kapur 2009; Coyle 2006; Nakazawa 
et al. 2012) and facilitating comparison with single-cell 
RNA-seq populations analyzed in previous heritabili-
ty studies (Skene et al. 2018; Finucane et al. 2018).
 To compile comparable open chromatin pro-
files, all ATAC-seq data were processed in an uniform 
manner. Sequencing for each cell population was 
aligned to the mouse genome (mm10), replicates were 
combined, and peak summits were called (see Meth-
ods for more details). This resulted in 165,143 summits 
called per cell type (range: 54,880 to 353,125; medi-
an: 130,464) with profiles derived from the single-nu-
clei data having less summits in general (Table S2). 
 Recognizing that the variable sequencing 
depths for the datasets may lead to biases in the num-
ber of summits, we sought to obtain peaks with similar 
levels of evidence. To achieve this, we employed a 
method used by The Cancer Genome Atlas (Corces 
et al. 2018) (See Methods). We then added 250 base 
pairs (bp) to either side of each summit and the uni-
form peaks were merged within each population. This 
resulted in 78,115 filtered summits per cell population 
(range: 38,685 to 119,870) and an average of 62,309 
peaks (range: 30,791 to 99,119 peaks)(Table S2). 
 To ensure that the open chromatin profiles re-
flected expected cell population identities, read counts 
for each cell population for the union set of peaks 
(433,555 peaks) were compared using principal com-
ponent analysis (PCA) and hierarchical clustering. PCA 
revealed that the vast majority of variation (70.29%) 
in the data could be explained by whether the ATAC-
seq data was single-nuclei or bulk not experiment or 
cell population (Fig. S1A, S1B, S1C). Stepwise quan-
tile normalization and batch correction abolished the 
variation caused by this technical effect (Fig. S1A). 
 In general, broad cell types clustered together 
within hierarchical clustering of correlation (Figure 1A) 
and when PCA results were projected into two dimen-
sional space (Figure 1B). Only single-cell data from 
inhibitory medium spiny neurons (“Inhibitory MSN*”) 
and broad inhibitory neurons (“Inhibitory*”) were sep-
arated from the bulk inhibitory neurons in both hierar-
chical clustering of correlation and t-SNE space (Fig-
ure 1A, 1B). Inhibitory MSN neurons clustering with 
excitatory neurons is consistent with the original anal-
ysis (Preissl et al. 2018). This separation could be 
due to the different tissues and methods used to iso-
late these cells (from cortex vs. from whole forebrain 
or sorting vs. single-nuclei) (Preissl et al. 2018; Mo et 
al. 2015; Gray et al. 2017). Overall, these results es-
tablish that the uniformly processed open chromatin 
profiles appropriately reflect cell-dependent biology.
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Converting open chromatin summits from mouse 
to human provides the most accurate open chro-
matin profile
We lifted over all open chromatin profiles for these cell 
populations from the mouse genome (mm10) to syn-
tenic sequences in the human genome (hg19). In or-

Figure 1. Mouse open chromatin profiles show expected relationships (A, B) and lift over of mouse peaks to human is best done with 
summits (C, D, E). A) Dendrogram displaying results of hierarchical clustering of the peak count correlations of public, mouse ATAC-seq data. 
Asterisks in the cell population name indicate single-nuclei datasets. B) t-SNE plot displaying relationships between the peak counts of mouse 
cell populations. C) Table containing the summary of three lift over strategies applied to public mouse ATAC-seq data. D) Mouse ATAC-seq data 
at the Wdr60 promoter region in the mm10 genome. As an example of the data at this locus, summits and peaks from Excitatory Layers II-III are 
displayed along with RefSeq transcripts. E) Mouse-derived human open chromatin data at the WDR60 promoter region in the hg19 genome. As 
an example of data at this locus, lifted over data from Excitatory Layers II-III are displayed along with human RefSeq transcripts. Data includes 
results from all three lift over strategies employed (“All peaks”, “Strict peaks”, and “Summits”) along with the peak created after summit lift over.

der to optimize lift over, we compared three methods. 
We sought the method which retained the maximum 
number of peaks while ensuring human profiles 
resembled mouse profiles. First, peaks were lifted 
over “as is” including 250 bp extensions with default 
lift over parameters (“all”). Second, peaks were lift-
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ed over “as is” but with much stricter parameters, 
limiting gap sizes to 20 bp to match previous studies 
(“strict”)(Vierstra et al. 2014). Finally, we converted 
the single base pair summits with default param-
eters and added 250 bp on each side (“summit”).
 Although the first method (“all”) resulted 
in retention of the most peaks from mouse to hu-
man (~86%), it also led to a range of peak sizes 
(1 bp to 54,494 bp) that were vastly different than 
the uniform input size of 501 bp (Figure 1C). Fur-
ther, ~58% of lifted over peaks were >501 bp, with 
~55,658 peaks doubling in size (>1,000 bp) (Figure 
1C). Our second strategy (“strict”) led to ~42% of 
peaks being lifted over (Figure 1C). This strict pa-
rameter did not sufficiently control for peak size with 
2382 peaks still exhibiting a peak size greater than 
1,000 bp. Finally, the third strategy (“summits”) led 
to ~75% of peaks being converted while controlling 
for size (Figure 1C). This third strategy allowed for 
the mouse-derived human peaks to properly repre-
sent mouse peaks. This can be illustrated by obser-
vations at the WDR60 promoter (Figure 1D, 1E). In 
mouse, one open chromatin summit (from the ex-
citatory neurons from cortical layers II-III) is identi-
fied which leads to a peak directly over the Wdr60 
promoter (Figure 1D). When lifted over as a peak, 
it expands from 501 bp to ~13 kb (“All peaks”, Fig-
ure 1E). When strictly controlling for gaps, the peak 
fails to liftover (“Strict peaks”, Figure 1E). Neither 
of these results are representative of the regulatory 
landscape seen in mouse. However, the summit lifts 
over and produces a 501 bp peak that encompasses 
the WDR60 promoter, providing an accurate repre-

sentation of the data in mouse (“Summits” and “Sum-
mit peaks”, Figure 1E). Ultimately, lifting over sum-
mits proved the most robust method, retaining a high 
proportion of peaks while controlling for size and pro-
files derived from summits were used going forward.

The majority of mouse-derived human peaks 
show regulatory activity in human tissues
We next explored how well data from these cell 
populations recapitulate profiles from orthologous 
cell populations in humans. Most cell populations 
included in our study do not have orthologous data 
generated from humans by design. In order to eval-
uate the profiles, we compared mouse T-cell pro-
files (CD4 and CD8) to human open chromatin data 
from orthologous cell populations processed identi-
cally to the mouse data. Additionally, we compared 
our data to open chromatin data from the Road-
map Epigenome Project (Ernst and Kellis 2015). 
 We observe 43.5% (16,674/38,299; Figure 
2A) of mouse-derived CD8 ATAC-seq peaks overlap 
with human CD8 ATAC-seq peaks (40,916 peaks) 
which is slightly higher than previous studies (Vier-
stra et al. 2014). Using T-cell Roadmap data, we ob-
serve 60% (22,927/38,299) and 59% (22,689/38,299) 
overlap with naive (77,770 peaks) and memory CD8 
T-cell data (80,049 peaks) with a slight improvement 
to 61% (23,698/38,299) when combined (Figure 
2A)(90,267 peaks). Further, we find ~83% overlap 
(31,757/38,299) with peaks found in any Roadmap 
tissue (493,894 peaks) or the combination of Road-
map and ATAC-seq data (31,796/38,299) (Figure 

Figure 2. The majority of mouse-derived human open chromatin profiles show regulatory potential in humans.  A) Plot displaying the intersection 
of mouse-derived CD8 T-cell open chromatin peaks with publicly available human datasets. All numbers displayed are the number of mouse-derived 
peaks that meet the intersecting criteria below the plot. B) Plot displaying the intersection of mouse-derived Excitatory Layers II-III open chromatin peaks 
with publicly available human datasets. All numbers displayed are the number of mouse-derived peaks that meet the intersecting criteria below the plot.
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2A) (624,749  peaks). We observe similar num-
bers for mouse-derived CD4 T-cells (Table S3).
 We extended this analysis to cell populations 
for which no orthologous data exists. In addition to 
DNase-seq from Roadmap tissues, we compared pro-
files to brain-related Roadmap samples only (208,021 
peaks) and ATAC-seq data from neurons from the 
Brain Open Chromatin Atlas (BOCA) (255,977 peaks) 
(Fullard et al. 2018). As in the T-cell comparisons, all 
cell populations have the highest overlap with the com-
bination of DNAase-seq and ATAC-seq (Table S4). 
For example, ~79% of peaks in excitatory neurons in 
layers II-III (“Excitatory Layers II-III”) overlap with the 
combined data while we observed 73% with all Road-
map data, 60% with brain-related Roadmap data, and 
53% with BOCA data (Figure 2B; Table S4). In sum-
mary, the vast majority (average: 78%, range: 70-88%; 
Table S4) of mouse-derived human open chromatin 
regions across all cell populations overlap with hu-
man open chromatin. This indicates that the large ma-
jority of mouse-derived human peaks have regulatory 
potential in humans and that mouse-derived human 
peaks are suitable proxies for human cell populations.

