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Genomic data encodes past evolutionary events and has the potential to reveal10

the strength, rate, and biological drivers of adaptation. However, robust esti-11

mation of adaptation rate (α) and adaptation strength remains a challenging12

problem because evolutionary processes such as demography, linkage, and non-13

neutral polymorphism can confound inference. Here, we exploit the influence14

of background selection to reduce the fixation rate of weakly beneficial alleles to15

jointly infer the strength and rate of adaptation. We develop a novel MK-based16

method to infer adaptation rate and strength, and estimate α = 0.135 in humans,17

72% of which is contributed by weakly adaptive variants. We show that in this18

adaptation regime α is reduced ≈ 25% by linkage genome-wide. Moreover, we19

show that virus-interacting proteins (VIPs) undergo adaptation that is both20

stronger and nearly twice as frequent as the genome average (α = 0.224, 56%21

due to strongly beneficial alleles). Our results suggest that while most adap-22

tation in human proteins is weakly beneficial, adaptation to viruses is often23

strongly beneficial. Our method provides a robust framework for estimating24

adaptation rate and strength across species.25

Introduction26

The relative importance of selection and drift in driving species’ diversification has been a matter of27

debate since the origins of evolutionary biology. In Darwin and Wallace’s formulations of evolutionary28

theory, natural selection is the predominant driver of the accumulation of differences between species29

(1, 2). Subsequent theorists argued that random genetic drift could be a more important contributor30

to differences between species (3–5), with chance differences accumulated over time due to reproductive31

isolation between populations. Although it is now clear that natural selection plays a substantial role32
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in both diversification and constraint in many species (6–8), considerable uncertainty remains about the33

relative importance of stochastic drift, mutation, selection, and linkage, with no clear consensus among34

evolutionary geneticists or across species (9–11). A better mechanistic understanding of these processes35

and how they jointly shape genetic diversity could help to resolve old evolutionary puzzles, such as the36

narrow range of observed genetic diversity across species (12) and the apparently low rate of adaptation37

in primates (13).38

Sustaining interest in this evolutionary conundrum has inspired a deep literature of methods to infer39

adaptation rate (denoted α, defined as the proportion of fixed differences that confer fitness benefits) from40

genetic data, most of which derive from the McDonald-Kreitman (MK) test (14,15) and related Poisson41

random field framework (16,17). A central challenge in designing robust tools for estimating adaptation42

rate and strength is accounting for the complex evolutionary processes that affect both divergence and43

polymorphism, such as the presence of deleterious and beneficial mutations, linkage, and complex de-44

mography (18). In the classic MK framework, the rate of divergence at putatively functional sites (DN )45

is compared to putatively neutral diverged sites (DS), discounted by the number of polymorphic sites in46

each class (PN and PS , respectively). When the MK test statistic (
DN/DS
PN/PS

) exceeds 1, this is taken as47

evidence for positive selection. Unfortunately, this elegant test is susceptible to many biases, such as the48

presence of deleterious polymorphism in the class PN . Deleterious polymorphism effectively makes the49

test overly conservative, because deleterious alleles are unlikely to ever reach fixation but increase the50

number of functional diverged sites required in order for the test statistic to exceed 1.51

Recently, Messer and Petrov introduced a novel method called “asymptotic-MK” (aMK), and showed52

that this approach is robust to weakly deleterious segregating alleles, reasonably insensitive to demo-53

graphic assumptions, robust to linked selection, and provides higher α estimates than the earlier MK-54

based approaches both theoretically and empirically (19). aMK works by progressively calculating the55

MK test statistic within each frequency class in a sample of chromosomes, proceeding from low to high56

frequency. Since deleterious alleles are much less likely to be present at high frequency, the high frequency57

bins provide higher α estimates. aMK has inspired new approaches to inferring adaptation in mitochon-58

drial genes (20) and revealed a high rate of adaptation in proteins interacting with pathogen (21).59

While aMK provides an elegant framework for estimating adaptation rate, it does not explicitly ac-60

count for the possibility that beneficial alleles contribute to segregating polymorphism. Unlike deleterious61

alleles, weakly beneficial alleles may contribute substantially to high frequency polymorphism (17), po-62

tentially making aMK estimates conservative. In addition, while previous modeling suggests that strongly63

adaptive alleles are unlikely to be impeded by background selection, the fixation rate of weakly adaptive64

alleles may be substantially reduced by linked selection (22). Given the recent emphasis on adaptation65

2

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 26, 2018. ; https://doi.org/10.1101/427633doi: bioRxiv preprint 

https://doi.org/10.1101/427633
http://creativecommons.org/licenses/by-nc/4.0/


from standing variation (23–27) and the reported contribution of weakly beneficial polymorphism to66

adaptation in Drosophila (28), we hypothesized that a method that jointly accounts for weakly beneficial67

polymorphism and selection at linked sites could reveal new insights into human adaptation. Moreover,68

such a method could potentially exploit the differential response to background selection of weak and69

strong adaptation to infer the fitness effects of adaptive alleles.70

Here, we probe the performance of aMK when weakly beneficial alleles substantially contribute to71

segregating polymorphism, and show that aMK underestimates α in this adaptation regime. We addi-72

tionally show that when adaptation is weak, true α is predicted to vary substantially across the genome73

as a function of the strength of background selection (BGS). We exploit this signal of covariation between74

α and BGS in the weak adaptation regime to develop an approximate Bayesian computation method that75

separately infers the rate of adaptation for weakly and strongly beneficial alleles, and we provide evidence76

that adaptation in humans is primarily weakly beneficial and varies as a function of BGS strength. In-77

terestingly, adaptation rate estimates on virus-interacting proteins support a much higher rate of strong78

adaptation, suggesting that adaptation to viruses is both frequent and strongly fitness increasing. We79

address five potential sources of confounding, and discuss our results in light of recent research on adap-80

tation in humans and primates. Our results provide a powerful framework for more accurately inferring81

adaptation rate across a range of species.82

Results83

α estimates are conservative for weakly beneficial selection84

The MK framework compares the rate of divergence at putatively functional sites (often taken as non-85

synonymous sites, denoted DN ) to assumed neutral sites (often taken as synonymous sites, denoted DS).86

Polymorphic sites (denoted PN and PS , respectively) are used as a control to calibrate the rate of muta-87

tion at each category of site. Smith and Eyre-Walker extended the MK framework with a simple equation88

that provides an estimate of α,89

α ≈ 1− DS

DN

PN
PS

, (1)

and used this approach to provide evidence for a high rate of adaptation in Drosophila (15). However, this90

approximation only holds under the assumption that polymorphic sites are neutral, and subsequent work91

in humans showed that MK-based approaches result in negative or near-zero adaptation rate estimates92

in humans, possibly caused by demographic biases or segregating deleterious alleles that impact the93

inference procedure (18, 29). More recently, Messer and Petrov introduced the idea of extending eqn. 194
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by replacing PN
PS

with PN (x)
PS(x)

, where PN (x) and PS(x) are the number of segregating nonsynonymous95

and synonymous alleles at frequency x, respectively (19). An exponential curve is fit to the resulting96

α(x) function, which can be calculated for all values of x in the interval (0,1) for a sample of sequenced97

chromosomes. The intercept of the best-fit exponential curve at x = 1 is a good approximation for α,98

regardless of the underlying distribution of deleterious alleles, and they furthermore showed that the99

approach is reasonably robust to recent demographic events (19). The approach is called “asymptotic-100

MK” (aMK) because the exponential curve is expected to asymptote to the true α at x = 1.101

The aMK approach converges to the true α at high frequency under the assumption that positively102

selected mutations make negligible contributions to the frequency spectrum (19). This assumption is likely103

to be met when beneficial alleles confer large fitness benefits, because selective sweeps occur rapidly and104

beneficial alleles are rarely observed as polymorphic. However, when selection is predominantly weak,105

attaining a substantial α requires much larger mutation rates for beneficial alleles and longer average106

transit time to fixation, introducing the possibility that weakly beneficial alleles will contribute non-107

negligibly to the frequency spectrum, even in small samples.108

We tested the robustness of the aMK approach to the presence of weakly beneficial alleles using109

simulation and theory. We simulated simultaneous negative and positive selection using model-based110

forward simulations under a range of scenarios (30, 31). We supposed that nonsynonymous sites were111

under selection, while synonymous sites are neutral. In each simulation, we set α = αW + αS = 0.2,112

where αW is the component of α due to weakly beneficial mutations (2Ns = 10) and αS represents113

strongly beneficial alleles (2Ns = 500). Note that α is not treated as a parameter in the analyses herein;114

we back-calculate the mutation rates for deleterious alleles and advantageous alleles that result in the115

desired α, meaning that α is a model output and not a model input. We drew deleterious selection116

coefficients from a Gamma distribution inferred from human sequence data (32), and we varied αW from117

