
Exploiting selection at linked sites to infer the rate and1

strength of adaptation2

Lawrence H. Uricchio1†, Dmitri A. Petrov1, David Enard2†
3

1Department of Biology, Stanford University, Stanford, CA 943054

2Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 857215

6

†To whom correspondence should be addressed: uricchio@stanford.edu, denard@email.arizona.edu7

8

Genomic data encodes past evolutionary events and has the potential to reveal the9

strength, rate, and biological drivers of adaptation. However, robust estimation of10

adaptation rate (α) and adaptation strength remains a challenging problem because11

evolutionary processes such as demography, linkage, and non-neutral polymorphism12

can confound inference. Here, we exploit the influence of background selection to13

reduce the fixation rate of weakly-beneficial alleles to jointly infer the strength and14

rate of adaptation. We develop a novel MK-based method (ABC-MK) to infer15

adaptation rate and strength, and estimate α = 0.135 in human protein-coding se-16

quences, 72% of which is contributed by weakly adaptive variants. We show that17

in this adaptation regime α is reduced ≈ 25% by linkage genome-wide. Moreover,18

we show that virus-interacting proteins (VIPs) undergo adaptation that is both19

stronger and nearly twice as frequent as the genome average (α = 0.224, 56% due to20

strongly-beneficial alleles). Our results suggest that while most adaptation in human21

proteins is weakly-beneficial, adaptation to viruses is often strongly-beneficial. Our22

method provides a robust framework for estimating adaptation rate and strength23

across species.24

Introduction25

The relative importance of selection and drift in driving species’ diversification has been a matter of debate26

since the origins of evolutionary biology. In Darwin and Wallace’s formulations of evolutionary theory, natural27

selection is the predominant driver of the accumulation of differences between species (1, 2). Subsequent28

theorists argued that random genetic drift could be a more important contributor to differences between29

species (3–6), with chance differences accumulated over time due to reproductive isolation between populations.30

Although it is now clear that natural selection plays a substantial role in both diversification and constraint31

in many species (7–10), considerable uncertainty remains about the relative importance of stochastic drift,32

mutation, selection, and linkage, with no clear consensus among evolutionary geneticists (11–15). A better33

mechanistic understanding of these processes and how they jointly shape genetic diversity could help to resolve34

old evolutionary puzzles, such as the narrow range of observed genetic diversity across species (16) and the35

apparently low rate of adaptation in primates (17).36
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With the exception of rapidly evolving microbial species, most adaptation events occur too slowly to be37

directly observed over the timescale of a scientific study. Therefore, detailed study of the molecular basis38

of adaptation has required the development of computational methods to infer adaptation rate (denoted α,39

defined as the proportion of fixed differences between species that confer fitness benefits) directly from genetic40

sequence data. Most existing approaches derive from the McDonald-Kreitman (MK) test (7, 18) and related41

Poisson random field framework (19), both of which use divergence and polymorphism data to infer adaptation42

rates. Note that a recent approach uses polymorphism data alone to infer the distribution of fitness effects of43

fixing mutations (20). The critical idea behind each of these methods is to compare evidence for differentiation44

at alleles that are likely to have fitness effects (e.g., nonsynonymous alleles that change protein function by45

altering the amino acid sequence) to alleles that are less likely to have fitness effects (e.g., synonymous alleles46

that do not change the amino acid sequence of proteins).47

In the classic MK framework, the rate of divergence at putatively functional sites (DN , often defined as48

nonsynonymous differences within proteins) is compared to putatively neutral diverged sites (DS , often defined49

as synonymous differences). Polymorphic sites within both the functional and non-functional class (PN and50

PS , respectively) are used as a background to calibrate the expected rate of divergence under a neutral model.51

If mutations at functional sites are assumed to be either virtually lethal or neutral, then the ratio DN
DS

has52

the same expected value as PN
PS

given that virtually lethal mutations contribute to neither PN nor DN . When53

DN
DS

exceeds PN
PS

, this is interpreted as evidence of adaptation because sites with functional effects on proteins54

are over-represented among the fixed differences relative to the neutral expectation. Smith and Eyre-Walker55

developed a simple equation that uses the same logic as the MK test to estimate adaptation rate α,56

α ≈ 1− DS

DN

PN
PS

, (1)

and used this approach to provide evidence for a high rate of adaptation in Drosophila (18).57