Mouse-derived human profiles recapitulate cell 
population disease enrichments and reveal new 
biology
We sought to determine whether mouse-derived chro-
matin data could be used to inform heritability enrich-
ment of traits and pinpoint cell populations contribut-
ing to common phenotypes. We employed S-LDSC 
to test for enrichment of heritability in open chromatin 
from 27 cell populations across 64 GWAS. We includ-
ed open chromatin data from human T-cells to allow 
for direct comparison to mouse-derived data. The 
spectrum of traits evaluated included a selection of 
common neuropsychiatric, neurological, immunologi-
cal, and behavioral traits, as well as traits from GWAS 
performed on UK Biobank data (Table S5) (Brain-
storm Consortium et al. 2018; Bycroft et al. 2018). 
 Overall, S-LDSC results for all 64 GWAS es-
tablished that mouse-derived ATAC-seq data, when 
lifted over to the human genome, displayed increased 
heritability enrichment in cell populations consistent 
with the known biology. In order to explore trait en-
richment patterns, we calculated Z-scores of P-val-
ues within traits for all S-LDSC results (Table S6). 
High Z-scores indicate that a cell population has 
increased heritability for a trait when compared to 
the other populations. Z-scores were then grouped 
using hierarchical clustering by cell population and 
trait. This revealed three broad clusters of cells (Fig-
ure 3A, column groups I-III) and three clusters of 
phenotypes (Figure 3A, row groups A-C). Collec-
tively, these data highlight biological relationships 
between cell populations and traits (Figure 3A).

 In the first of these highlighted relationships, 
we observe a collection of broadly defined inhibitory 
neurons, inhibitory medium spiny neurons (MSNs), 
excitatory neurons in all cortical layers, and excit-
atory dentate gyrus (DG) neurons (Figure 3A; row 
group A, column group II). Cell populations cluster-
ing in this group show consistently higher heritability 
enrichment for neuropsychiatric, neurological, and 
behavioral phenotypes with many showing signifi-
cant heritability enrichment (indicated by asterisks) 
for these traits including neuroticism (Figure 3B). Al-
though perhaps initially surprising, age of menarche, 
female age at first birth, and number of children are 
highlighted in this group, cognitive phenotypes dis-
play significant genetic correlation with female age 
at first birth and number of children (Lam et al. 2017).
 Grouped together among the adjacent col-
lection of cells are a broadly defined collection of ret-
inal (rods, cones) and nervous system populations 
(excitatory neurons, glial cells, inhibitory PV and VIP 
neurons, embryonic dopaminergic neurons) (Figure 
3A; row group A, column group 3). While not cluster-
ing with the second group of cells, the central nervous 
system-derived cell populations in this group show 
enrichment in neurological phenotypes (education 
years, bipolar disorder, and schizophrenia) that also 
show enrichment in the second group of cells (Figure 
3A, row group A, column group II). However, the en-
richments are less than those in the second group. 
Nonetheless, this group highlights enrichments that 
may warrant further exploration. The observation 
that data corresponding to the “morning person” 
trait reveals enrichment within the blue cone open 
chromatin region (OCR) profile (Figure 3A) is con-
sistent with the finding that genes expressed highly 
in retinal tissue are enriched in “morning person” loci 
(Jones et al. 2019), adding evidence to a potential 
biological relationship. Additionally, the observed en-
richment for astrocyte OCR profile with body mass 
index heritability (Figure 3A) mirrors mounting evi-
dence that astrocytes and other glia play a role in 
controlling body weight (García-Cáceres et al. 2012).
 The third major grouping (Figure 3A; row 
group B, column group I) demonstrates heritability 
for immune-related traits, including lupus, eczema, 
Crohn’s disease, and general autoimmune traits 
from the UK Biobank are enriched in open chromatin 
data from immune cells (microglia, T-cells). Indeed, 
we detect significant associations for many traits in-
cluding multiple sclerosis (Figure 3C). Many of these 
enrichments are consistent with prior data gener-
ated using human tissue (Finucane et al. 2018). 
 By contrast, in the lower portion of this hierar-
chical clustering analysis (Figure 3A, row group C), 
the corresponding phenotypes show no such clear 
biological theme and highlight few cell populations 
that have enrichments that achieve significance 
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Figure 3. S-LDSC results from 64 GWAS show heritability enrichment in expected cell populations and reveal further insight into disease. A) 
A heatmap displaying the Z-scores of -log10(P-values) for 27 cell populations across 64 GWAS analyzed. Data was hierarchical clustered by GWAS 
and cell population. Cell populations that met the across trait significance level (-log10(P) = 4.53857) are indicated with an asterisk. B, C, D) Example 
dotplots displaying -log10(heritability coefficient P-values) S-LDSC results for GWAS indicative of the observed clustering patterns. Neuroticism (B) 
for row cluster A, multiple sclerosis (C) for row cluster B, and height from the GIANT consortium (D) for row cluster C.  Populations are colored and 
ordered by broader cell-type category. Asterisks in the cell population name indicate single-nuclei ATAC-seq data. All results can be found in Table S6.

across traits (Figure 3A). It may be expected that 
traits like height (Figure 3D), fasting glucose, 
and balding type I, would not reveal significant 
enrichments in the cell populations we evaluate. 
 While immune cells show similarly in-
creased heritability enrichment in immune traits, 
the overlap between traits that reach significance 
for human T-cells and mouse-derived data is in-
complete (Figure 3A). For CD4 T-cells, ≥90% 
(58/64) of  traits are concordant in their enrich-
ment for heritability at a trait-wide level in both 
human and mouse data. We demonstrate for hu-
man CD4 T-cells, four traits were found to reach 
trait-wide significance (Figure 3A; Table S6). The 
mouse-derived human CD4 T-cell data shows 
significance at only 2/4 at the trait-wide level. Ad-
ditionally, mouse-derived CD4 data reveals four 

additional traits which reach significance that fail 
to reach significance using human CD4 data, 
suggesting that the mouse data may have the 
power to detect enrichment not yet observed in 
publicly available human datasets. These gener-
al patterns are seen with the CD8 data as well. 
However, a significance threshold for enrichment 
is an arbitrary level at which to compare cell pop-
ulations. In order to explore how mouse-derived 
human data recapitulated what would be seen in 
orthologous human data, we compared the herita-
bility regression coefficients between human and 
mouse T-cells. We observed that in the case of 
both CD4 T-cells (Spearman’s rho = 0.6005) and 
CD8 T-cells (Spearman’s rho = 0.6681), the hu-
man and mouse-derived data show strong correla-
tion (Figure S2). The observed differences may, 
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in part, reflect the different locations from which the 
cells were collected (mouse T-cells, thymus; human 
T-cells, bone marrow/peripheral blood)(Table S1). 
They may also reflect the power resulting from more 
homogenous and less challenged immune cell pop-
ulations that may be obtained from laboratory mice.
 Collectively, these results highlight that 
mouse-derived human profiles broadly recapit-
ulate known biology across a wealth of human 
phenotypes and thus can serve as suitable prox-
ies for orthologous human cell populations. We 
also observed that they can illuminate poten-
tially important new biology for a host of traits.

Schizophrenia heritability is most enriched in 
cortical layer excitatory neurons
Having established the power of mouse-derived hu-
man profiles in studying the genetic architecture of 
common disease, we restricted our focus to schizo-
phrenia. To facilitate direct comparison with prior 
transcription-based analyses (Skene et al. 2018), 
we made use of the recent CLOZUK schizophrenia 
GWAS (Pardiñas et al. 2018).  Of 27 chromatin pro-

files, 13 achieved significance when corrected for all 
traits tested (Figure 4A; Table S6). Our analyses large-
ly indict cortical neurons; with open chromatin profiles 
from both excitatory and inhibitory populations dis-
playing significant enrichment (Figure 4A; Table S6). 
 Within subsets of cortical excitatory neurons, 
the availability of data from layer-identified popula-
tions allowed for detection of a clear and progres-
sive increase in the extent of enrichment, progress-
ing from layers II-III and IV, reaching an apex with 
open chromatin profiles derived from layer V, and 
then diminishing slightly in layer VI (Figure 4A; Ta-
ble S6).  This pattern is mirrored in single-nuclei data 
wherein enrichment in layer III/IV/V cortical excitato-
ry neurons (“Excitatory Layers II-V*”) exceeds that 
for layer VI cortical excitatory neurons (“Excitatory 
Layer VI*”) with both being significant (Figure 4; Ta-
ble S6). Significant enrichment for profiles derived 
from excitatory neurons of the dentate gyrus (“Ex-
citatory DG*”) provides evidence of additional con-
tribution made by hippocampal excitatory neurons.
 Schizophrenia heritability enrichment is not 
restricted to excitatory neurons; subpopulations of 

Figure 4. S-LDSC results for CLOZUK and PGC schizophrenia studies as well as bipolar disorder GWAS reveal excitatory cortical neuron 
enrichment. A, B, C, D, E) Dotplots displaying the -log10(heritability coefficient P-values) S-LDSC results for: A) CLOZUK schizophrenia GWAS, 
B) PGC schizophrenia GWAS, C) PGC bipolar disorder GWAS, D) schizophrenia and bipolar disorder GWAS and E) PGC schizophrenia versus 
bipolar disorder GWAS.  Across trait significance levels for are shown (-log10(P) = 4.53857; blue dashed line). Populations are colored and or-
dered by broader cell-type category. Asteriks in the cell population name indicate single-nuclei ATAC-seq data. All results can be found in Table S6.