0 to 0.2 (Fig. 1).118

To test whether aMK is sensitive to weakly adaptive alleles, we used the simulated frequency spectra119

to estimate the rate of adaptation using published aMK software (33). When adaptation is due entirely to120

strongly adaptive alleles, the estimated value of α (α̂) was close to the true value but slightly conservative121

(α̂ = 0.181± 0.01; Fig. 1A). As we increased the contribution of weakly beneficial alleles to α, estimates122

of α became increasingly conservative (α̂ = 0.144 ± 0.01 when αW = 0.1, and α̂ = 0.122 ± 0.015 when123

αW = 0.2; Fig. 1B-C). Removing polymorphism above frequency 0.5 has been suggested as approach to124

account for potential biases induced by high frequency derived alleles, which could be mispolarized in real125

datasets (21). Restricting to alleles below frequency 0.5 produced similar (but conservative) estimates126

for all three models (α̂ = 0.14271, 0.14529, and 0.14264 for αW = 0.0, 0.1 and 0.2, respectively), likely127
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because the frequency spectrum is not strongly dependent on the rate of weakly beneficial mutation for128

low frequency alleles. Lastly, we performed a much larger parameter sweep across α values and selection129

coefficients. We find that α estimates become increasingly conservative as the proportion of weakly130

deleterious alleles increases, and as the strength of selection at beneficial alleles decreases (Fig. S12A &131

Supplemental Methods). Asymptotic-MK estimates of α are only weakly dependent on the distribution132

of deleterious selection coefficients (Fig. S12).133

To better understand why parameter estimates decreased as the proportion of weakly adaptive alleles134

increased, we performed analytical calculations of α(x) using diffusion theory (34,35). Since we use large135

sample sizes in our analysis herein, we replace the the terms pN (x) and pS(x) in α(x) with
∑
x pN (x) and136 ∑

x pS(x) in our calculations, which trivially asymptotes to the same value as the original formulation137

but is not strongly affected by sample size (see Supplemental Methods). We find that the downward138

bias in estimates of α is due to segregating weakly adaptive alleles, and removing these alleles from139

the simulated and calculated α(x) curves would restore the convergence of α(x) to the true α at high140

frequency (Fig. 1A-C, red curves). In real data, it is not possible to perfectly partition positively selected141

and deleterious polymorphic sites. Hence, in later sections we focus on using the shape of the α(x) curve142

to infer the strength and rate of adaptation under models that include linkage and complex demography.143

Background selection reduces true α when adaptation is weak144

In addition to the potential for weakly beneficial alleles to impact aMK analyses, background selection145

(BGS) may also reduce adaptation rates when adaptation is weak. BGS reduces genetic diversity in the146

human genome (36) and affects neutral divergence rates (37), and is predicted to decrease the fixation147

probability of weakly adaptive alleles (22). Hence, we hypothesized that if adaptation is partially driven148

by weakly beneficial alleles in some species, BGS could play a role in modulating adaptation rate across149

the genome.150

To better understand how BGS might affect aMK inference in the presence of weakly beneficial alleles,151

we performed analytical calculations and simulations of α(x) with various levels of BGS. We set α = 0.2152

in the absence of BGS, and then performed simulations while fixing the rate of adaptive mutations and153

changing the amount of BGS (ranging from π
π0

= 0.4 to 1.0, where π corresponds to nucleotide diversity154

with linkage as compared to the neutral diversity π0). We find that when adaptation is strong, BGS has155

a modest effect on α(x) and the true value of α (Fig. 2A&C), mostly driven by an increase in the rate of156

fixation of deleterious alleles (Fig. S2E). When adaptation is weak, BGS removes a substantial portion157

of weakly adaptive alleles and precludes them from fixing, resulting in much stronger dependence of α(x)158
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on BGS and a substantial reduction in the true value of α (Fig. 2B&D and Fig. S2C). Similar to the159

previous section, estimates of α were conservative across all models, but the underestimation was much160

more pronounced for weak adaptation (Fig. 2C&D).161

Human adaptation rate is shaped by linked selection162

Our modeling results show that α is likely to be underestimated when weakly beneficial alleles contribute163

substantially to the frequency spectrum, and that background selection may reduce adaptation rate164

when fitness benefits of adaptive alleles are small. Since BGS is thought to drive broad-scale patterns of165

diversity across the human genome (36), we hypothesized that directly accounting for the action of BGS166

on adaptation rate could provide new insights into the evolutionary mechanisms driving adaptation.167

Moreover, the fact that weak adaptation is strongly affected by BGS while strong adaptation is not168

suggests that strong and weak adaptation could be differentiated in genomic data by comparing regions169

of differing BGS strengths. We therefore designed a method to infer α while accounting for both BGS170

and weakly beneficial alleles.171

We developed an approximate Bayesian computation (ABC) approach to estimating αW and αS in172

the presence of BGS and complex human demography (38). Briefly, we sample parameters from prior173

distributions corresponding to the shape and scale of deleterious selection coefficients (assumed to be174

Gamma-distributed) and the rate of mutation of weakly and strongly beneficial mutations. We perform175

forward simulations (30, 31) of simultaneous negative and positive selection at a coding locus under a176

demographic model inferred from NHLBI Exome project African American samples (39) with varying177

levels of background selection from π/π0 = 0.2 to π/π0 = 1.0 and the sampled parameter values. We then178

calculate α(x) using this simulated data, sampling alleles from the simulations such that the distribution179

of BGS values in the simulation matches the distribution in the empirical data as calculated by a previous180

study (36). We use α(x) values at a subset of frequencies x as summary statistics in ABC (specifically,181

at derived allele counts 1, 2, 5, 10, 20, 50, 100, 200, 500, and 1000 in a sample of 1322 chromosomes).182

To improve efficiency, we employ a resampling-based approach that allows us to query many parameter183

values using the same set of forward simulations (see Supplemental Methods). We tested our approach by184

estimating parameter values (population scaled mutation rates θS , θW , and the parameters of a Gamma185

distribution controlling negative selection strength) and quantities of interest (αW , αS , α) from simulated186

data. We find that the method produces high-accuracy estimates for most inferred parameters and α187

values (including αW , αS , and total α – Fig. S6).188

We applied our estimation approach to empirical α(x) data computed from human genomes obtained189
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from the TGP for all 661 samples with African ancestry. We find strong posterior support for a substantial190

component of α driven by weakly beneficial alleles (α̂W = 0.097; Fig. 3A & Tab. 1), as well as posterior191

support for a smaller component of α from strongly beneficial alleles (α̂S = 0.041). We estimate that192

the total α̂ = 0.135, nearly twice the estimate obtained with the same dataset using the original aMK193

approach (α̂ = 0.076, see Supplemental Methods; we note that while our estimate is similar to previous194

studies (19, 32), we use a much larger set of genes in our inference and hence the estimates are not195

directly comparable). In addition to rates of positive selection, our approach provides estimates of196

negative selection strength. We find support for mean strength of negative selection of 2Ns ≈ −220197

(Fig. S9A), which is consistent with recent studies using large sample sizes (40) and weaker than earlier198

estimates using small samples (32, 41).199

In addition to estimating evolutionary parameters, we sought to better understand how BGS may200

impact adaptation rate across the genome. We resampled parameter values from our posterior estimates201

of each parameter, and ran a new set of forward simulations using these parameter values. We then202

calculated α as a function of BGS in our simulations. We find that α co-varies strongly with BGS, with203

α in the lowest BGS bins being 33% of α in the highest bins (Fig. 3C). Integrating across the whole204

genome, our results suggest that human adaptation rate in coding regions is reduced by approximately205

25% by BGS (Fig. S9D). To confirm that these model projections are supported by the underlying data,206

we split the genome into BGS bins and separately estimated adaptation rate in each bin. Although these207

estimates are substantially noisier than our inference on the full dataset, we find that weak adaptation208

rate decreases as a function of BGS strength in accordance with the model predictions (Fig. 3D). Lastly,209

to validate that our model recapitulates α(x) values that we observe in real data, we also used our210

independent forward simulations to recompute α(x). We find that our model is in tight agreement with211

the observed data across the majority of the frequency spectrum. The model and data deviate at high212

frequency, but both are within the sampling uncertainty (Fig. 3B, gray envelope).213