Unfortunately, this elegant framework is susceptible to many biases, most notably driven by the presence58

of weakly deleterious polymorphism in the class PN . Deleterious polymorphism effectively makes the test59

overly conservative, because deleterious alleles are unlikely to ever reach fixation and therefore lead to the60

overestimation of the expected background rate of substitutions in the functional class. Fay et al introduced61

the idea of including only common polymorphic alleles (e.g., alleles at frequency 15% or greater), which62

should remove many deleterious alleles (21) – however, this approach has been shown to provide conservative63

adaptation rate estimates in many contexts (22). More recently, Messer & Petrov showed that even removing64

all polymorphism below 50% is insufficient to correct this bias, especially when slightly deleterious mutations65

are common and the rate of adaptive evolution is high (23). In order to mitigate this effect, Messer & Petrov66

introduced the idea of the asymptotic MK test (aMK). In this implementation, PN
PS

in eqn. 1 is replaced67

by PN (x)
PS(x)

, where PN (x) and PS(x) are the number of segregating nonsynonymous and synonymous alleles68

at frequency x, respectively (23). An exponential curve is fit to the resulting α(x) function, which can be69

calculated for all values of x in the interval (0,1) for a sample of sequenced chromosomes. The intercept of70

the best-fit exponential curve at x = 1 is a good approximation for α, as it effectively removes all slightly71
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deleterious polymorphism at all frequencies. This approach was shown to be robust to both the underlying72

distribution of deleterious effects and recent demographic events (23). aMK has inspired new approaches to73

inferring adaptation in mitochondrial genes (24) and revealed a high rate of adaptation in proteins interacting74

with pathogens (25).75

While aMK extends the elegant MK framework for estimating adaptation rate, it does not explicitly76

account for the possibility that beneficial alleles contribute to segregating polymorphism. It is unknown77

whether aMK is robust to the presence of weakly beneficial alleles, but there is reason to believe that beneficial78

alleles would be problematic because they are preferentially found at very high frequencies (20), and thus their79

effect would not be eliminated by the asymptotic procedure. The recent emphasis on adaptation from standing80

variation (26–30) and reported evidence for weakly-beneficial polymorphism in Drosophila (31) suggest that81

methods to infer adaptation strength over longer evolutionary time-scales are needed.82

A key limitation of existing MK-based approaches is that they provide estimates of adaptation rate but not83

adaptation strength, and therefore it is not clear whether weakly beneficial mutations contribute substantially84

to the fixation process. The underlying processes driving weak and strong adaptation might differ, and the85

ability to separately estimate rates of weak and strong adaptation could provide insight into the biological86

drivers of adaptation. We hypothesized that such a method could be developed by exploiting the impact of87

background selection (BGS) on the fixation rate of weakly-beneficial alleles. BGS removes neutral and weakly-88

beneficial variation via linkage to deleterious loci (32), while the fixation rate of strongly-adaptive alleles is not89

substantially affected (33). Given that the strength of BGS varies widely and predictably across the human90

genome (34), a method that interrogates the rate of adaptation as a function of BGS might be able to jointly91

infer the rate and strength of adaptation.92

Here, we probe the performance of aMK when weakly-beneficial alleles substantially contribute to segre-93

gating polymorphism, and we show that aMK underestimates α in this adaptation regime. We additionally94

show that when adaptation is weak, true α is predicted to vary substantially across the genome as a function95

of the strength of BGS. We exploit this signal of covariation between α and BGS in the weak-adaptation96

regime to develop an approximate Bayesian computation method, which we name ABC-MK, that separately97

infers the rate of adaptation for weakly-beneficial and strongly-beneficial alleles. Our approach and aMK98

rely on similar input data, but we use a model-based fitting procedure that directly accounts for BGS and99

weakly-beneficial alleles. We apply our method to human genetic data to provide evidence that adaptation100

in humans is primarily weakly-beneficial and varies as a function of BGS strength. Interestingly, adaptation101

rate estimates on virus-interacting proteins support a much higher rate of strong adaptation, suggesting that102

adaptation to viruses is both frequent and strongly fitness-increasing. We address seven potential sources of103

confounding, and discuss our results in light of recent research on adaptation in humans.104
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Results105