●

●
●

●
●

●
●

●
●

●

●

●
●

●

●
●

●

●

●

●
●

●

●
●

●
●

●

CD8 T−cells human
CD8 T−cells

CD4 T−cells human
CD4 T−cells

Rods
Cones (green)

Cones (blue)
Embryonic DA midbrain
Embryonic DA forebrain

Inhibitory MSN*
Inhibitory VIP
Inhibitory PV

Inhibitory*
Inhibitory Gad2
Excitatory DG*

Excitatory Layer VI*
Excitatory Layer VI

Excitatory Layers II−V*
Excitatory Layer V

Excitatory Layer IV
Excitatory Layers II−III

Excitatory Camk2a
Neun negative

Oligodendrocyte*
Astrocytes*

Microglia*
Microglia

0 5 10 15 20

−log10(coefficient P−value)
●
●

●
●

●
●

Glia
Excitatory neurons

Inhibitory neurons
Dopaminergic neurons

Retina cells
T−cells

●

●
●
●

●

●
●

●
●

●

●

●
●
●

●
●

●

●

●

●
●

●

●
●

●
●

●

●

●
●
●

●

●
●

●
●

●

●

●
●

●

●
●

●

●

●

●
●

●

●
●

●
●

●

CD8 T−cells human
CD8 T−cells

CD4 T−cells human
CD4 T−cells

Rods
Cones (green)

Cones (blue)
Embryonic DA midbrain
Embryonic DA forebrain

Inhibitory MSN*
Inhibitory VIP
Inhibitory PV

Inhibitory*
Inhibitory Gad2
Excitatory DG*

Excitatory Layer VI*
Excitatory Layer VI

Excitatory Layers II−V*
Excitatory Layer V

Excitatory Layer IV
Excitatory Layers II−III

Excitatory Camk2a
Neun negative

Oligodendrocyte*
Astrocytes*

Microglia*
Microglia

●

●
●
●

●

●
●

●
●

●

●

●
●
●

●
●

●

●

●

●
●

●

●
●

●
●

●

●

●
●
●
●

●
●

●
●

●

●

●
●
●

●
●

●

●

●

●
●

●

●
●

●
●

●

CD8 T−cells human
CD8 T−cells

CD4 T−cells human
CD4 T−cells

Rods
Cones (green)

Cones (blue)
Embryonic DA midbrain
Embryonic DA forebrain

Inhibitory MSN*
Inhibitory VIP
Inhibitory PV

Inhibitory*
Inhibitory Gad2
Excitatory DG*

Excitatory Layer VI*
Excitatory Layer VI

Excitatory Layers II−V*
Excitatory Layer V

Excitatory Layer IV
Excitatory Layers II−III

Excitatory Camk2a
Neun negative

Oligodendrocyte*
Astrocytes*

Microglia*
Microglia

0 5 10 15 20 0 5 10 15 20
−log10(coefficient P−value) −log10(coefficient P−value)

Schizophrenia
 vs. bipolar disorder

Schizophrenia and bipolar disorder
vs. controls

CD8 T−cells human
CD8 T−cells

CD4 T−cells human
CD4 T−cells

Rods
Cones (green)

Cones (blue)
Embryonic DA midbrain
Embryonic DA forebrain

Inhibitory MSN*
Inhibitory VIP
Inhibitory PV

Inhibitory*
Inhibitory Gad2
Excitatory DG*

Excitatory Layer VI*
Excitatory Layer VI

Excitatory Layers II−V*
Excitatory Layer V
Excitatory Layer IV

Excitatory Layers II−III
Excitatory Camk2a

Neun negative
Oligodendrocyte*

Astrocytes*
Microglia*
Microglia

CD8 T−cells human
CD8 T−cells

CD4 T−cells human
CD4 T−cells

Rods
Cones (green)

Cones (blue)
Embryonic DA midbrain
Embryonic DA forebrain

Inhibitory MSN*
Inhibitory VIP
Inhibitory PV

Inhibitory*
Inhibitory Gad2
Excitatory DG*

Excitatory Layer VI*
Excitatory Layer VI

Excitatory Layers II−V*
Excitatory Layer V
Excitatory Layer IV

Excitatory Layers II−III
Excitatory Camk2a

Neun negative
Oligodendrocyte*

Astrocytes*
Microglia*
Microglia

0 5 10 15 20 0 5 10 15 20
−log10(coefficient P−value) −log10(coefficient P−value)

Schizophrenia
vs. controls

Bipolar disorder
vs. controlsSchizophrenia (CLOZUK)

●
●

●
●

●
●

Glia
Excitatory neurons

Inhibitory neurons
Dopaminergic neurons

Retina cells
T−cells

A B C

D E

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 4, 2019. ; https://doi.org/10.1101/427484doi: bioRxiv preprint 

https://doi.org/10.1101/427484
http://creativecommons.org/licenses/by-nc-nd/4.0/


8

BioRxiv Preprint Hook and McCallion, 2019

BioRxiv Preprint InDesign Template. Loyal Goff 2018
https://github.com/gofflab/goff_lab_styles

vs. controls” GWAS  compared to our results from 
the CLOZUK study. While the “Schizophrenia vs. 
controls” samples were also included in the CLOZUK 
study, the studies were performed independently, 
and thus show slightly different results (Figure 4A, 
4B; Table S6). 13/27 cell populations are found to be 
significant in both studies with all excitatory neuron 
populations reaching significance in both with layer 
V neurons being most enriched. Furthermore, both 
broadly defined inhibitory neuronal populations as 
well as inhibitory medium spiny neurons are found 
in both. However, the Psychiatric Genomics Consor-
tium (PGC)-only study showed significant enrichment 
in embryonic forebrain dopaminergic neurons and 
inhibitory VIP neurons (Figure 4B) whereas sum-
mary statistics from the CLOZUK study did not. The 
PGC-only study also failed to detect enrichment in 
astrocytes and inhibitory PV neurons (Figure 4B).
 Next, we looked at bipolar disorder and found 
similar results to schizophrenia. Namely, all excitato-
ry neuron populations showed heritability enrichment 
with the highest enrichment being seen in the individ-
ual excitatory layers (Figure 4C; Table S6). Additional-
ly, both broadly defined inhibitory neuron populations 
show enrichment, mirroring schizophrenia. In contrast, 
while subsets of cortical inhibitory neurons are found 
to be enriched in schizophrenia, none are found to 
be enriched in bipolar disorder (Figure 4C; Table S6). 
Perhaps most strikingly, the consistent, high enrich-
ment of inhibitory medium spiny neurons in schizo-
phrenia is absent in bipolar disorder, potentially point-
ing towards important biological differences (Figure 
4C; Table S6). Furthermore, we analyze the combined 
schizophrenia and bipolar cohort and see significant 
enrichment in the same excitatory and inhibitory neu-
rons. However, in the combined analysis, both embry-
onic dopaminergic populations also reach significance 
along with oligodendrocytes (Figure 4D; Table S6).
 Finally, we analyze the schizophrenia versus 
bipolar disorder cohort. Only four cell populations 
reach trait-wide significance and all four are excit-
atory neurons including excitatory neurons from cor-
tical layers II-III, IV, V, as well as the dentate gyrus 
(Figure 4E; Table S6). This result provides ortholo-
gous support to extensive work that has shown lay-
er-specific neuronal differences between schizo-
phrenia and bipolar disorder (Chana et al. 2003; 
Rajkowska et al. 2001; Benes et al. 2001) as well 
as differences in dentate gyrus neuronal matura-
tion seen in these diseases (Yu et al. 2014). Over-
all, through the wealth of GWAS data available, we 
are able to begin to tease apart the complex rela-
tionship between schizophrenia and bipolar disorder.
Statistical fine-mapping of 177 schizophrenia loci 
reveals complex biological hypotheses
Ultimately, our goal was to not only identify cell popu-

inhibitory neurons also reveal enrichment, with 
highest levels seen in the broadly defined Gad2+ 
GABAergic population (Figure 4A; Table S6). No-
tably, enrichment in parvalbumin positive neurons 
(“Inhibitory PV”) also reaches significance. This 
inhibitory PV neuron observation echoes a recent 
study demonstrating that treatment of PV inhibito-
ry neurons in a mouse model of schizophrenia re-
sulted in amelioration of disease phenotypes (Ma-
rissal et al. 2018). Beyond the cortex, we detect 
strong enrichment in Drd1 positive medium spiny 
neurons (“Inhibitory MSN*”). Lastly, we note a pre-
dicted contribution of glial cells to schizophrenia; 
chromatin signatures from astrocytes also pass the 
threshold for significance (Figure 4A; Table S6). 
 These chromatin based observations are 
consistent with results using transcriptional data 
(Skene et al. 2018). These prior data primarily im-
plicated medium spiny neurons, all layers of corti-
cal excitatory neurons, cortical inhibitory neurons, 
as well as hippocampal CA1 excitatory neurons. 
We find enrichment in all but hippocampal CA1 ex-
citatory neurons, for which we do not have data. 
However, we observe enrichment in excitatory neu-
rons derived from the dentate gyrus, which mirror 
significant schizophrenia enrichment seen in mouse 
dentate granule cells (Skene et al. 2018). Finally, 
while astrocytes are not consistently implicated in 
the transcriptional data, astrocytes from mouse stri-
atum, mouse visual cortex, and human cortex show 
enrichment for schizophrenia heritability (Skene et 
al. 2018). Overall, our analysis of open chromatin 
provides strong orthogonal evidence to transcrip-
tional data for the enrichment of schizophrenia 
heritability in narrowly-defined cell populations.