Previous research has shown that virus-interacting proteins (VIPs) have undergone faster rates of214

adaptation than the genome background (21). However, the strength of selection acting on these genes215

is unknown, and given our BGS results it is plausible that the higher rate of adaptation in VIPs is driven216

by lower overall background selection at VIPs rather than increased selection pressure for adaptation.217

In contrast, if pathogens have imposed large fitness costs on humans it is possible that VIPs would218

support both higher and stronger adaptation rates. We ran our method while restricting to an expanded219

set of 4,066 VIPs for which we had divergence and polymorphism data available. We found evidence220

for strikingly higher adaptation rates in VIPs than the genome background (α = 0.224) and a much221

larger contribution from strongly adaptive alleles (αS = 0.126; Fig. 4). The higher α for VIPs cannot222
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be explained by BGS, because VIPs undergo slightly stronger BGS than average genes; the mean BGS223

strength at VIPs is 0.574, as compared to 0.629 for all genes (in units of π/π0). Taking αS = 0.126 as224

a point estimate for the rate of strongly beneficial substitutions in VIPs and αS = 0.041 genome-wide,225

we estimate that 61% of strongly all adaptive substitutions occurred in VIPs (Tab. 1). Moreover, we226

estimate that the posterior probability that α is greater in VIPs than non-VIPs is 99.97%, while the227

posterior probability that αS is greater in VIPs is 88.9% (Fig. 4C).228

Discussion229

A long-running debate in evolutionary biology has concerned the relative importance of drift and selection230

in determining the rate of diversification between species (3–5,7). While previous studies have shown that231

there is a substantial signal of adaptation in Drosophila (15), estimates of adaptation rate in humans are232

much lower (7). Here, we extended the classic MK framework to account for weakly beneficial alleles, and233

we provided evidence for a large rate of weakly adaptive mutation in humans. We showed that a state-234

of-the-art approach to adaptation rate estimation that does not account for beneficial polymorphism235

provides conservative estimates of α (α̂ = 0.076 for this data) (19), while our method nearly doubles236

the estimated human adaptation rate (to α̂ = 0.135). Most of the adaptation signal that we detect is237

due to weakly beneficial alleles. Interestingly, virus-interacting proteins supported a much higher rate238

of adaptation than the genome background (α̂ = 0.226), especially for strongly beneficial substitutions239

(α̂S = 0.126 as compared to α̂S = 0.041 genome-wide). Our results provide an evolutionary mechanism240

that partially explains the apparently low observed rate of human adaptation in previous studies, and241

extends the support for viruses as a major driver of adaptation in humans (21).242

It has long been known that recombination could in principle affect the evolutionary trajectories243

of both beneficial and deleterious alleles (22, 42, 43), and studies in Drosophila (44, 45) and dogs (46)244

have provided evidence for the effect of recombination on divergence and load. Despite the expectation245

that recombination could have a strong effect on adaptation in humans, studies have differed on how246

recombination affects human divergence and polymorphism. One human genomic study explored the247

ratio DN
DS

as a function of recombination rate, and found no evidence for an effect of recombination248

on divergence rate (9). Our results may partially explain why DN
DS

does not fully capture the effect249

of recombination on divergence in humans. As BGS increases in strength, the rate of accumulation of250

deleterious alleles increases, while the rate of fixation of weakly adaptive alleles decreases. The two251

effects partially offset each other, which should reduce the sensitivity of DN
DS

as a tool to detect the effect252

of recombination on divergence. A more recent study provided evidence that recombination affects the253
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accumulation of deleterious polymorphic alleles (47), but did not provide detailed information about the254

effect of recombination on adaptation. Our results are consistent with the idea that weakly deleterious255

alleles are predicted to segregate at higher frequencies in regions under strong BGS, and we additionally256

show that BGS affects the accumulation of weakly beneficial alleles in humans.257

While classic MK approaches estimate only the rate of adaptation, our method extends the MK-258

framework to provide information about both the rate and strength of selection. Previous approaches to259

estimating the strength of adaptation have focused on the dip in diversity near sweeping alleles (28, 44,260

48–50) or have directly inferred the DFE from the frequency spectrum (17) – our approach capitalizes261

on an orthogonal signal of the reduction in fixation rate of weakly beneficial alleles induced by selection262

at linked sites. We developed an ABC method to capture this signal, but less computationally intensive263

methods could also be used – for example, the original aMK approach could be applied in bins of BGS264

strength. If a substantial proportion of adaptation is due to weakly beneficial alleles, such an analysis265

should result in a strong correlation between BGS strength and (potentially conservative) α estimates.266

However, it should be noted that cryptic covariation between gene function (such as VIPs) and BGS267

strength could confound such inferences.268

We supposed that the main effects of linked selection in humans were due to background selection, but269

in principle genetic draft could drive similar patterns. Draft is expected to substantially reduce genetic270

diversity when sweeps occur frequently, and can impede the fixation of linked beneficial alleles (51, 52).271

Previous work has also shown that strong draft can alter the fixation rate and frequency spectra of272

neutral and deleterious alleles (19). We performed simulations of strong draft in 1MB flanking sequences273

surrounding a gene evolving under natural selection and tested the magnitude of the deviation from274

theoretical predictions under a model of background selection alone. Consistent with previous work, we275

observe that draft increases the fixation rate of deleterious alleles and thereby decreases α (19). However,276

the effect on α(x) is only modest at the frequencies that we use in our inference procedure (i.e., below277

75%), even when the strength and rate of selection is much larger than we and others have inferred in278

humans (although there is a modest deviation around 75% frequency, the highest frequency we use in279

our inference; Fig. S4C&D). This implies that draft due to selected sites outside genes would have to be280

much stronger than draft due to positive selection inside exons in order to drive the effects that we infer281

in the human genome. Still, it is likely that in other species undergoing both strong, frequent sweeps and282

BGS (e.g., Drosophila, (28)), draft will contribute to the removal of weakly beneficial polymorphism.283

Selection has left many imprints on the human genome, with studies reporting signatures of selective284

sweeps (50), soft sweeps (26), background selection (36), negative selection (32,41), and polygenic adap-285

tation (25). Still, considerable uncertainty remains about the relative importance of these evolutionary286

9

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 26, 2018. ; https://doi.org/10.1101/427633doi: bioRxiv preprint 

https://doi.org/10.1101/427633
http://creativecommons.org/licenses/by-nc/4.0/


mechanisms, especially as concerns the rate and strength of positive selection. Recent work has suggested287

that contrasting results of previous studies based on lowered diversity near human substitutions (49,50)288

can be reconciled by arguing that most adaptation signals in humans are consistent with adaptation from289

standing variation (26). Our results show that the frequency spectra and patterns of divergence are also290

consistent with the idea that many adaptive alleles segregate much longer than is expected for a classic291

sweep, and hence also help to reconcile the results of previous studies.292

In addition to determining the rate, strength, and mechanisms of adaptation, there is an ongoing293

effort to find the biological processes most important for driving adaptation. Previous work has shown294

that viruses are a critical driver of adaptation in mammals (21), but the strength of the fitness advan-295

tages associated with resistance to (or tolerance of) infection remain unclear. Our approach clarifies that296

adaptation to viruses is not only more frequent than the genomic background, but that strong adaptation297

is also three-fold enriched for virus-interacting genes. In contrast, weak adaptation rate was not sub-298

stantially different between VIPs and non-VIPs, suggesting that weak adaptation may proceed through299

mechanisms that are shared across proteins regardless of function (for example, optimization of stability).300

While we have focused on VIPs here due to the expected fitness burdens associated with infection, in301

future research our approach could be used to investigate adaptation in any group of genes, or extended302

to partition genes into strong and weak adaptation classes.303

The model that we fit to human data does an excellent job of recapitulating the observed patterns304

in the Thousand Genomes Project data, but we were concerned that several possible confounding fac-305

tors could influence our results. We showed that five confounding factors (ancestral mispolarization,306

demographic model misspecification, BGS model misspecification, covariation of BGS and sequence con-307

servation, and biased gene conversion) are unlikely to influence the results (see Supplemental Methods),308

but it should be noted that the adaptive process in our model is exceedingly simple, and it is very likely309

that the evolutionary processes driving diversification are substantially more complex. We supposed that310

adaptation proceeds in two categories, weak and strong selection, each of which is described by a single311

selection coefficient. In reality, adaptive alleles are likely to have selection coefficients drawn from a broad312

distribution, and adaptation is likely to proceed by a variety of mechanisms, including sweeps (50), poly-313

genic adaptation (25) and selection from standing variation (26). While our results show that BGS shapes314

adaptation rate across the genome, our method does not differentiate among adaptation mechanisms. We315

expect that future research will further clarify the relative importance of various selection mechanisms316

to shaping genomic patterns of diversity in the genomes of humans and other organisms (8, 53).317