α estimates are conservative for weakly-beneficial selection106

The aMK approach is known to converge to the true α at high frequency under the assumption that positively107

selected mutations make negligible contributions to the frequency spectrum (23). This assumption is likely108

to be met when beneficial alleles confer large fitness benefits, because selective sweeps occur rapidly and109

beneficial alleles are rarely observed as polymorphic. However, when selection is predominantly weak, attaining110

a substantial α requires much larger mutation rates for beneficial alleles and longer average transit time to111

fixation, introducing the possibility that weakly-beneficial alleles will contribute non-negligibly to the frequency112

spectrum, even in small samples.113

We tested the robustness of the aMK approach to the presence of weakly-beneficial alleles using simulation114

and theory. We simulated simultaneous negative and positive selection using model-based forward simulations115

under a range of scenarios (35, 36). We supposed that nonsynonymous alleles are under selection, while116

synonymous alleles are neutral. In each simulation, we set α = αW + αS = 0.2, where αW is the component117

of α due to weakly-beneficial mutations (2Ns = 10) and αS represents strongly-beneficial alleles (2Ns = 500).118

Note that α is not treated as a parameter in the analyses herein; we use analytical theory to calculate the119

mutation rates for deleterious alleles and advantageous alleles that result in the desired α, meaning that α is120

a model output and not a model input. We drew deleterious selection coefficients from a Gamma distribution121

inferred from human sequence data (37), and we varied αW from 0 to 0.2 (Fig. 1).122

To test whether aMK is sensitive to polymorphic weakly adaptive alleles, we used the simulated frequency123

spectra to estimate the rate of adaptation using published aMK software (38). When adaptation is due entirely124

to strongly adaptive alleles, the estimated value of α (α̂) was close to the true value but slightly conservative125

(α̂ = 0.181± 0.01; Fig. 1A). As we increased the contribution of weakly-beneficial alleles to α, estimates of α126

became increasingly conservative (α̂ = 0.144 ± 0.01 when αW = 0.1, and α̂ = 0.122 ± 0.015 when αW = 0.2;127

Fig. 1B-C). Removing polymorphism above frequency 0.5 has been suggested as approach to account for128

potential biases induced by high-frequency derived alleles, which could be mispolarized in real datasets (25).129

Restricting to alleles below frequency 0.5 produced similar (but conservative) estimates for all three models130

(α̂ = 0.14271, 0.14529, and 0.14264 for αW = 0.0, 0.1 and 0.2, respectively), likely because the frequency131

spectrum is not strongly dependent on the rate of weakly-beneficial mutation for low-frequency alleles. Lastly,132

we performed a much larger parameter sweep across α values and selection coefficients. We find that α133

estimates become increasingly conservative as the proportion of weakly deleterious alleles increases, and as134

the strength of selection at beneficial alleles decreases (Fig. S12A & Supplemental Methods). Asymptotic-MK135

estimates of α are only weakly dependent on the distribution of deleterious selection coefficients (Fig. S12).136

To better understand why parameter estimates decreased as the proportion of weakly adaptive alleles137

increased, we performed analytical calculations of α(x) using diffusion theory (39, 40). Since we use large138

sample sizes in our analysis herein, we replace the terms pN (x) and pS(x) in α(x) with
∑
x pN (x) and

∑
x pS(x)139
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in our calculations, which trivially asymptotes to the same value as the original formulation but is not strongly140

affected by sample size (see Supplemental Methods). We find that the downward bias in estimates of α is141

due to segregating weakly adaptive alleles, and removing these alleles from the simulated and calculated α(x)142

curves would restore the convergence of α(x) to the true α at high frequency (Fig. 1A-C, red curves). In real143

data, it is not possible to perfectly partition positively selected and deleterious polymorphic sites. Hence, in144

later sections we focus on using the shape of the α(x) curve to infer the strength and rate of adaptation under145

models that include linkage and complex demography.146

Background selection reduces true α when adaptation is weak147

We have shown that weakly-beneficial alleles may impact aMK analyses by contributing to segregating poly-148

morphism. This presents an opportunity to study whether aMK estimates vary as a function of background149

selection (BGS) strength. BGS, the action of linkage between deleterious alleles and neutral alleles, reduces150

genetic diversity in the human genome (34) and affects neutral divergence rates (41), and is predicted to151

decrease the fixation probability of weakly adaptive alleles (33). Hence, we hypothesized that if adaptation is152

partially driven by weakly-beneficial alleles in some species, BGS could play a role in modulating adaptation153

rate across the genome.154

To better understand how BGS might affect aMK inference in the presence of weakly-beneficial alleles,155