Excitatory neurons in the cortex and hippo-
campus are enriched for differences between 
schizophrenia and bipolar disorder
Leveraging our success analyzing schizophrenia, 
we set out to determine which cell populations may 
differentiate schizophrenia and bipolar disorder. Al-
though bipolar disorder is related to schizophrenia 
and their heritabilities are highly correlated, they 
are unique disorders (Brainstorm Consortium et al. 
2018). We took advantage of a recent study that not 
only performed traditional GWAS for schizophrenia 
and bipolar disorder (affected vs. controls) but also 
performed GWAS for schizophrenia and bipolar 
disorder compared to controls and schizophrenia 
compared to bipolar disorder (Bipolar Disorder and 
Schizophrenia Working Group of the Psychiatric Ge-
nomics Consortium 2018). These unique compari-
sons allowed us to use S-LDSC to pinpoint what cell 
populations may be modulating disease differences.
 We first looked at how the “Schizophrenia 
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lations relevant to disease but to use that data to pri-
oritize variants in schizophrenia loci. We incorporated 
significantly enriched open chromatin annotations into 
statistical fine-mapping of 177 independent schizo-
phrenia loci. We extracted all common SNPs (minor 
allele frequency > 0.01 in 1000 Genomes European 
data) in LD with 179 independent lead SNPs (r2 > 0.1 
in 1000 Genomes European data) from the CLOZUK 
schizophrenia GWAS (Pardiñas et al. 2018) (see 
Methods). Note that since we identified proxy SNPs 
from independent GWAS signals, some SNPs are 
fine-mapped independently in multiple loci. The sum-
mary statistics for all proxy SNPs were extracted from 
GWAS data and split into loci based on independent 
lead SNPs. Two loci were excluded (see Methods) re-
sulting in a total of 177 independent schizophrenia loci.
 We used the fine-mapping program, PAIN-
TOR (Kichaev et al. 2014; Kichaev and Pasaniuc 
2015; Kichaev et al. 2017) in order to incorporate an-
notation data. The open chromatin profiles for the 13 
significant cell populations for the CLOZUK schizo-
phrenia GWAS were merged into one annotation 
for use in fine-mapping (see Methods). Schizophre-
nia loci were fine-mapped with and without anno-
tation using a Markov Chain Monte Carlo sampling 
algorithm without specifying the number of causal 
SNPs in each locus. In total, 62,994 unique SNPs 
were fine-mapped with an average of 370 SNPs 
per locus (Table S7). When combining results both 
with and without annotation, 1,512 SNPs in 166 loci 
reached a posterior inclusion probability (PIP) of 
> 0.1, 82 SNPs in 56 loci reached a PIP > 0.5, and 
30 SNPs in 23 loci reached a PIP > 0.9 (Table S7). 
All fine-mapping results can be found in Table S8. 
 We explored how all variants with a PIP > 0.1 
impact open chromatin regions in schizophrenia en-
riched cell populations. This cutoff was chosen be-
cause it has been shown to have a high benefit-to-cost 
ratio for follow-up experiments (Kichaev et al. 2014). 
We observed 281 unique SNPs across 104 loci achieve 
a PIP > 0.1 and overlap with an open chromatin re-
gion present in at least one schizophrenia enriched 
cell population (Table S9). Furthermore, 242 SNPs 
are predicted to disrupt transcription factor binding 
sites as determined with ENCODE data (Table S10) 
with disruption of REST, EP300, and EGR1 TF motifs 
being the most common motifs disrupted (Table S11).
 Since we used SNPs in LD with independent 
signals, not amalgamated loci, 2,317 SNPs were fine-
mapped in more than one locus. 39 of those SNPs 
achieve a PIP > 0.1 across multiple loci, potentially 
identifying the effects of single variants contributing to 
multiple reported “independent” signals (Table S12). 
One such example is rs11682175 which is in LD 
with two independent index SNPs located within the 
VRK2 gene, rs75575209 (r2 = 0.105) and rs7596038 
(r2 = 0.326) (Table S12). rs11682175 achieves high 

PIPs with annotation in both loci (0.999 and 0.864 
in rs75575209 and rs7596038, respectively)(Table 
S12). While not reported in the CLOZUK GWAS, 
rs11682175 has been significantly associated with ma-
jor depression (Wray et al. 2018), neuroticism (Nagel 
et al. 2018), and schizophrenia (Schizophrenia Work-
ing Group of the Psychiatric Genomics Consortium 
2014). This SNP, however, does not intersect with any 
OCRs in the cell populations studied. We believe that 
we observe this result due to the “clumping” method-
ology used during the original GWAS (Pardiñas et al. 
2018). While the top fine-mapped SNP (rs11682175) 
reaches genome-wide significance in the original 
GWAS, it seems to be grouped under rs7596038 
during the first clumping procedure (based on LD and 
P-values) and was not reported as an “independent” 
signal (Pardiñas et al. 2018) (Figure S3). rs11682175 
is much more significant than rs75575209, but since 
it is in low LD with rs75575209, it is included in that 
“independent” locus was well during our analysis. 
This high significance but low LD with the lead SNPs 
lead to this SNP (while not reported in the original 
GWAS) to rise to the top of both loci and may rep-
resent an independent signal masked by clumping.
 For many loci, the hypotheses aris-
ing from our analyses are clear, consistent with 
known biology, and limited in scope; for others, 
the ongoing challenge is laid out in the breadth 
of SNPs highlighted by OCRs across a variety of 
cell types. We describe a few examples below.
 The GABBR2 locus is tagged by rs10985817 
and contains 164 fine-mapped SNPs (Table S7). Two 
SNPs, rs10985817 and rs10985819, achieve a PIP 
> 0.1. Both SNPs are encompassed by an OCR only 
present in dentate gyrus excitatory neurons (Table 
1, Table S9) directly establishing a clear hypothesis. 
However, hypotheses emerging from many loci are 
not as immediately straightforward. One of the in-
dependent GWAS signals in an intron of CACNA1C 
(lead SNP rs2007044; 144 fine-mapped SNPs) con-
tains eight SNPs that achieve a PIP > 0.1 (Table 1; 
Table S7). Six of these SNPs intersect with at least 
one OCR in the populations studied with three inter-
secting exclusively with one excitatory neuron pop-
ulation (rs4765913, rs882195, rs11062170) (Table 
1). rs4765913 resides exclusively in an OCR found 
in excitatory dentate gyrus neurons and has been 
significantly associated with bipolar disorder in mul-
tiple studies (Psychiatric GWAS Consortium Bipolar 
Disorder Working Group 2011; Charney et al. 2017).  
Further, one SNP, rs2239038, intersects OCRs found 
in excitatory neurons in multiple layers of the cortex 
(Table 1). Finally, two SNPs intersect with both excit-
atory and inhibitory neurons (rs1860002, rs2238057) 
(Table 1) indicating that CACNA1C expression may 
be modulated in both populations. Thus although bi-
ologically informed hypotheses may be directly de-
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Table 1. Summary of prioritized SNPs in the rs10985817, rs2007044, and rs4144797 schizophrenia loci. All SNPs
that achieved a PIP > 0.1 are included. Information about the prioritized SNPs in the table includes reference SNP ID
(“RSID”), the lead independent SNP identified in Pardinas, et al. (Pardiñas et al. 2018) (“Lead SNP”), the PIP of each
SNP when enriched annotations were not included (“PIP with no annotation”), the PIP of each SNP when enriched
annotations were included (“PIP with annotation”), and the cell populations in which the variant intersects with open
chromatin (“Cell populations”). Posterior inclusion probability, PIP; Single nucleotide polymorphism, SNP.