Our method is flexible, and as with the original aMK approach, we showed that the α estimates318

obtained are only minimally affected by demographic uncertainty. It may therefore be an effective tool319
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for providing more accurate estimates of adaptation rate in non-model species that have not been the320

subject of detailed genomic studies. Despite recent progress, the evolutionary mechanisms that drive321

the range of diversities observed across species (which could include linked selection, population size,322

and/or population demography) remain the subject of debate (10–12). Future work using and extending323

our method, which provides more accurate estimates of adaptation rate when weakly beneficial alleles324

contribute substantially to polymorphism, could help to resolve this debate.325
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necks and selective sweeps during domestication have increased deleterious genetic variation in dogs.423

Proceedings of the National Academy of Sciences. 2016;113(1):152–157.424

47. Hussin JG, Hodgkinson A, Idaghdour Y, Grenier JC, Goulet JP, Gbeha E, et al. Recombination425

affects accumulation of damaging and disease-associated mutations in human populations. Nature426

Genetics. 2015;47(4):400.427

48. Jensen JD, Thornton KR, Andolfatto P. An approximate bayesian estimator suggests strong, recur-428

rent selective sweeps in drosophila. PLoS Genetics. 2008;4(9):e1000198.429

49. Hernandez RD, Kelley JL, Elyashiv E, Melton SC, Auton A, McVean G, et al. Classic selective430

sweeps were rare in recent human evolution. Science. 2011;331(6019):920–924.431

50. Enard D, Messer PW, Petrov DA. Genome-wide signals of positive selection in human evolution.432

Genome Research. 2014;24(6):885–895.433

51. Comeron JM, Kreitman M. Population, evolutionary and genomic consequences of interference434

selection. Genetics. 2002;161(1):389–410.435

52. Uricchio LH, Hernandez RD. Robust forward simulations of recurrent hitchhiking. Genetics.436

2014;197(1):221–236.437

53. Huber CD, Kim BY, Marsden CD, Lohmueller KE. Determining the factors driving selective438

effects of new nonsynonymous mutations. Proceedings of the National Academy of Sciences.439

2017;114(17):4465–4470.440

54. Charlesworth J, Eyre-Walker A. The McDonald–Kreitman test and slightly deleterious mutations.441

Molecular Biology and Evolution. 2008;25(6):1007–1015.442

55. Eyre-Walker A. Genetic architecture of a complex trait and its implications for fitness and genome-443

wide association studies. Proceedings of the National Academy of Sciences. 2010;107(suppl 1):1752–444

1756.445

56. Charlesworth B. The effect of background selection against deleterious mutations on weakly selected,446

linked variants. Genetical Research. 1994;63(03):213–227.447

57. Hudson RR, Kaplan NL. Deleterious background selection with recombination. Genetics.448

1995;141(4):1605–1617.449

58. Nordborg M, Charlesworth B, Charlesworth D. The effect of recombination on background selection.450

Genetical Research. 1996;67(02):159–174.451

14

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 26, 2018. ; https://doi.org/10.1101/427633doi: bioRxiv preprint 

https://doi.org/10.1101/427633
http://creativecommons.org/licenses/by-nc/4.0/


59. Nicolaisen LE, Desai MM. Distortions in genealogies due to purifying selection. Molecular Biology452

and Evolution. 2012; p. mss170.453

60. Yates A, Akanni W, Amode MR, Barrell D, Billis K, Carvalho-Silva D, et al. Ensembl 2016. Nucleic454

acids research. 2015;44(D1):D710–D716.455

61. Kent WJ. Blatthe blast-like alignment tool. Genome Research. 2002;12(4):656–664.456
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Figure 1: A-C: We plot α(x) as a function of allele count x in a sample of 50 chromosomes.
The true value of α = 0.2 in each panel, with varying contributions from weakly and strongly
adaptive alleles. The solid lines show the results of our analytical approximation (eqn. 11), while
the points show the value of α(x) from forward simulations. The blue points and curves show
the calculation as applied to all polymorphic loci, while in the pink points and curves we have
removed positively selected alleles from the calculation. The dotted line shows the estimated
value of α from the simulated data using existing asymptotic-MK methods (19, 33), while the
gray bars show the 95% confidence interval around the estimate.
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Figure 2: A-B: α(x) is plotted for various background selection (π/π0) values. In A, adaptive
alleles are strongly beneficial (2Ns = 500), while in B they are weakly beneficial (2Ns = 10).
The lines represent analytical approximations, while the points represent the results of stochastic
simulations. C-D: True (dark colors) and estimated (light colors) α for each of the corresponding
models in A-B. Panel C corresponds to strong adaptation (2Ns = 500) while D corresponds
to weak adaptation (2Ns = 10). Estimates of α were made using existing asymptotic-MK
software (33).
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Figure 3: A: Posterior distribution of αW , αS , and α = αS + αW as inferred using our ABC
approach. B: α(x) for genomic data (black points) plotted along with the mean posterior esti-
mate from our model (orange line) and 99% confidence interval (gray envelope), as obtained by
an independent set of simulations using the posterior parameter estimates. C: Inferred poste-
rior distribution of α as a function of BGS strength in the human genome. D: Mean posterior
estimates of αW , as determined by separately fitting the model to alleles from each indepen-
dent background selection strength bin. A linear model fit to the data supported statistically
significant covariation between π/π0 and αW (p-value=0.0343).
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Figure 4: A: Posterior distributions for α, αW , and αS for virus-interacting proteins (VIPs,
4,066 genes). B: The same quantities for non-VIPs (12,962 genes). C: The posterior distribution
of the difference in α for VIPs and non-VIPs. D: α(x) for VIPs and non-VIPs as a function of
derived allele frequency x, specifically at the values of x that we use for statistical inference.
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Datasets & inferred adaptation rates
Dataset Nonsynonymous

substitutions
Synonymous
substitutions

α̂ α̂W α̂S

Whole-exome 29925 38135 0.135 0.097 0.041
VIPs 6249 10309 0.224 0.098 0.126
Non-VIPs 23676 27826 0.12 0.077 0.042

Table 1: Table of datasets and inferred values for total adaptation rate (α), weak adap-
tation (αW ) and strong adaptation (αS). Estimated α values represent the mean of the
posterior distribution.
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Supplementary Methods503

Model504

We apply a classic selection model in which new alleles have selection coefficients s drawn from some505

distribution over s and selection is directional. New mutations arise within at rate θ = 4Nµ, with506

mutations that arise at synonymous sites being neutral and new mutations at nonsynonymous sites being507

beneficial or deleterious.508

Our ultimate goal is to construct an estimator that jointly infers the rate of adaptation (captured by509

α, which is defined to be the proportion of substitutions that are adaptive) and the strength of selection510

(i.e., the distribution of 2Ns values over functional sites). It will be instructive to begin by reviewing the511

results of Messer & Petrov (19), who developed a novel estimator for α. Subsequently, we extend their512

results using analytical theory and simulations to capture information about the strength of selection.513

Following earlier work (15,19), we let dN be the substitution rate and we replace N in the subscript514

with N+, N−, or N0 to indicate advantageous, deleterious, or neutral non-synonymous substitutions.515

When dN alone appears, it denotes the total rate for all non-synonymous sites (i.e. dN = dN−+dN++dN0).516

Analogously, dS is the substitution rate for synonymous sites, which are assumed to be neutral (and hence517

do not have additional subscripts).518

Consider now the proportion of functional sites that are fixed by positive selection, α.519

α ≡
dN+

dN
=
dN − (dN− + dN0

)

dN
. (2)

Rearranging, we have520

α = 1−
dN− + dN0

dN
= 1− dS

dN

(dN− + dN0)

dS
. (3)