we performed analytical calculations and simulations of α(x) with various levels of BGS. We set α = 0.2 in156

the absence of BGS, and then performed simulations while fixing the rate of adaptive mutations and changing157

the amount of BGS (ranging from π
π0

= 0.4 to 1.0, where π is neutral nucleotide diversity as compared to158

the neutral diversity in the absence of linked selection, π0). We find that when adaptation is strong, BGS159

has a modest effect on α(x) and the true value of α (Fig. 2A&C), mostly driven by an increase in the rate160

of fixation of deleterious alleles (Fig. S2E). When adaptation is weak, BGS removes a substantial portion of161

weakly adaptive alleles and precludes them from fixing, resulting in much stronger dependence of α(x) on BGS162

and a substantial reduction in the true value of α (Fig. 2B&D and Fig. S2C). Similar to the previous section,163

estimates of α were conservative across all models, but the underestimation was much more pronounced for164

weak adaptation (Fig. 2C&D).165

Human adaptation rate is shaped by linked selection166

Our modeling results show that α is likely to be underestimated when weakly-beneficial alleles contribute167

substantially to the frequency spectrum, and that background selection may reduce adaptation rate when168

fitness benefits of adaptive alleles are small. Since BGS is thought to drive broad-scale patterns of diversity169

across the human genome (34), we hypothesized that directly accounting for the action of BGS on adaptation170

rate could provide new insights into the evolutionary mechanisms driving adaptation. Moreover, the fact171

that weak adaptation is strongly affected by BGS while strong adaptation is not suggests that strong and172

weak adaptation could be differentiated in genomic data by comparing regions of differing BGS strengths173
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(from π
π0

= 0.2 to π
π0

= 1). We therefore designed a method to infer α while accounting for both BGS and174

weakly-beneficial alleles.175

We developed an approximate Bayesian computation (ABC) approach for estimating αW and αS in the176

presence of BGS and complex human demography (42). Briefly, we sample parameters from prior distributions177

corresponding to the shape and scale of deleterious selection coefficients (assumed to be Gamma-distributed)178

and the rate of mutation of weakly and strongly-beneficial mutations. We perform forward simulations (35,36)179

of simultaneous negative and positive selection at a coding locus under a demographic model inferred from180

NHLBI Exome project African American samples (43) with varying levels of background selection from π/π0 =181

0.2 to π/π0 = 1.0 and the sampled parameter values. We then calculate α(x) using this simulated data, sampling182

alleles from the simulations such that the distribution of BGS values in the simulation matches the distribution183

in the empirical data as calculated by a previous study (34). We use α(x) values at a subset of frequencies x184

as summary statistics in ABC (specifically, at derived allele counts 1, 2, 5, 10, 20, 50, 100, 200, 500, and 1000185

in a sample of 1322 chromosomes). To improve efficiency, we employ a resampling-based approach that allows186

us to query many parameter values using the same set of forward simulations (see Supplemental Methods).187

We tested our approach by estimating parameter values (population scaled mutation rates θS , θW , and the188

parameters of a Gamma distribution controlling negative selection strength) and quantities of interest (αW ,189

αS , α) from simulated data. We find that the method produces high-accuracy estimates for most inferred190

parameters and α values (including αW , αS , and total α – Fig. S6). Some parameter values (particularly191

those corresponding the the distribution of fitness effects (DFE) over deleterious alleles and mutation rates192

of beneficial alleles) were somewhat noisily inferred. We find that α estimates were not very sensitive to193

various types of model misspecification (See Supplemental Methods – Robustness analyses), but αW and αS194

are modestly affected by misspecification of the demographic model or the DFE of alleles driving BGS. We195

term our approach ABC-MK.196

We applied ABC-MK to empirical α(x) data computed from human genomes obtained from the Thousand197

Genomes Project (TGP) for all 661 samples with African ancestry (44). We find strong posterior support198

for a substantial component of α driven by weakly-beneficial alleles (α̂W = 0.097; Fig. 3A & see Tab. 1 for199

area of 95% HPD), as well as posterior support for a smaller component of α from strongly-beneficial alleles200