RSID Lead SNP PIP with no 
annotation 

PIP with 
annotation 

Cell Populations 

rs10985817 rs10985817 0.089 0.185 Excitatory DG* 

rs10985819 rs10985817 0.067 0.146 Excitatory DG* 

rs4765913 rs2007044 0.111 0.24 Excitatory DG* 

rs2007044 rs2007044 0.342 0.206 None 

rs882195 rs2007044 0.084 0.181 Excitatory DG* 

rs1860002 rs2007044 0.089 0.18 Inhibitory*, Excitatory Layers II-III, Excitatory Layer IV 

rs2239038 rs2007044 0.069 0.129 Excitatory Layer V, Excitatory Layers II-III, Excitatory Layer IV 

rs11062170 rs2007044 0.055 0.117 Excitatory Layer IV 

rs2238057 rs2007044 0.053 0.106 Inhibitory VIP, Inhibitory Gad2, Excitatory Layers II-III 

rs4298967 rs2007044 0.117 0.094 None 

rs181813160 rs4144797 0.906 0.974 Neun neg, Embryonic DA Midbrain, Inhibitory VIP, Inhibitory*, Inhibitory MSN*, Inhibitory 
Gad2, Embryonic DA Forebrain, Excitatory Layer VI*, Excitatory Layer VI, Excitatory 
Layer V, Excitatory Layers II-V*, Excitatory Layers II-III, Excitatory Layer IV, Excitatory 
DG*, Excitatory Camk2a, Cones (green), Cones (blue), Astrocytes* 

rs188020433 rs4144797 0.942 0.967 None 

rs778371 rs4144797 0.258 0.363 Excitatory Layers II-V* 

rs73102769 rs4144797 0.159 0.204 Inhibitory MSN*, Excitatory Layer V, Excitatory Layer IV 

rs1878289 rs4144797 0.139 0.195 Embryonic DA Midbrain, Excitatory Layers II-V* 

rs4144797 rs4144797 0.082 0.189 Rods, Neun neg, Embryonic DA Midbrain, Inhibitory VIP, Inhibitory Gad2, Embryonic DA 
Forebrain, Excitatory Layer VI, Excitatory Layer V, Excitatory Layers II-V*, Excitatory 
Layers II-III, Excitatory Layer IV, Excitatory DG*, Excitatory Camk2a, Cones (green), 
Cones (blue), CD8 T-cells, CD8 T-cells human, CD4 T-cells, CD4 T-cells human 

rs2592127 rs4144797 0.123 0.18 Embryonic DA Midbrain, Excitatory Layer VI*, Excitatory Layer VI, Excitatory Layer V, 
Excitatory Layers II-V* 

rs2675960 rs4144797 0.076 0.115 Embryonic DA Midbrain, Inhibitory VIP, Inhibitory MSN*, Inhibitory Gad2, Embryonic DA 
Forebrain, Excitatory Layer VI*, Excitatory Layer VI, Excitatory Layer V, Excitatory Layers 
II-V*, Excitatory Layers II-III, Excitatory Layer IV, Astrocytes* 

rs4144795 rs4144797 0.066 0.112 Rods, Neun neg, Embryonic DA Midbrain, Microglia*, Inhibitory*, Inhibitory PV, Inhibitory 
Gad2, Embryonic DA Forebrain, Excitatory Layer VI, Excitatory Layer V, Excitatory Layers 
II-III, Excitatory Layer IV, CD8 T-cells, CD4 T-cells, CD4 T-cells human 

rs1878287 rs4144797 0.08 0.105 Inhibitory*, Excitatory Layer VI*, Excitatory Layer VI, Excitatory Layer V, Excitatory Layers 
II-V* 

rs938575 rs4144797 0.112 0.068 None 

rs4973569 rs4144797 0.103 0.053 None 

rs778363 rs4144797 0.116 0.051 None 

veloped in this way, they often remain multifaceted.
 Like the CACNA1C locus, the locus tagged 
by rs4144797 contains 395 finemapped SNPs 
spread throughout a locus containing the GIGYF2, 
KCNJ13, SNORC, and NGEF genes on chromo-
some 2 (Figure 5A). This locus contains 13 SNPs 
that achieve a PIP > 0.1 of which 9 intersect with an 
OCR from a variety of schizophrenia enriched cell 
populations (Table 1). Two of these SNPs are par-
ticularly interesting as they are located in promot-
er regions of genes. rs181813160 is located in the 
promoter of NGEF and the lead SNP, rs4144797, is 

located in the promoter of GIGYF2 (Figure 5A). Both 
SNPs intersect with an OCR in a wide array of cell 
populations with rs181813160 intersecting 12/13 en-
riched populations and rs4144797 intersecting 8/13 
enriched populations (Table 1). rs181813160 has the 
highest PIP (~0.97) in our dataset that also intersects 
an OCR, making it a prime causal candidate. Using 
ENCODE data, we find rs181813160 is predicted to 
strongly disrupt a potential binding site for 21 differ-
ent transcription factors including immediate early 
genes, EGR1-EGR4 (Figure 5B; Table S10). EGR1 
plays a major role in modulating synaptic plasticity 
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and neuronal activity and EGR family members are 
down-regulated in schizophrenic brains (Yamada 
et al. 2007; Duclot and Kabbaj 2017). NGEF regu-
lates the growth of axons and dendrites in neurons 
(Shamah et al. 2001; Blackmore et al. 2010), strength-
ening a hypothesis that would link this locus to synap-
tic dysfunction in schizophrenia (Fromer et al. 2014; 
Purcell et al. 2014; Sekar et al. 2016; Cannon 2015; 
Sellgren et al. 2019). Furthermore, rs4144797 is pre-
dicted to strongly create an EGR1 binding site (along 
with impacting 6 other TF binding sites), linking both 

promoter region variants (Figure 5B,Table S10).
 
Discussion
Despite the capacity of GWAS to inform genetic 
architecture, connecting this to the risk, genesis 
and progression of disease has remained a stub-
born challenge. This challenge is particularly stark 
in schizophrenia, where association of 179 inde-
pendent loci implicates thousands of noncoding 
variants in disease risk without providing a system-
atic and biologically informed strategy to construct 

Figure 5. Fine-mapping prioritizes SNPs in the schizophrenia-associated locus surrounding the NGEF gene. A) A visualization of the 
schizophrenia-associated locus identified by the lead SNP, rs4144797. The plot displays the RefSeq transcripts and fine-mapped SNPs in the 
region in addition to the posterior inclusion probabilities (PIP) when annotation was included for all SNPs. The lead SNP (rs4144797) and the SNP 
with the highest PIP (rs181813160) are highlighted. B) EGR family motifs derived from ENCODE data that are  created (rs4144797) or disrupted 
(rs18181360) in the rs4144797 locus. The nucleotides impacted are highlighted in red underneath the motif and named in the bars under the motif box.
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sibility of generating lineage-specific data where ac-
cess in humans is more challenging. It makes avail-
able an almost limitless collection of cell populations 
with potential disease relevance; across the spectrum 
of developmental stages; in the presence or absence 
of genetic, chemical, and behavioral perturbation. Our 
data is consistent with recently published single-cell 
ATAC-seq work (Cusanovich et al. 2018). Here we 
demonstrate, although useful, single-cell acquisition 
is not necessary to achieve the cell layer-based res-
olution. Furthermore, the sparse nature of chromatin 
data obtained from individual cells necessitates se-
quencing large numbers of cells (Cusanovich et al. 
2018) or additional information from RNA to optimize 
cell identification (Cao et al. 2018). Even with multi-
ple levels of information, some cell populations de-
lineated through single-cell assays cannot be reliably 
identified (Cusanovich et al. 2018; Cao et al. 2018; 
Preissl et al. 2018). Bulk assays, at this time, may 
thus prove more immediately feasible and flexible.
 While we generate results that support pre-
vious studies, there are limitations to the breadth 
and depth of data we have assembled. We cannot 
arrive at conclusions about the disease relevance 
of any cell-type that was not tested here. Additional-
ly, open chromatin profiles lack the biological inter-
pretation provided by histone marks when trying to 
identify functional regulatory DNA. We expect these 
issues to be solved progressively by increasing 
the resolution, quality, and completeness of chro-
matin and histone data in tandem with decreasing 
cell numbers needed to obtain high quality data.
 Further, our results rely on lifting over mouse 
data to the human genome. While we optimize lift-
ing over and show the vast majority of mouse peaks 
have a human syntenic ortholog, the entire land-
scape of regulatory DNA present in these cell pop-
ulations in humans cannot be queried. Although the 
extent to which this limits immediate progress is un-
clear, we show on average, 78% of mouse-derived 
human peaks are open in humans and that these 
profiles recapitulate heritability enrichment results 
from a variety of phenotypes. This gives us confi-
dence in our approach, however, efforts to obtain 
single-cell data from human brain samples make fu-
ture human datasets a possibility (Lake et al. 2018).
 Finally, our analysis focuses on common 
SNPs due to the underlying model used in S-LD-
SC (Finucane et al. 2018). We, therefore, cannot 
come to any conclusions about the contribution of 
rare variation. This may cause the exclusion of true 
causal variants. We acknowledge this may be com-
pounded by a focus on SNPs. Other more complex 
variation has been shown to be important in schizo-
phrenia loci and cannot yet be fully assayed with 
this method (Sekar et al. 2016; Song et al. 2018).