Let the number of observed substitutions be denoted D. As noted by (19), dS
dN

can be estimated from521

sequence alignments by taking the ratio of DS and DN , under the assumption that the observed number522

of substitutions is proportional to the rate. However, the ratio (dN− + dN0
)/dS is not straightforward to523

estimate, because the numerator relies on classifying substituted sites by their fitness effects. However,524

under the assumption that polymorphic sites are rarely selected (because deleterious sites are removed525

from the population quickly and advantageous sites go to fixation rapidly),526

dN− + dN0

dS
≈ PN
PS

, (4)

and hence527

α ≈ 1− DS

DN

PN
PS

. (5)

Assumptions of the MK framework528

Approx. 4 implicitly assumes that selected polymorphism is rarely observed. In reality, it is likely that529

moderately deleterious alleles sometimes contribute substantially to observed polymorphism, especially530

at low frequency. To guard against this possibility, we can then modify eqn. 5 as531

α(x) ≈ 1− DS

DN

PN (x)

PS(x)
. (6)

where PN (x) and PS(x) are all non-synonymous polymorphism above frequency x and all synonymous532

polymorphism above frequency x, respectively. We note that the original asymptotic-MK approach takes533

PN (x) and PS(x) as the number of polymorphic sites at frequency x rather than above x, but this534
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approach scales poorly as sample size increases since most common allele frequencies x have very few535

polymorphic sites in large samples. We therefore define PN (x) and PS(x) as stated above since these536

quantities trivially have the same asymptote but are less affected by changing sample size.537

It has been noted that many studies have selected a fixed frequency threshold (say, x = 0.15), and538

removed all polymorphisms below this threshold (54). However, if moderately deleterious sites segregate539

above x, then the fixation rate approximation πN− ≈ πN0 is not valid, and α(x) will be downwardly540

biased (54).541

Messer & Petrov (19) observed that as the frequency threshold x is increased to be asymptotically542

close to 1, eqn. 6 asymptotes to the true value of α. Intuitively, this is because weakly deleterious sites543

(e.g., 2Ns = −1) can rise to appreciable frequency, but have substantially different fixation probability544

than neutral sites at all frequencies, meaning that approximation 4 may be poor for all values of derived545

allele frequency x that are substantially less than 1. However, as x is increased to be arbitrarily close to546

the absorbing state at x = 1, eqn. 6 approaches the true value of α because the probability that a site547

increases to frequency x = 1−δ is a good approximation to the probability that a site fixes for very small548

values of δ.549

In most sequencing experiments, there are very few segregating sites with derived allele frequencies550

close to 1, so simply taking the highest possible value of the threshold frequency x results in a very noisy551

estimator. Hence, Messer & Petrov suggested taking all possible thresholds x and fitting an exponential552

curve to α(x) (19). They showed that when selection is strong, this results in accurate estimates of the553

adaptation rate α.554

Analytical approximation to α(x)555

While the results of Messer & Petrov account for weakly deleterious polymorphic sites, they do not556

account for the possibility of weakly advantageous sites contributing to PN (19). Here, we use analytical557

theory to investigate to the quality of the approximation in eqn. 6 when adaptation is weak but occurs558

at an appreciable rate, such that positively selected mutations occur frequently but fix only rarely. In559

this section, we assume that the population has constant size, and relax this assumption later with ABC.560

The calculations in this section proceed similarly to those in previous studies (18, 29).561

First, we note that while E[α(x)] = 1−E
[
DS
DN

PN
PS

]
is not straightforward to calculate, the expectation562

of each quantity on the RHS of eqn. 6 (i.e., PN , PS , DN , DS) is easily calculated from first principles using563

diffusion theory (35). Therefore, we make the first-order approximation564

E[α(x)] = 1− E
[
DS

DN

PN
PS

]
≈ 1− E[DS ]

E[DN ]

E[PN ]

E[PS ]
. (7)

Denoting the distribution of selection coefficients over new mutations as µs and the fixation probability565

as πs, the expected number of substitutions along a branch of time T in a locus of length L is simply566

E[D] = LTd = LT

∫
s

2Nµsπsds. (8)

Note that for neutral mutations, where µs is non-zero only for s = 0 and the fixation probability is given567

by 1
2N ,

∫
s

2Nµsπsds reduces to 2Nµ0 × 1
2N = µ0.568

Likewise, the expected number of polymorphisms above frequency x can be calculated from the569

standard diffusion theory for the site frequency spectrum (34), given by570

f(x) =

∫
s

θs
1

x(1− x)

e4Ns(1− e−4Ns(1−x))
e4Ns − 1

ds, (9)

where θs = 4Nµs is the mutation rate for sites with selection coefficient s. We have assumed that there571

is no dominance (note that this assumption can be relaxed, but for simplicity we consider only genic572
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selection herein). In a finite sample of 2n chromosomes, we must convolute eqn. 9 with the binomial573

to obtain the downsampled frequency distribution. We deonte the convoluted frequency spectrum as574

fB(x), defined as the expected proportion of polymorphic sites with with allele count equal to x in a575

fixed sample, and note that the total number of polymorphic sites P (x) in a sample is given by576

E[P (x)] =
x∗=1∑
x∗=x

fB(x∗). (10)

Hence, we can substitute eqns. 8 and 10 into eqn. 6 for α(x) to make theoretical predictions about577

the shape of α(x) as a function of model parameters.578

α(x) ≈ 1− p0µ

(1− p0)
∫
s

2Nµ(s)π(s)ds

∑1
x(1− p0)fBN (x∗)∑1

x p0fBS (x∗)
, (11)

where fBS (x∗) and fBN (x∗) are the downsampled site frequency spectra for synonymous and nonsynony-579

mous sites, respectively, and p0 is the probability that a polymorphic site is synonymous (i.e., assumed to580

be neutral). We developed software that calculates eqn. 11 explicitly for the case of a Gamma distribution581

of selection coefficients (see next section).582

Gamma distributed selection coefficients583

While the previous section did not assume a functional form for the distribution of selection coefficients,584

in order to perform simulations and inference we supposed that deleterious selection coefficients were585

Gamma-distributed. Gamma distributions have previously been shown to provide a good fit to human586

polymorphism data, and have revealed that most nonsynonymous sites are weakly deleterious, with a587

long tail of strongly deleterious variation (32,41). Additionally, we suppose that advantageous alleles are588

either strong or weak, such that they are drawn from a point mass distribution with two values (sW and589

sS , where W and S indicate Weak and Strong).590

Replacing θs = 4Nµs in eqns. 7-8 with a Gamma distribution Γ[α, β], we find that591

E[D] = E[D+] + E[D−] + E[D0] =

LT

(
p+
(
1− e−2s

)
+ p−(2−αβα(−ζ

[
α,

2 + β

2

]
+ ζ

[
α, 1/2(2− 1

N
+ β)

]
)) + (1− p− − p+)

1

2N

)
, (12)

where p+ is the probability that an allele is deleterious and p− is the probability that it is deleterious,592

and ζ is the Riemann Zeta function. The frequency spectra for Gamma distributions of deleterious effects593

have been previously investigated (55).594

Using asymptotic-MK to infer α595

We used the the method of Messer & Petrov (19) to infer α from the simulated data presented in Fig. 1.596

This method fits an exponential curve to α(x) and takes the value of the best-fitting exponential function597

at x = 1 as the inferred value of α. In all three panels of Fig. 1, the true rate of adaptation as observed in598

the simulations is α = 0.2, but the component of α that consists of weakly adaptive substitutions (αW )599

varies from 0 to 0.2 (i.e., when αW = 0.2, all adaptive substitutions are weakly adaptive). To infer α, we600

used published software implementing this method (33). The inferred α is plotted as a black dotted line601

in Fig. 1, while the 95% confidence interval is plotted as a gray bar.602

We used the default setting for the frequency threshold as provided by the software (33), which603

removes all alleles below minor allele frequency of 10%. When inputting the frequency spectrum for604
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all 661 individuals, we obtained negative estimates of α, presumably because there are very few alleles605

per bin at high frequency in large samples which induces numerical instability. We therefore binned the606

frequency spectrum into 5% frequency bins in performing the analysis, which resulted in a more stable607

fit.608

In addition to using the previously published software, we also implemented asymptotic-MK in r using609

the function nls (nonlinear least squares). We fit a curve of the form α(x) = a+ becx to alleles between610

x = 0.1 and x = 0.9 (i.e., the same default range of frequencies used in the previously published software611