(α̂S = 0.041). We estimate that the total α̂ = 0.135, nearly twice the estimate obtained with the same dataset201

using the original aMK approach (α̂ = 0.076, see Supplemental Methods; we note that while our estimate is202

similar to previous estimates (23,37), we use a much larger set of genes in our inference and hence the estimates203

are not directly comparable). In addition to rates of positive selection, our approach provides estimates of204

negative selection strength. We find support for mean strength of negative selection of 2Ns ≈ −220 (Fig. S9C),205

which is consistent with recent studies using large sample sizes (45) and weaker than earlier estimates using206

small samples (37, 46).207

In addition to estimating evolutionary parameters, we sought to better understand how BGS may impact208

adaptation rate across the genome. We resampled parameter values from our posterior estimates of each209

parameter, and ran a new set of forward simulations using these parameter values. We then calculated α as210

6

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 28, 2019. ; https://doi.org/10.1101/427633doi: bioRxiv preprint 

https://doi.org/10.1101/427633
http://creativecommons.org/licenses/by-nc/4.0/


a function of BGS in our simulations. We find that α co-varies strongly with BGS, with α in the lowest BGS211

bins being 33% of α in the highest bins (Fig. 3C). Integrating across the whole genome, our results suggest that212

human adaptation rate in coding regions is reduced by approximately 25% by BGS (Fig. S9D). To confirm213

that these model projections are supported by the underlying data, we split the genome into BGS bins and214

separately estimated adaptation rate in each bin. Although these estimates are substantially noisier than215

our inference on the full dataset, we find that weak adaptation rate decreases as a function of BGS strength216

in accordance with the model predictions (Fig. 3D). In contrast, estimates of the mean strength of negative217

selection against nonsynoymous mutations did not covary with BGS strength (Fig. S20). Lastly, to validate218

that our model recapitulates α(x) values that we observe in real data, we also used our independent forward219

simulations to recompute α(x). We find that our model is in tight agreement with the observed data across220

the majority of the frequency spectrum. The model and data deviate at high frequency, but both are within221

the sampling uncertainty (Fig. 3B, gray envelope).222

Previous research has shown that virus-interacting proteins (VIPs) have undergone faster rates of adapta-223

tion than the genome background (25). However, the strength of selection acting on these genes is unknown,224

and given our BGS results it is plausible that the higher rate of adaptation in VIPs is driven by lower overall225

background selection at VIPs rather than increased selection pressure for adaptation. In contrast, if pathogens226

have imposed large fitness costs on humans it is possible that VIPs would support both higher and stronger227

adaptation rates. We ran our method while restricting to an expanded set of 4,066 VIPs for which we had228

divergence and polymorphism data available. We found evidence for strikingly higher adaptation rates in229

VIPs than the genome background (α = 0.224) and a much larger contribution from strongly adaptive alleles230

(αS = 0.126; Fig. 4). The higher α for VIPs cannot be explained by BGS, because VIPs undergo slightly231

stronger BGS than average genes; the mean BGS strength at VIPs is 0.574, as compared to 0.629 for all genes232

(in units of π/π0). Taking αS = 0.126 as a point estimate for the rate of strongly-beneficial substitutions in233

VIPs and αS = 0.041 genome-wide, we estimate that 61% of all strongly-beneficial substitutions occurred in234

VIPs (Tab. 1). Moreover, we estimate that the posterior probability that α is greater in VIPs than non-VIPs235

is 99.97%, while the posterior probability that αS is greater in VIPs is 88.9% (Fig. 4C). Bootstrap samples236

of non-VIPs (1,000 replicates) never resulted in αS estimates as high as those obtained from VIPs (Fig. S19).237

These results are concordant with the α(x) summary statistics for VIPs, which had larger values at high238

frequency alleles than non-VIPs (Fig. 4D). Interestingly, α(x) is lower for VIPs at low frequency, suggesting239

increased overall levels of conservation among VIPs (see also Fig. S9, where we find support for stronger240

negative selection against nonsynonymous mutations in VIPs).241

Discussion242

A long-running debate in evolutionary biology has concerned the relative importance of drift and selection in243

determining the rate of diversification between species (3, 4, 6, 14). While previous studies have shown that244

there is a substantial signal of adaptation in Drosophila (18), estimates of adaptation rate in humans are245
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much lower (14). Here, we extended the classic MK framework to account for weakly-beneficial alleles, and246

we provided evidence for a large rate of weakly adaptive mutation in humans. We showed that a state-of-247

the-art approach to adaptation rate estimation that does not account for beneficial polymorphism provides248