hypotheses. Genomic data is being increasingly 
used as a guide for the construction of hypotheses 
for common variant involvement in disease risk. 
Although a significant challenge, systematic func-
tional testing of disease-associated, non-coding 
variation will be facilitated by the development of 
biologically informed hypotheses. This study em-
phasizes the value of strategies which seek cellu-
lar context for disease risk and non-coding variation 
as a prelude to massively parallel functional stud-
ies in cell types whose selection is truly biological-
ly informed. It demonstrates the power of obtaining 
cellular surrogates from mice which may not be 
readily obtained from humans and opens the door 
to use the mouse model in the generation of tem-
poral and sensitized cellular data to better inform 
human trait heritability and functional dissection. 
 Our study provides orthologous confirma-
tion of the contribution of cortical and interneuron 
populations in neuropsychiatric disorders through 
chromatin data. In schizophrenia specifically, OCR 
signatures from cortical (both excitatory and inhibi-
tory) populations are most enriched for schizophre-
nia heritability. We demonstrate a clear increase in 
the enrichment of heritability for schizophrenia from 
layer II-III, reaching a maximum at discrete layer V 
excitatory neurons and single-nuclei populations 
containing layer V neurons. Through the wealth of 
GWAS available, we were also able to illuminate 
cell specific differences and similarities between 
schizophrenia and bipolar disorder. Taking this data 
further, we prioritize schizophrenia variants through 
fine-mapping variants using open chromatin profiles 
from enriched cell populations.  Inherently, these data 
establish a tableau of testable hypotheses that may 
be taken off the “shelf” into the lab environment. We 
identify SNPs in 104/177 tested schizophrenia-asso-
ciated loci (~59%) that may now be considered can-
didates for functional testing in their specific cellular 
contexts. We see examples of relatively straight-
forward loci (GABBR2 locus) and observations of 
more complicated hypotheses in which multiple vari-
ants within a risk haplotype may be exerting their 
effects, potentially simultaneously, in overlapping 
and unique cell populations (CACNA1C and NGEF 
loci). As a whole, these data take a critical next step 
in obtaining functional insight to common disease.
 Although clearly powerful, the capacity to 
observe enrichment remains dependent on the 
availability of biological relevant datasets including 
cell types, developmental stages, or physiological 
states. The fact that these observations are facilitat-
ed by datasets generated in mice only serves to ex-
pand the potential application of this approach, rein-
forcing mice as a lens by which to study the genetics 
underlying common human phenotypes (Hook et al. 
2018; McClymont et al. 2018). It establishes the fea-
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in mm10 (so called ‘blacklist regions’; see URLs) 
were removed using BEDtools (v2.27.0) ‘inter-
sect’ (Quinlan and Hall 2010). Raw MACS2 out-
put can be found on Zenodo (see Data Access).
 In order to perform downstream compar-
isons with data generated in mice, raw ATAC-
seq data from CD4 and CD8 T-cells were ob-
tained (Corces et al. 2016) (Table S1). These 
data were processed in the same manner as the 
mouse data above with the exception that the 
reads were aligned to the human genome (hg19).
 Since we were comparing ATAC-seq data-
sets with vastly different sequencing depths and 
numbers of called summits, we applied a recently 
introduced filtering strategy for ATAC-seq peaks 
(Corces et al. 2018). For each dataset, we summed 
the MACS2 peak scores and divided that num-
ber by one million (total score per million). We 
then divided each individual peak score by the to-
tal score per million for that dataset to produce a 
“score per million” (Corces et al. 2018). Ultimate-
ly we chose a “score per million” cutoff of two as 
that would equate to a P-value per million of 0.01.

Relationship between public mouse sets
Summits called in each population were made into 
uniform 501 bp peaks by adding 250 bp to each 
side of the summit. Peaks were then merged into 
a union set of peaks using BEDtools ‘merge’ with 
default parameters. This final set of filtered and 
merged peaks contained a total of 433,555 peaks.
 In order to obtain a count matrix for cell 
population comparison, featureCounts (v1.6.1) 
was used (Liao et al. 2014). First, the union set of 
ATAC-seq peaks was manually converted to an 
SAF file (see Subread website; URLs). The com-
mand ‘featureCounts’ was used with the ‘-T 10 -F 
SAF’ parameters in order to obtain a count ma-
trix. BEDtools ‘nuc’ was used with a FASTA file 
of combined mm10 chromosome sequences ob-
tained from the UCSC Genome browser (URLs) 
in order to calculate GC content for each peak.
 The count matrix, the count matrix summary 
file, and the peak GC content file were read into the 
R statistical environment (URLs). Data were trans-
formed into log2(count + 1) counts and the CQN R 
package (Hansen et al. 2012) and ComBat from 
the SVA R package (Leek et al. 2012) were used 
to quantile normalize counts and correct CQN nor-
malized counts for type of experiment (single-nuclei 
or bulk). Principal component analysis (PCA) was 
performed using all peak counts with the R functions 
‘prcomp()’ with default settings and “scale. = TRUE” 
setting. t-SNE was performed with the first 6 princi-
pal components from PCA using the ‘tsne’ package 
in R with the ‘tsne()’ function with the following pa-

 Overall, our data define a spectrum of immedi-
ately testable hypotheses, implicating specific variants 
as potentially modulating the activity of cis-regulatory 
elements in discrete cellular contexts across pheno-
types. Taken collectively the capacity to move direct-
ly from GWAS to design of functional tests by using 
mouse-derived data represents a significant step for-
ward in the dissection of common human phenotypes.

Methods
Obtaining ATAC-seq data
Raw ATAC-seq sequencing data was primari-
ly obtained from the Gene Expression Omnibus 
(GEO) except single-nuclei ATAC-seq data (Pre-
issl et al. 2018), which was obtained from the au-
thor’s website (URLs). All details about the down-
loaded sequencing data can be found in Table S1.
 Additional steps were needed in order to 
aggregate ATAC-seq reads from individual nuclei 
into cell populations. A list of barcode names (cells) 
and the clusters to which they belonged in Preissl, 
et. al., were obtained from the authors of the origi-
nal paper (personal communication). Crucially, 
these barcodes were included in the name of each 
sequencing read. Barcodes were grouped accord-
ing to their cluster identity and paired-end reads be-
longing to each cell population were extracted via 
sequencing read name using the BBMap script ‘de-
muxbyname.sh’ with the parameters ‘substringmode’ 
(URLs). FASTQ files for each barcode in each rep-
licate were then combined into a single FASTQ file 
for each cluster. This method had the advantage of 
only extracting reads originating from cells that had 
passed quality control measures (Preissl et al. 2018).

Alignment and peak calling
Paired-end reads were aligned to the mouse ge-
nome (mm10/GRCm38; URLs) using bowtie2 (ver-
sion 2.2.5; URLs) (Langmead and Salzberg 2012) 
with the following parameters: ‘-p 15 --local -X2000’. 
Paired-end reads aligning to the mitochondrial ge-
nome as well as random and unknown chromo-
somes were removed. SAMtools (Li et al. 2009) was 
used to remove duplicate reads (v0.1.9), improper-
ly paired reads (v1.3.1), and reads with a mapping 
quality score of less than or equal to 30 (v1.3.1). 
 Replicates for each cell population were then 
merged into a single bam file and peak summits 
were called for each mouse cell population (25 in 
total) using the MACS2 (v. 2.1.1.20160309) (Zhang 
et al. 2008) ‘macs2 callpeak’ function with the fol-
lowing parameters: ‘--seed 24 --nomodel --nolamb-
da --call-summits --shift -100 --extsize 200 --keep-
dup all --gsize mm’. Regions that are considered 
artifacts of ATAC-seq and other chromatin assays 
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used as additions to the baseline model as was 
done in a previous application of LDSC on ATAC-
seq data (Finucane et al. 2018). These were also 
obtained from the Broad Institute (URLs; Table S13).
 Summary statistics for 64 GWAS were ob-
tained from a variety of sources as either “raw” 
summary statistics or summary statistics that were 
pre-processed in the LDSC pipeline (Table S5; URLs). 
48 of the summary statistics were obtained from the 
Alkes Price group as either preprocessed, published 
summary statistics or “raw” summary statistics of 
UK Biobank phenotypes (Table S5; URLs). 16 of the 
summary statistics were handpicked and were most-
ly from neurological traits including schizophrenia. 
“Raw” GWAS summary statistics were download-
ed and processed using the ‘munge_sumstats.py’ 
script (LDSC v1.0.0). Specific command parameters 
used to process the data are listed in Table S5. Note, 
processed summary statistics from the CLOZUK 
schizophrenia GWAS (Pardiñas et al. 2018) need-
ed minor modifications after processing (Table S5).
 Annotation files needed for analysis were cre-
ated using the ‘make_annot.py’ script included in the 
LDSC software (v1.0.0; URLs) while specifying the 
following parameters: --bed-file; --bimfile; --annot-file. 
LD score files needed for analysis were created with 
the ‘ldsc.py’ script with the following parameters: --l2; 
--bfile; --ld-wind-cm 1; --thin-annot; --annot; --out; 
--print-snps. Cell-type partitioned heritability calcula-
tions (also referred to as S-LDSC) were performed 
with the ‘ldsc.py’ script with the following parame-
ters: --h2-cts; --ref-ld-chr; --ref-ld-chr-cts; --w-ld-chr.
 The P-values for heritability enrichment are 
based on a one-sided test for the regression coefficient 
being greater than 0. This allowed for a direct compar-
ison of the magnitude of enrichment (i.e. higher P-val-
ue = higher enrichment). For more information, see Fi-
nucane, et al., 2015 (Finucane et al. 2015) and LDSC 
website (URLs). Partitioned heritability calculations for 
all traits were combined and analyzed in R. The cre-
ation of plots was carried out using custom R scripts. 
The level of significance was set for LDSC results as 
the Bonferroni corrected P-value when taking into ac-
count all summary statistics and cell populations test-
ed (0.05/(27*64) = 0.00002894; -log10(P) = 4.53857).