(33)). We applied this fitting procedure to predicted α(x) curves using our analytical approximations. We612

find that α is strongly under-estimated when adaptation is due to weakly beneficial alleles (Fig. S12A).613

This result is largely insensitive to the distribution of deleterious alleles – decreasing the mean strength of614

selection on deleterious alleles did not substantially change the performance of the estimation procedure615

(Fig. S12B-C). Removing beneficial polymorphism from the frequency spectrum essentially fixes this616

problem (Fig. S12D-E). Of course, it is not possible to remove the beneficial polymorphisms in real data.617

Background selection & adaptive divergence618

Background selection, the action of linked deleterious alleles on patterns of genetic diversity (56–58), may619

also alter the adaptive process. Linked selection reduces the effective population size and hence increases620

the rate of drift of neutral loci, and may also reduce the efficacy of selection on deleterious alleles and621

alter fixation rates of both deleterious and positively selected alleles (22).622

We investigated the impact of background selection on α and α(x) using analytical theory and623

simulations. We focus on a model in which a coding locus is flanked by loci of length L containing624

deleterious alleles with population-scaled selection coefficient −2Nt undergoing persistent deleterious625

mutation at rate 4Nµ−. The flanking loci recombine at rate r per-base, per-generation. The diversity at626

the coding locus is decreased relative to its neutral expectation by627

π

π0
≈ e

−4µL
2rL+t (13)

as derived previously (57, 58).628

The effects of background selection on dN , dS , the frequency spectrum, and effective population629

size have been the subject of much theoretical work (22, 56, 59). It was shown previously (22) that the630

probability of fixation of a positively selected allele under background selection is reduced by a factor φ,631

with632

φ(t, s) = e

[
−2µ

t(1+ rL
t

+ 2s
t )

]
(14)

Multiplying across all deleterious linked sites, we find that633

Φ =
L∏
1

φ(t, s) = e
−2tµ(Ψ[1, r+2s+t

r
]−Ψ[1,

r(L+1)+2s+t
r

])
r2 , (15)

where Φ is the total reduction in fixation probability and Ψ is the polygamma function.634

Testing the analytical theory with simulations635

We rigorously tested the theoretical calculations herein using stochastic simulations (30). Fig. S1 reports636

results of background selection simulations, and shows that for a range of expected background selection637

values calculated with eqn. 13, the expected diversity is in close agreement with values of nucleotide638

diversity obtained in forward simulations.639
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We also show that the predicted frequency spectra for positively selected, negatively selected, and640

neutral alleles are all in close agreement with simulations (Fig. S3), as are the number of diverged sites641

for neutral (Λ0), deleterious (Λ−), and beneficial deleterious (Λ−) alleles (Fig. S2). Note that the curves642

in Figs. S2&S3 represent analytical approximations using the results derived herein, and not fits to the643

data. For these simulations, we assumed that α = 0.2, and that the Gamma distribution of deleterious644

effects is given by a values previously inferred from human nonsynonymous polymorphism with a = 0.184645

and b = 0.000402 (32). We relax these assumptions in later sections when performing inference. Open646

source Python software for performing all these calculations and building SFS CODE command lines is647

available by request and will be made available online at a future date.648

Divergence and polymorphism data649

We retrieved the number of polymorphic sites and their allele frequencies in human coding sequences650

as well as the number of human-specific fixed substitutions in coding sequences since divergence with651

chimpanzees. Fixed substitutions were identified by parsimony based on alignments of human (hg19 as-652

sembly), chimpanzee (panTro4 assembly) and orangutan (ponAbe2 assembly) coding sequences. Human653

coding sequences from Ensembl v73 (60) were blatted (61) on the panTro4 and ponAbe2 assemblies and654

the best corresponding hits were blatted back on the hg19 human assembly to finally identify human-655

chimp-orangutan best reciprocal orthologous hits. We used the Blatfine option to ensure that even short656

exons at the edge of coding sequences would be included in the hits. We further used a Blat protein657

-minIdentity threshold of 60%. The corresponding human, chimp and orangutan coding sequences were658

then aligned with PRANKs coding sequence evolution model (62) after codons containing undefined659

positions were removed.660

For each human coding gene in Ensembl we considered all possible protein- coding isoforms and661

aligned separately each isoform between human, chimp and orangutan. The numbers of polymorphic662

or divergent sites are therefore the numbers over all possible isoforms of a human gene (however the663

same polymorphic or divergent site present in multiple isoforms still counts for one). If a polymorphic or664

divergent site was synonymous in an isoform but non-synonymous in another isoform, it counted as one665

non-synonymous polymorphic or divergent site. Only fixed divergent sites were included, meaning that666

substitutions still polymorphic in humans were not counted as divergent. The derived allele frequency of667

polymorphic sites is the frequency across all African populations from the 1000 Genomes phase 3, which668

comprises 661 individuals spread across seven different subpopulations (63). Allele frequencies were669

extracted from vcf files provided by the 1000 Genomes consortium for the phase 3 data. In total, 17,740670

human-chimp-orangutan orthologs were included in the analysis. Supplemental Data Table S1 provides671

the number of synonymous and non-synonymous polymorphic or divergent sites for each of these 17,740672

orthologs, as well as the allelic frequencies of the polymorphic sites . Polymorphic sites were counted only673

if they overlapped those parts of human coding sequences that were aligned with chimp and orangutan674

coding sequences. The ancestral and derived allele frequencies were based on the ancestral alleles inferred675

by the 1000 Genomes phase 3 project and available in the previously mentioned vcf files (63).676

Columns in Supplemental Data Table S1 are as follows: First column – Ensembl coding gene ID.677

Second column – number of non-synonymous polymorphic sites. Third column – respective derived allele678

frequencies of these sites separated by commas. Fourth column – number of synonymous polymorphic679

sites. Fifth column – respective frequencies derived allele frequencies of these sites. Sixth column –680

number of fixed non-synonymous substitutions on the human branch. Seventh column – number of fixed681

synonymous substitutions on the human branch.682
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Background selection data & identifying VIPs683

We obtained estimates of background selection strength across the human genome from previous work684

(36) at http://www.phrap.org/othersoftware.html. Since our genetic data was reported in hg19685

coordinates, we then used the liftover utility in the UCSC Genome Browser to convert the background686

selection coordinates from hg18 to hg19 (https://genome.ucsc.edu/cgi-bin/hgLiftOver). We were able687

to map 17,028 of the 17,740 orthologs to background selection scores. This final set of 17,028 was688

used throughout the analyses reported in the paper. We classified virus-interacting proteins by using a689

previously determined set of 4,066 VIPs (64).690

Estimating α with ABC691

Motivation for performing ABC692

Although we could use analytical theory developed herein to estimate α, it is well known that demography693

also impacts the frequency spectrum of selected alleles (65,66). Some of the impact of recent demography694

may be attenuated by using the ratio of nonsynonymous to synonymous sites for inference (since both695

categories of sites will be affected (19)), but failure to incorporate both selection and demography in696

general can distort inference of both selection and demography (65). Since it is not straightforward697

to calculate the frequency spectrum under generalized models of selection, demography, and linkage698

(67–69), we instead use Approximate Bayesian Computation (ABC) (38) to infer selection parameters699

while accounting for recent demography.700

Generic ABC algorithm701

ABC proceeds by first sampling parameter values from prior distributions, next simulating model out-702

comes using these parameter values and calculating informative summary statistics, and lastly comparing703

the simulated summary statistics to observed data. The parameter values that produce summary statis-704

tics that best match the observed data form an approximate posterior distribution. An additional linear705

model can be imposed to correct for the non-0 distance between the simulated and observed summary706

statistics (70).707

Here, we follow this generic approach exactly. The main sources of innovation in our method are708

1) selecting summary statistics that are informative for estimating α values, 2) simulating summary709

statistics across a range of BGS strengths corresponding to the inferred distribution of BGS strengths710

in the human genomic dataset, and 3) employing a resampling-based strategy for generating summary711

statistics that avoids simulating the full model for different parameter combinations.712