conservative estimates of α (α̂ = 0.076 for this data) (23), while our method nearly doubles the estimated249

human adaptation rate (to α̂ = 0.135). Most of the adaptation signal that we detect is due to weakly-250

beneficial alleles. Interestingly, virus-interacting proteins supported a much higher rate of adaptation than251

the genome background (α̂ = 0.226), especially for strongly-beneficial substitutions (α̂S = 0.126 as compared252

to α̂S = 0.041 genome-wide). Our results provide an evolutionary mechanism that partially explains the253

apparently low observed rate of human adaptation in previous studies, and extends the support for viruses as254

a major driver of adaptation in humans (25).255

It has long been known that recombination could in principle affect the evolutionary trajectories of both256

beneficial and deleterious alleles (33, 47, 48), and studies in Drosophila (49, 50) and dogs (51) have provided257

evidence for the effect of recombination on divergence and load. Despite the expectation that recombination258

could have a strong effect on adaptation in humans, studies have differed on how recombination affects human259

divergence and polymorphism. One human genomic study explored the ratio DN
DS

as a function of recombination260

rate, and found no evidence for an effect of recombination on divergence rate (11). Our results may partially261

explain why DN
DS

does not fully capture the effect of recombination on divergence in humans. As BGS increases262

in strength, the rate of accumulation of deleterious alleles increases, while the rate of fixation of weakly263

adaptive alleles decreases. The two effects partially offset each other, which should reduce the sensitivity of264

DN
DS

as a tool to detect the effect of recombination on divergence. A more recent study provided evidence that265

recombination affects the accumulation of deleterious polymorphic alleles (52), but did not provide detailed266

information about the effect of recombination on adaptation. Our results are consistent with the idea that267

weakly deleterious alleles are predicted to segregate at higher frequencies in regions under strong BGS, and268

we additionally show that BGS affects the accumulation of weakly-beneficial alleles in humans.269

While classic MK approaches estimate only the rate of adaptation, our method extends the MK-framework270

to provide information about both the rate and strength of selection. Previous approaches to estimating the271

strength of adaptation have focused on the dip in diversity near sweeping alleles (31,49,53–55) or have directly272

inferred the DFE from the frequency spectrum (20) – our approach capitalizes on an orthogonal signal of the273

reduction in fixation rate of weakly-beneficial alleles induced by selection at linked sites. We developed an ABC274

method to capture this signal, but less computationally intensive methods could also be used – for example,275

the original aMK approach could be applied in bins of BGS strength. If a substantial proportion of adaptation276

is due to weakly-beneficial alleles, such an analysis should result in a strong correlation between BGS strength277

and (potentially conservative) α estimates. However, it should be noted that cryptic covariation between gene278

functions (such as VIPs) and BGS strength could confound such inferences.279

We supposed that the main effects of linked selection in humans were due to background selection, but in280

principle genetic draft could drive similar patterns. Draft is expected to substantially reduce genetic diversity281

when sweeps occur frequently, and can impede the fixation of linked beneficial alleles (56, 57). Previous work282
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has also shown that strong draft can alter the fixation rate and frequency spectra of neutral and deleterious283

alleles (23). We performed simulations of strong draft in 1MB flanking sequences surrounding a gene evolving284

under natural selection and tested the magnitude of the deviation from theoretical predictions under a model of285

background selection alone. Consistent with previous work, we observe that draft increases the fixation rate of286

deleterious alleles and thereby decreases α (23). However, the effect on α(x) is only modest at the frequencies287

that we use in our inference procedure (i.e., below 75%), even when the strength and rate of positive selection288

are much larger than we and others have inferred in humans (although there is a modest deviation around289

75% frequency, the highest frequency we use in our inference; Fig. S4C&D). This implies that draft due to290

selected sites outside genes would have to be much stronger than draft due to positive selection inside exons in291

order to drive the effects that we infer in the human genome. We note that it is likely that species undergoing292

both strong, frequent sweeps and BGS (e.g., Drosophila – see (31)), draft will contribute to the removal of293

weakly-beneficial polymorphism.294

Selection has left many imprints on the human genome, with studies reporting signatures of selective295

sweeps (55), soft sweeps (29), background selection (34), negative selection (37, 46), and polygenic adapta-296

tion (28). Still, considerable uncertainty remains about the relative importance of these evolutionary mech-297

anisms, especially as concerns the rate and strength of positive selection. Recent work has suggested that298