Fine-mapping SNPs in schizophrenia loci
Finding proxy SNPs
A total of 179 genome-wide significant, indepen-
dent index SNPs from the CLOZUK SZ study were 
obtained (Pardiñas et al. 2018). In order to assay 
all common SNPs within LD of the index SNPs, the 
function ‘get_proxies’ from the R package ‘proxysnps’ 
(URLs) was used with the following parameters: win-
dow_size = 2e6, pop = “EUR”. Only SNPs with an 
r2 > 0.1 from an index SNP and a minor allele fre-

rameters: perplexity = 5, max_iter = 10000, whiten 
= T. Additionally, the Pearson correlation between 
corrected peak counts was used to hierarchical 
cluster the data. Correlations were converted to 
distances by subtracting the absolute value of the 
correlations from 1. Clustering was performed us-
ing the R function ‘hclust’ with ‘method = “ward.D2”’ 
and figures were produced with custom R scripts.

Liftover
All strategies used the lift over script “bnMapper.
py” from the bx-python software package (Denas 
et al. 2015) (URLs) along with the “reciprocal best” 
mm10 to hg19 chain file (mm10.hg19.rbest.chain.
gz) from UCSC genome browser (URLs). Three dif-
ferent lift over strategies were compared: one us-
ing the called summits and two using the uniform, 
unmerged 501 bp peaks. The first strategy lifted 
over the single bp summit sets with the settings: ‘-f 
BED12’. The second strategy lifted over the 501 bp 
peak sets again with the settings: ‘-f BED12’. The 
third strategy again used the 501 bp peaks with the 
settings: ‘-f BED12 -g 20 -t 0.1’. This third strate-
gy has been employed previously (Vierstra et al. 
2014) and it applies a more strict lift over which 
limits the size of the gaps allowed in the mapped 
sequences. Ultimately, the lift over of the peak sum-
mits was used for all subsequent analyses. After lift 
over to hg19, 250 bp was added on to both sides 
of each summit to create peaks. Overlapping peaks 
for each annotation were merged using BEDtools 
‘merge’ with default parameters. Human regions 
that are blacklisted either by the ENCODE con-
sortium or ATAC-seq users were removed (URLs).

Comparison to publicly available human open 
chromatin data
Human open chromatin profiles derived from mouse 
data were compared to imputed Roadmap Epigen-
etic Project DNase I hypersensitivity data from 127 
human tissues and cell populations (Ernst and Kellis 
2015) and ATAC-seq data from neurons isolated from 
14 human brain regions (Fullard et al. 2018) (URLs). 
Comparisons were made using the BEDtools ‘jac-
card’ command with default parameters. Overlaps 
were calculated for each annotation (Table S4).

Partitioning heritability with linkage disequilibri-
um score regression (S-LDSC)
All necessary components needed to run S-LD-
SC including baseline scores, PLINK files, fre-
quency files, weights, and SNPs, were download-
ed from the Broad Institute (URLs; Table S13). All 
files were ‘1000G_Phase3’ versions. Additional-
ly, Roadmap Epigenetic Project LDSC files were 
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all annotations were merged. Annotation files for all 
loci were reproduced with the merged annotation.

Running PAINTOR fine-mapping
In order to reduce the time and computational burden 
required to estimate annotation enrichments in PAIN-
TOR and perform the fine-mapping with sufficiently 
long Monte Carlo Markov Chain (MCMC) simulation, 
the merged annotation enrichment was estimated 
with a shorter MCMC with the following key param-
eters: -mcmc; -burn_in 5000; -max_samples 1000 
-num_chains 5; -set_seed 3; -MI 30. The enrichment 
estimates for the baseline model and the annota-
tion model were then used in subsequent analyses.
 In order to perform robust fine-mapping 
using MCMC, enrichments estimated above were 
used as input to a fine-mapping strategy using 
PAINTOR MCMC simulations with the following key 
parameters: -mcmc; -burn_in 100000; -max_sam-
ples 1000000 -num_chains 5; -set_seed 3; -MI 
1. Fine-mapping was run both with and without 
merged annotations with the parameter for sup-
plying enrichment estimates set at ‘-gamma_in-
tial 3.79521’ for the no annotation simulation and 
‘-gamma_initial 3.79521, -0.939523’ set for the 
simulation including annotation. The number of 
samples used for ‘-burn_in’ and ‘-max_samples’ 
parameters were chosen based on parameters 
set for MCMC fine-mapping with other methods 
(Banerjee et al. 2018). Visualizations of fine-map-
ping results were created with custom R scripts.

SNP transcription factor binding site disruption
In order to explore the functional impact of fine-
mapped SNPs on transcription factor binding sites, 
the R program motifbreakR was used (Coetzee et 
al. 2015). All SNPs with a PIP > 0.1 in either of the 
fine-mapping simulations (with or without annota-
tions) and overlap with an open chromatin region 
from a S-LDSC schizophrenia enriched cell-popula-
tion were used. The following parameters were used 
in the ‘snps.from.rsid( )’ function from motifbreakR 
in order to analyze the variants: ‘dbSNP = SNPlocs.
Hsapiens.dbSNP144.GRCh37; search.genome = 
BSgenome.Hsapiens.UCSC.hg19’. SNPs were then 
scanned for modification of transcription factor bind-
ing sites as defined by ENCODE by using the ‘mo-
tifbreakR( )’ function with the following parameters: 
filterp = TRUE; pwmList = encodemotif; threshold = 
1e-4; method = “ic”; bkg = c(A=0.25, C=0.25, G=0.25, 
T=0.25); BPPARAM = BiocParallel::bpparam().

URLs
Preissl, et al. full data set: http://renlab.sdsc.edu/
r3fang/snATAC/

quency (MAF) > 1% were retained for fine-mapping.
 This method obtained 71,344 unique SNPs 
with reference SNP (RS) numbers across 177 loci. 
Note that some SNPs are shared between loci. The 
index SNP as reported in Pardinas, et al., could not 
be used to identify proxy snps in seven loci for var-
ious reasons. Instead a suitable replacement was 
used based on LD or on changes in SNP databases 
over time (Table S14). In addition, two genome-wide 
significant loci were excluded from the analysis. The 
locus with the index SNP rs1023497 was excluded 
because it is not a biallelic variant in 1000 Genomes 
data so proxies were not found. The second locus 
was the MHC locus (rs3130820) because of its com-
plicated LD structure and because it is generally ex-
cluded from LDSC analysis (Finucane et al. 2018).