Overview of our ABC approach713

We simulate a sample of 661 individuals (the same number of samples as the African continental group in714

the 1000 Genomes Project (TGP)) under a demographic model incorporating an expansion in the African715

ancestral population and recent exponential growth (39). Within each coding region, we suppose that716

the distribution of deleterious effects is given by a Gamma distribution with a0 = 0.184, b0 = 0.000402,717

which were previously inferred as the strength of negative selection in another study using human coding718

sequences (32) (note that the mean strength of negative selection is given by a0

b0
= −457, but the719

distribution is very heavy-tailed with a substantial contribution from weakly deleterious variants). We720

additionally simulate positive selection with θW = 7.8 × 10−6 for weak adaptation and θS = 2.6 × 10−7721

for strong adaptation (see below for rationale on selecting these values). We repeated these simulations722

over a range of values of background selection, ranging from π
π0

= 0.2 to π
π0

= 1.0 in increments of 0.05.723
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We seek to infer four parameters, which we draw from prior distributions – in particular, θW = 4NµW ,724

the mutation rate for weakly beneficial alleles, θS = 4NµS , the mutation rate for strongly beneficial alleles,725

and a and b, the parameters of the Gamma distribution controlling the distribution of deleterious alleles.726

Since each of these parameters are fixed in our original round of simulations, we resample alleles from727

the simulated data to reflect the desired combination of selection parameters (see below for resampling728

details). Using the resampled frequency spectra, DN , and DS , we calculate α(y) for values of y in729

1, 2, 4, 5, 10, 20, 50, 200, 500, 1000, where y is the derived allele count and the frequency x in α(x) is given730

by x = y/2× 661. Lastly, a linear model is imposed to correct for the non-0 distance between the summary731

statistic values in the simulations as compared to the observed data. We use previously published software732

to perform this inference step (70).733

We additionally infer the α values (α, αW , and αS) – while these are not parameters of the model,734

they can be inferred in the same ABC framework since they can easily be calculated for any given735

parameter combination. As priors, we suppose that θW is uniform on [0, 7.8×10−6] and θS is uniform on736

[0, 2.6× 10−7]. We chose these values because at the top of the range, αW = 0.4 and αS = 0.4 when the737

distribution of deleterious effects is given by a Gamma distribution with a0 = 0.184, b0 = 0.000402, which738

were previously inferred in another study using human coding sequences (32). We supposed that a and739

b might deviate from their previously inferred values by up to a factor of 2 above or below their previous740

estimates, and hence we sampled exponents afac and bfac uniformly on [-2,2] and we let a = a02afac and741

b = b02bfac . Hence our prior for a and b are centered at a0 and b0, but can vary to allow substantial742

flexibility in the distribution of deleterious effects. In all of our simulations, we suppose that strongly743

advantageous alleles have 2Ns = 500 and weakly advantageous alleles have 2Ns = 10, and we rescale744

the simulated ancestral population size to N = 500. We use a large s approximation for calculating745

the fixation probability of strongly advantageous alleles by treating the adaptive allele trajectory as a746

Galton-Watson process (52).747

Resampled summary statistics & validation748

We resampled polymorphic sites from our set of forward simulations with a = a0, b = b0, θW = 7.8×10−6,749

and θS = 2.6 × 10−7 to compute summary statistics for ABC. The underlying idea of these resampling750

simulations is that given a fixed strength of BGS, the allele frequency spectrum can be approximated751

by selecting alleles in proportion to their mutation rate given the model parameters relative to the752

parameter values that were used in the original set of simulations. For example, if we suppose that alleles753

with s = 0.001 have a mutation rate of θ = 10−5 in the original forward simulations but θ = 10−6 in the754

resampling simulations, then we resample such alleles at a rate that is 10% of their representation in the755

original simulations.756

For polymorphic positively selected sites, we resample with replacement from the simulated fre-757

quency spectra by selecting adaptive polymorphic sites with probability proportional to θW
7.8×10−6 and758

θS
2.6×10−7 for weakly and strongly beneficial alleles, respectively. We resample negatively selected alleles759

with replacement from the frequency spectrum, but we adjust the sampling probability in proportion760

to the probability that a polymorphic site with selection coefficient s is observed at frequency x given761

the parameter values a and b using the analytical expressions developed in the previous sections. We762

also analogously adjust the simulated number of fixation events at nonsynonymous along the simulated763

branch. We confirmed that our resampling-based approach provides the appropriate frequency spectra764

by comparing simulated resampled frequency spectra to forward simulations performed in SFS CODE765

for a subset of parameter values at the boundary of our prior distributions (Fig. S11).766

To capture the impact of background selection, we ran the original forward simulations with varying767

amounts of BGS in 5% bins ranging from π
π0

= 0.2 to π
π0

= 1.0 and the same parameter values as768

above. To calculate summary statistics corresponding to the desired parameter values, for each allele769

in our TGP dataset we obtained an estimate of BGS strength at the corresponding locus (36) and we770
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sampled a polymorphic allele randomly from the frequency spectrum of the simulated BGS bin that is771

closet to the observed value. We excluded all sites with B < 175 (i.e., π
π0
< 0.175) from the inference for772

computational efficiency, because simulating large reductions in diversity requires high mutation rates of773

deleterious alleles in the flanking sequences. We pool all of the simulated polymorphic sites to calculate774

the α(x) summary statistics corresponding to the model parameters. Open source software implementing775

our approach is available by request and will be posted online.776

We tested our ABC approach by simulating a large dataset of parameter values and matched summary777

statistics, and then masking a subset of the parameter values. We tested our ability to infer the masked778

parameter values using the remaining summary statistics for 100,000 replicates. We plot the results of this779

experiment in Fig. S6, where we summarize the inferred parameter value as the mean of the posterior780

distribution. We find that the method returns accurate and unbiased estimates for most quantities781

of interest, although we find that the parameter b controlling the distribution of deleterious effects is782

somewhat noisily estimated.783

Summary of robustness analyses784

Although our model explains the observed (x) data very well, we were concerned that several possible785

confounders might also produce similar patterns. We focused on five sources of confounding, namely786

1) ancestral state uncertainty, 2) covariation of BGS and sequence conservation, 3) demographic model787

misspecification, 4) misspecification of the strength of selection at sites driving background selection, and788

5) biased gene conversion.789

Ancestral mispolarization could confound our results if some loci with high frequency derived alleles790

in our dataset are in fact loci with low frequency derived alleles. Mispolarization can have similar effects791

on the frequency spectrum as positive selection, and has been identified as a possible source of bias in792

selection inference (71). To limit the effects of ancestral state uncertainty on our analysis, we only use793

the summary statistics used in our ABC to frequencies at or below 75%, which are much less susceptible794

to the effects of mispolarization (71). Our results are therefore unlikely to be affected by mispolarization.795

Covariation between BGS and sequence conservation could also be a potential source of bias in796

our approach. If negative selection is stronger per site in genes under strong BGS, then the frequency797

spectrum and rate of fixation of weakly deleterious alleles will also vary as a function of BGS strength798

(denoted B – note that a large B corresponds to weak BGS), potentially confounding our results. To test799

the hypothesis that sequence conservation and B covary, we computed the average “rejected substitution”800

score (RS, as determined by the GERP algorithm (72,73)) on a gene-by-gene basis as a function of B. RS801

scores represent the number of substitutions per site that have been rejected due to negative selection,802

and increase with the strength of negative selection. We found a slight negative correlation between B803

and RS, almost entirely driven by genes with B > 875 (Fig. S10). While this correlation is consistent with804

our model (since we expect more substitutions due to weak adaptation in regions with low BGS), it could805

also be due to the confounding covariation. To eliminate the potential confounding effect of covariation806

between B and sequence conservation, we repeated our ABC-based inference procedure after removing all807

genes with B > 875 from the analysis. If our signal were driven by this covariation rather than a true effect808

of weakly advantageous alleles, we would expect our parameter estimates to change substantially in this809

experiment, in particular by increasing the mean strength of selection against deleterious nonsynonymous810

sites. In contrast, we observe almost no change in the estimated negative selection parameters (Fig. S9).811

Another possible confounder is demographic model misspecification. Selection and population demog-812

raphy both affect the frequency spectrum, and hence failure to accurately account for both demography813

and selection in inference procedures can result in biases (65,74–78). Although the aMK framework may814

avoid some of these issues by directly comparing nonsynonymous and synonymous sites (19), both of815

which are subject to the same demography, we nonetheless tested for demographic biases. To test the816

effects of model misspecification, we varied the size of the expansion event in the African ancestral popula-817
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tion by sampling parameter values from the 95% confidence interval of a previous demographic model (79)818

that was built using TGP sequences (see Supplemental Methods). We simulated under these models with819

larger or smaller than expected bottlenecks, and used summary statistics of our “misspecified” model to820

perform inference of the selection parameters. We find that α is still inferred very accurately, although a821

subset of simulations resulted in over-estimates of α when the true expansion was much larger or much822

smaller than the expected expansion (Figs. S8). We also observed modest biases in αW and αS , with823