the contrasting adaptation rate estimates of previous studies (54, 55) can be reconciled by arguing that most299

adaptation signals in humans are consistent with adaptation from standing variation (29). Our results show300

that the frequency spectra and patterns of divergence are also consistent with the idea that many adaptive301

alleles segregate much longer than is expected for a classic sweep, and hence also help to reconcile the results302

of previous studies.303

In addition to determining the rate, strength, and mechanisms of adaptation, there is an ongoing effort304

to find the biological processes most important for driving adaptation. Previous work has shown that viruses305

are a critical driver of adaptation in mammals (25), but the strength of the fitness advantages associated with306

resistance to (or tolerance of) infection remain unclear. Our approach clarifies that adaptation to viruses is307

also approximately three-fold enriched for virus-interacting genes. In contrast, weak adaptation rate was not308

substantially different between VIPs and non-VIPs, suggesting that weak adaptation may proceed through309

mechanisms that are shared across proteins regardless of function (for example, optimization of stability).310

While we have focused on VIPs here due to the expected fitness burdens associated with infection, in future311

research our approach could be used to investigate adaptation in any group of genes, or extended to partition312

genes into strong and weak adaptation classes.313

The model that we fit to human data does an excellent job of recapitulating the observed patterns in314

the Thousand Genomes Project data, but we were concerned that several possible confounding factors could315

influence our results. We showed that seven confounding factors (ancestral mispolarization (58), demographic316

model misspecification (59, 60), BGS model misspecification, covariation of BGS and sequence conservation,317

GC-biased gene conversion (61), selection on synonymous alleles (62), and misspecification of strongly- and/or318

weakly-beneficial selection coefficients) are unlikely to substantially influence the results (see Supplemental319
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Methods), but it should be noted that the adaptive process in our model is exceedingly simple, and it is320

very likely that the evolutionary processes driving diversification are much more complex. We supposed that321

adaptation proceeds in two categories, weak and strong selection, each of which is described by a single selection322

coefficient. In reality, adaptive alleles are likely to have selection coefficients drawn from a broad distribution,323

and adaptation is likely to proceed by a variety of mechanisms, including sweeps (55), polygenic adaptation324

(28), and selection from standing variation (29). While our results show that BGS shapes adaptation rate325

across the genome, our method does not differentiate among adaptation mechanisms. We expect that future326

research will further clarify the relative importance of various selection mechanisms to shaping genomic patterns327

of diversity in the genomes of humans and other organisms (10, 63).328

Our method is flexible, and as with the original aMK approach, we showed that the α estimates obtained329

are only minimally affected by demographic uncertainty. It may therefore be an effective tool for providing330

more accurate estimates of adaptation rate in non-model species that have not been the subject of detailed331

genomic studies. Despite recent progress, the evolutionary mechanisms that drive the range of diversities332

observed across species (which could include linked selection, population size, and/or population demography)333

remain the subject of debate (12, 13, 16). Future work using and extending our method, which provides more334

accurate estimates of adaptation rate when weakly-beneficial alleles contribute substantially to polymorphism,335

could help to resolve this open question.336
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77. Živković D, Steinrücken M, Song YS, Stephan W. Transition densities and sample frequency spectra of495

diffusion processes with selection and variable population size. Genetics. 2015;200(2):601–617.496

78. Uricchio LH, Zaitlen NA, Ye CJ, Witte JS, Hernandez RD. Selection and explosive growth alter genetic497

architecture and hamper the detection of causal rare variants. Genome Research. 2016;26(7):863–873.498

79. Jewett EM, Steinrücken M, Song YS. The effects of population size histories on estimates of selection499

coefficients from time-series genetic data. Molecular Biology and Evolution. 2016;33(11):3002–3027.500

80. Thornton KR. Automating approximate Bayesian computation by local linear regression. BMC Genetics.501

2009;10(1):35.502

81. Cooper GM, Stone EA, Asimenos G, Green ED, Batzoglou S, Sidow A. Distribution and intensity of503

constraint in mammalian genomic sequence. Genome Research. 2005;15(7):901–913.504