File setup for fine-mapping
In order to discover disease-relevant variants within 
each locus, we statistically fine-mapped all 177 SZ 
loci using PAINTOR (v3.1; URLs)(Kichaev et al. 2014; 
Kichaev and Pasaniuc 2015; Kichaev et al. 2017). 
PAINTOR was chosen for its ability to use summary 
statistics, run simulations on multiple loci at once, and 
incorporate chromatin annotation data. Proxy SNPs 
were merged with summary statistics from Pardinas, 
et al. (Pardiñas et al. 2018) (URLs) leaving 62,994 
unique SNPs. The merged data was then split into 
177 loci based on the index SNP and formatted for 
use in PAINTOR by using custom R scripts. The num-
ber of SNPs in each locus ranged from 7 to 1919 
(Table S15). The loci were used to create both the 
LD and annotation files needed to run PAINTOR. 
 LD files were created with the script 
‘CalcLD_1KG_VCF.py’ included in PAIN-
TOR with the following parameters: 
--reference; --mapl; --effect_allele A1; --alt_allele A2; 
--population EUR; --Zhead Zscore; --position pos. 
The 1000 Genomes reference VCF used was im-
puted and filtered by Beagle (Browning et al. 2018) 
since the program used to find proxy SNPs (‘prox-
ysnps’) used the same VCF (URLs). Note that the 
downloaded ‘CalcLD_1KG_VCF.py’ script was mod-
ified as suggested on the PAINTOR GitHub page so 
if the Z-score was flipped when calculating LD, the 
alleles were also flipped (URLs). It was also mod-
ified so ambiguous SNPs would not be removed.
 Annotation files were created using the ‘Anno-
tateLocus.py’ script included with PAINTOR with the 
following key parameters: --chr chr --pos pos. Python 
syntax in this script was modified in order for it to run 
(see Github). As suggested by the PAINTOR authors, 
the correlations between annotations found to be 
significant in LDSC were calculated using custom R 
scripts. All significant annotations had a Pearson cor-
relation > 0.2 (the cut-off suggested by authors), so 
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enrichment analyses and fine-mapping are available 
via Zenodo (https://doi.org/10.5281/zenodo.3253181).
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Figure S1. Summary of principal component analysis of ATAC-seq cell population peak read counts. A, B, C) PC1 vs. PC2 for 
log2(counts + 1) (top) and quantile normalized and batch corrected log2(counts + 1) (bottom). Cell populations are colored according to 
type of ATAC-seq performed (“bulk” or “single-cell”), B) experiment from which they came, and C) broad cell population category. All meta-
information can be found in Table S1.
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Figure S2. S-LDSC results are correlated between human T-cell open chromatin profiles and mouse-derived human open 
chromatin profiles. A, B) Scatterplots of S-LDSC heritability regression coefficients between orthologous cell populations of A) CD4 
and B) CD8 T-cells. Both plots show a linear model fit to the data with a 95% confidence interval.
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Figure S3. rs11682175 is the top fine-mapped SNP in the rs75575209 and rs7596038 independent schizophrenia 
associated loci. Summary statistics (“Odds Ratio” and “GWAS P-value” are shown at the top of the figure for all three 
SNPS (rs11682175 and lead SNPs). The boxes below the summary statistics show a checkmark if the SNPs meet that 
criteria in Pardiñas et al. 2018. These criteria include whether the SNP was genome-wide significant in the original study, 
whether it was reported as an independent lead SNP, whether it was reported as a clumped lead SNP and what the 
fine-mapping posterior probabilities including annotations were for each SNP. Below the chart are the LD relationships 
between SNPs as calculated in 1000 Genomes European data (Phase 3). The bottom of the figure shows how the 
clumping procedures used in the original study lead to three genome-wide SNPs being combined into two independent 
lead SNPs and one reported locus.
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broad type of cell (“type”), the phenotype analyzed 
(“pheno”), the heritability regression coefficient 
(“Coefficient”), the standard error of the heritability 
regression coefficient (“Coefficient_std_error”), the 
P-value of the coefficient (“Coefficient_P_value”), 
the -log10(P-value) (“p.log10”), and whether or not 
the cell population achieves significance (“signif.all”).

Supplemental Table S7. Summary of 177 fine-
mapped schizophrenia loci. This contains the lead 
SNP identified in Pardinas, et al.(Pardiñas et al. 
2018) (“lead.snp”), the total number of SNPs fine-
mapped for each locus (“total.snps”), the number of 
SNPs that reach a PIP > 0.1 (“> 0.1”), the number of 
SNPs that reach a PIP > 0.5 (“> 0.5”), the number of 
SNPs that reach a PIP > 0.9 (“> 0.9”), the number of 
SNPs that both reach a 0.1 PIP and overlap with an 
open chromatin region in an enriched cell population 
(“overlap.ten.enrich”), the number of SNPs that both 
reach a 0.5 PIP and overlap with an open chromatin 
region in an enriched cell population (“overlap.fifty.
enrich”), the number of SNPs that both reach a 0.9 
PIP and overlap with an open chromatin region 
in an enriched cell population (“overlap.ninety.
enrich”),  and the total number of causal variants 
calculated per locus by adding PIPs for both fine-
mapping without annotation (“total.pp.null”) and 
with enriched annotation (“total.pp.annotation”).

Supplemental Table S8. All results from fine-
mapping 177 schizophrenia loci. This includes 
the SNP ID (“id”), the chromosome (“chr”), the 
position (“pos”), the reference SNP ID (“rsid”), the 
A1 allele (“A1”), the A2 allele (“A2), the Z-score for 
schizophrenia (“Zscore”), the lead SNP (“lead.snp”), 
the R2 between the proxy SNP and the lead SNP (“r.
squared”), the -log10(P-value) for the SNP in the 
schizophrenia GWAS (“-log10(P)”), the PIP when 
annotation was not included (“PIP_null”), and the 
PIP when the annotation was included (“PIP_anno”).

Supplemental Table S9. All results from SNPs 
that achieve a PIP > 0.1 and overlap with an open 
chromatin region from an enriched cell population. 
All information mentioned in Table S8 are present. In 
addition, included in “binary matrix” indicating whether 
or not the SNP intersects open chromatin in that cell 
population (0 = “no”, 1 = “yes”). Note that instead 
of asterisks, single-nuclei datasets are indicated 
with the “_sc” suffix. Finally, the total number of cell 
populations that the SNP intersects with (“all.sum”) 
and the total number of enriched cell populations that 
the SNP intersects with (“enrich.sum”) are included.

Supplemental Table S10. All results from 
motifbreakR. This includes the name of the SNP 
(“rsid”), the lead SNP or SNPs it is associated 

Supplemental Table Legends
Supplemental Table S1. Description of all publicly 
available ATAC-seq used in this study. Included is 
the cell population name used in the paper, the file 
name used for the cell population data, a description 
of the cell population, the type of ATAC-seq, a 
broader cell type classification of cell populations, the 
Pubmed or bioRxiv ID for the publication of the data, 
source of the data, and any associated file names.

Supplemental Table S2. Summary of mouse peak 
data. This includes the cell population name, the number 
of summits called in the mouse genome (“mm10_
summits”), the number of summits that passed filtering 
(“mm10_filtered_summits”), and the number of peaks 
that resulted from the called summits (“mm10_peaks”).

Supplemental Table S3. Summary of T-cell peak 
overlap data. This includes the mouse-derived 
human open chromatin profile file name (“human.
mouse filename”), the total number of mouse-
derived human peaks (“total.peaks”), the filename 
of the human open chromatin data (“human 
filename”), the sample name used for the human 
data (“sample.name”) and the number of peaks that 
overlap between the two files (“overlap.count”).

Supplemental Table S4. Summary of overlap 
data for all cell populations. This includes the cell 
population name (“population”), the number and 
percentage of peaks that overlap with all Roadmap 
Epigenome Atlas data (“roadmap_peaks” and 
“roadmap_percent”), the number and percentage 
of peaks that overlap with brain related tissues in 
Roadmap Epigenome Atlas Data (“roadmap_brain_
peaks” and “roadmap_brain_percent”), the number 
and percentage of peaks that overlap with ATAC-seq 
from BOCA(Fullard et al. 2018) (“boca_peaks” and 
“boca_percent”), and the number and percentage 
of peaks that overlap with all the data combined 
(“combined_peaks” and “combined_percent”).

Supplemental Table S5. Summary of all the 
summary statistics analyzed with S-LDSC. This 
includes the phenotype name (“Phenotype”), the 
name of the source of the data (“Source”), the URL 
from which the data was downloaded (“URL”), PubMed 
ID for any accompanying publications (“PMID”), the 
filename of the summary statistics (“Filename”), the 
exact LDSC munge command used to process the 
data (“Munge_command”), and any additional notes.

Supplemental Table S6. The results from S-LDSC 
for all 64 traits analyzed. Each tab in the document 
is a different set of summary statistics. Each tab 
contains the cell population (“cell.population”), the 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 4, 2019. ; https://doi.org/10.1101/427484doi: bioRxiv preprint 

https://doi.org/10.1101/427484
http://creativecommons.org/licenses/by-nc-nd/4.0/


24

BioRxiv Preprint Hook and McCallion, 2019

BioRxiv Preprint InDesign Template. Loyal Goff 2018
https://github.com/gofflab/goff_lab_styles

with (“lead.snps”), the effect of the motif disruption 
(“effect”), the gene symbol of the transcription factor 
whose motif is disrupted (“geneSymbol”), the source 
of the motif data (“dataSource”), the name of the 
motif (“providerName” and “providerID”), and the 
sequence that is matched for the motif (“seqMatch”).

Supplemental Table S11. A summary of how 
frequently the motif of a transcription factor is 
impacted by SNPs with a PIP > 0.1. Included is the 
name of the transcription factor (“TF.gene”) and the 
number of times it is disrupted by a SNP (“Freq”).

Supplemental Table S12. All results of SNPs that 
achieve a PIP > 0.1 in multiple schizophrenia 
loci. All columns included in Table S8 are present.

Supplemental Table S13. A summary of LDSC 
file downloads. Includes file’s purpose (“LDSC 
files downloaded”) and the download link (“URL”).

Supplemental Table S14. A summary of the SNPs 
used to extract proxy SNPs for schizophrenia loci. 
This includes chromosome (“chr1”), start and of locus 
(“start” and “end”), the lead SNP for the locus (“lead.
snp”), the SNP used to extract proxy SNPs (“search.
snp”), and any notes about the search SNP (“notes”).

Supplemental Table S15. A summary of the 
number of SNPs in each schizophrenia locus 
throughout the process of creating files to be fine-
mapped by PAINTOR. This includes the lead SNP 
(“index.snp”), the total number of proxies extracted 
(“all.proxies”) and the total number of proxies after 
merging with summary statistics (“snps.after.merge”).
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