αW underestimated when the magnitude of the expansion is over-estimated and over-estimated when the824

expansion is under-estimated (Fig. S7&S8), but the vast majority of inferred total α values fell close to825

the diagonal in both cases. These results suggest that our main results are robust to recent demographic826

uncertainty, although slight quantitative biases in αW and αS could be induced by demographic model827

misspecification.828

Misspecification of the strength of selection acting on alleles driving BGS could also cause bias829

in our inferences. We supposed that the mean strength of selection against alleles inducing BGS was830

γ = 2Ns = −83, which reflects a mixture of previous estimates of the strength of selection against831

polymorphism in human coding (32) and conserved non-coding (80), weighted by the percentage of the832

genome that is composed of each type of element. If the true strength of selection driving BGS was833

much smaller or much larger, we might change the expected dependency of α(x) on B. In essence, if834

γ is closer to 0, BGS should have a smaller effect on the fixation rate of weakly beneficial alleles. We835

therefore considered a range of γ values from -10 to -100 – consistent with expectations, we find that836

weaker selection against BGS alleles induces α(x) to vary less markedly as a function of BGS strength,837

but the effect is very modest (Fig. S13). Accordingly, our results are not strongly dependent on the838

strength of selection against alleles driving BGS.839

Lastly, we supposed that biased gene conversion (BGC) could be a confounder in our results. BGC840

can mimic positive selection by favoring the fixation of weak to strong mutations (81). We therefore841

recomputed α(x) using the 661 TGP samples after removing all the weak to strong mutations and842

fixations from the dataset. We find that the empirical α(x) curve is not substantially affected by the843

removal of weak to strong sites at frequencies that we use for ABC (Fig. S5), suggesting that BGC is844

unlikely to affect our inferences.845

Genetic draft846

Our modeling uses a diffusion approximation to dynamics of allele frequency shifts that accounts for847

background selection but not draft. If genetic draft (i.e., the impact of linked positive selection on the848

frequency trajectories of linked alleles), then this approximation may break and invalidate some of the849

assumptions of our modeling (19).850

To test the sensitivity of our results to genetic draft, we compared simulations with and without851

genetic draft to our theory for a range of selection strengths and rates. We simulated a gene under852

simultaneous negative and positive selection, flanked by 1 MB sequences. We compared models with and853

without BGS, and with and without draft, for a range of parameter values. We set α = 0.4 within the854

gene, and supposed that 5% of the flanking sequence was a potential target for positive selection that855

was both as strong and as frequent as that within the gene.856

Consistent with earlier results (19), we find that draft can decrease α, likely by increasing the rate857

of fixation of weakly deleterious alleles and/or interference between strongly beneficial alleles (51, 52).858

However, even in the extreme scenario where adaptation is driven by very strongly advantageous alleles859

with 2Ns = 2000 and α = 0.4, we observe only a modest departure from the expectation in the absence of860

draft at the frequencies that we use in inference, all but one of which are below 37% frequency (Fig. S4).861

This suggests that our inference should be only modestly affected by draft, and only in regions of the862

genome experiencing strong, recurrent sweeps.863
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Demographic model misspecification864

We tested the impact of demographic model misspecification by sampling “worst-case” parameters from865

the 95% confidence interval of a previous study that fit a maximum-likelihood demographic model to TGP866

sequences (79). The maximum likelihood estimates from this model for the ancestral human population867

size and expanded population size are NA = 7, 300 and NAF = 12, 300, respectively. We supposed that868

the largest possible expansion would correspond to the 2.5% quantile estimate of NA and the 97.5%869

quantile estimate of NAF ( 13,900
4,400 = 3.15), while the smallest possible expansion would correspond to870

the 97.5% quantile estimate of NA and 2.5% quantile estimate of NAF ( 11,500
10,100 = 1.13). We then ran871

simulations under our model, sampling parameters from the same prior distributions as described above,872

and generated summary statistics. We then attempted to infer the parameters that were used to generate873

the summary statistics using our misspecified demographic model. Results of this experiment are shown874

in Fig. S7 & Fig. S8, and are described in the main text.875
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Supplemental figures876
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Figure S1: Simulated(πobs) vs expected (πexp) nucleotide diversity for simulations performed
in SFS CODE. The expected value was calculated using the model of Hudson & Kaplan (57).
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Figure S2: Simulated (points) and expected (lines) fixation rates for neutral, negatively selected,
and positively selected alleles. Eqns. for the expected fixation rates are given in the supplemental
text. The top row represents results in the context of weakly beneficial adaptation (2Ns = 10),
while the bottom row represents strongly beneficial adaptation (2Ns = 500).
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Figure S3: Simulated (points) and expected (lines) frequency spectra for neutral, negatively
selected, and positively selected alleles. S(x) is the number of alleles above frequency x.
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Figure S4: Comparison of simulations with and without genetic draft. In all simulations we set
α = 0.4, and suppose that 5% of the sequence in the 1MB flanking a gene is subject to recurrent
sweeps. The black line shows the theoretical expectation from eqn. ?.
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Figure S5: Comparison of α(x) computed from TGP samples for all sites (black) and with weak
to strong sites removed (red).
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Figure S6: Performance of our parameter estimation for all of parameters and quantities that
we infer. In each panel, the true parameter value is plotted on the x-axis, while the inferred
value is plotted on the y. The diagonal is plotted as a dashed black line. The inferred value is
summarized as the mean of the posterior distribution. Each plot contains 100,000 simulations.
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Figure S7: Performance of our parameter estimation for all of parameters and quantities that
we infer, in the case when the true model has an ancestral expansion event that is ≈ 2 larger
than the model used in the inference procedure. In each panel, the true parameter value is
plotted on the x-axis, while the inferred value is plotted on the y. The diagonal is plotted as a
dashed black line. The inferred value is summarized as the mean of the posterior distribution.
Each plot contains 100,000 simulations.
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Figure S8: Performance of our parameter estimation for all of parameters and quantities that
we infer, in the case when the true model has an ancestral expansion event that is ≈ 1

2 as large
as the model used in the inference procedure. In each panel, the true parameter value is plotted
on the x-axis, while the inferred value is plotted on the y. The diagonal is plotted as a dashed
black line. The inferred value is summarized as the mean of the posterior distribution. Each
plot contains 100,000 simulations.
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Figure S9: A-D. Posteriors for θW , θS , the mean strength of negative selection (2Ns), and the
ratio of αBGS (the estimated value of α in humans after accounting for BGS) to α1000 (the value
of α for regions of the genome not undergoing BGS, as predicted by our model). E-G: The same
quantities, as inferred using only genes with B < 875. We do not infer αBGS/α1000 in this row
because genes with B ≈ 1 are not included in this analysis.
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Figure S10: The relationship between BGS (B) and average sequence conservation (RS ) for ≈
10,000 genes for which we were able to obtain estimates of both quantities. The blue line is fit
to the data using geom smooth in ggplot2, while the red line is plotted at B = 875. Most of
the negative correlation between B and RS is driven by alleles with B > 875. Note that B is
defined in previous work (36), and is equivalent to 1000× π

π0
.
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Figure S11: We compare simulated frequency spectra obtained with SFS CODE (points) to
frequency spectra that we obtained using our resampling-based approach (lines) for a range of
parameter values corresponding to the strength of negative selection. We observe good agreement
between the approaches. One downside of the resampling based approach is that stochastic
fluctuations in the dataset from which resampling is performed are replicated across different
samples (e.g., the spike at ≈ 0.015 is replicated in both A and B).
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Figure S12: We plot estimates of adaptation rate (α̂) using asymptotic-MK as a function of
true α for a range of 2Ns values of adaptive alleles (colors) and a range of deleterious selec-
tion coefficient distributions (each panel is a different distribution of deleterious effects). A&D
correspond to the distribution of deleterious effects inferred in (32) (which has a mean value of
2Ns = −457), while B&E have a mean value of 2Ns = −114 and C&F have mean 2Ns = −22.
In A-C, all alleles are used in the estimation procedure, while in D-F we exclude positively
selected alleles from the calculation.
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Figure S13: α(x) as a function of DAF for a range of selection strengths (γ) on alleles driving
BGS. Each curve represents a different value of π

π0
. In each panel, the strength of selection on

adaptive alleles is 2Ns = 10.
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