82. Teshima KM, Coop G, Przeworski M. How reliable are empirical genomic scans for selective sweeps?505

Genome Research. 2006;16(6):702–712.506

83. Schrider DR, Shanku AG, Kern AD. Effects of linked selective sweeps on demographic inference and507

model selection. Genetics. 2016;204(3):1207–1223.508

84. Rousselle M, Mollion M, Nabholz B, Bataillon T, Galtier N. Overestimation of the adaptive substitution509

rate in fluctuating populations. Biology Letters. 2018;14(5):20180055.510

85. Gravel S, Henn BM, Gutenkunst RN, Indap AR, Marth GT, Clark AG, et al. Demographic history511

and rare allele sharing among human populations. Proceedings of the National Academy of Sciences.512

2011;108(29):11983–11988.513

86. Torgerson DG, Boyko AR, Hernandez RD, Indap A, Hu X, White TJ, et al. Evolutionary processes acting514

on candidate cis-regulatory regions in humans inferred from patterns of polymorphism and divergence.515

PLoS Genetics. 2009;5(8):e1000592.516

87. Duret L, Galtier N. Biased gene conversion and the evolution of mammalian genomic landscapes. Annual517

Review of Genomics and Human Genetics. 2009;10:285–311.518

88. Racimo F, Schraiber JG. Approximation to the distribution of fitness effects across functional categories519

in human segregating polymorphisms. PLoS Genetics. 2014;10(11):e1004697.520

89. Gazave E, Ma L, Chang D, Coventry A, Gao F, Muzny D, et al. Neutral genomic regions refine models of521

recent rapid human population growth. Proceedings of the National Academy of Sciences. 2014;111(2):757–522

762.523

14

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 28, 2019. ; https://doi.org/10.1101/427633doi: bioRxiv preprint 

https://doi.org/10.1101/427633
http://creativecommons.org/licenses/by-nc/4.0/


Figures524

−0.2

−0.1

0.0

0.1

0.2

1 2 5 10 20 50

allele count (x)

α(
x

)

αW=0A

−0.2

−0.1

0.0

0.1

0.2

1 2 5 10 20 50

allele count (x)

α(
x

)

αW=0.1B

−0.2

−0.1

0.0

0.1

0.2

1 2 5 10 20 50

allele count (x)

α(
x

)

All alleles

Neutral +
Deleterious

αW=0.2C

Figure 1: A-C: We plot α(x) as a function of allele count x in a sample of 50 chromosomes. The
true value of α = 0.2 in each panel, with varying contributions from weakly (2Ns = 10) and strongly
adaptive alleles (2Ns = 500). The solid lines show the results of our analytical approximation
(eqn. 11), while the points show the value of α(x) from forward simulations. The blue points and
curves show the calculation as applied to all polymorphic loci, while in the pink points and curves we
have removed positively selected alleles from the calculation. The dotted line shows the estimated
value of α from the simulated data using existing asymptotic-MK methods (23, 38), while the gray
bars show the 95% confidence interval around the estimate.
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Figure 2: A-B: α(x) is plotted for various background selection (π/π0) values. In A, adaptive alleles
are strongly-beneficial (2Ns = 500), while in B they are weakly-beneficial (2Ns = 10). The lines
represent analytical approximations, while the points represent the results of stochastic simulations.
The dashed lines at α = 0.2 represent the true rate of adaptation in the absence of BGS. C-D:
True (dark colors) and estimated (light colors) α for each of the corresponding models in A-B.
Panel C corresponds to strong adaptation (2Ns = 500) while D corresponds to weak adaptation
(2Ns = 10). Estimates of α were made using existing asymptotic-MK software (38). For each
parameter combination, we used 2× 105 independent simulations of 103 coding base pairs each.
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Figure 3: A: Posterior distribution of αW , αS , and α = αS + αW as inferred by applying our
ABC approach to 661 samples of African ancestry from the TGP phase 3. B: α(x) for genomic
data (black points) plotted along with the mean posterior estimate from our model (orange line)
and 99% confidence interval (gray envelope), as obtained by an independent set of simulations using
the posterior parameter estimates. C: Inferred posterior distribution of α as a function of BGS
strength in the human genome. D: Mean posterior estimates of αW , as determined by separately
fitting the model to alleles from each independent background selection strength bin. A linear model
fit to the data (green line) supported statistically significant covariation between π/π0 and αW (p-
value=0.0343). The black dashed line shows the predicted change in αW as a function of B given
the mean estimate of αW .
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Figure 4: A: Posterior distributions for α, αW , and αS for virus-interacting proteins (VIPs, 4,066
genes). B: The same quantities for non-VIPs (12,962 genes). C: The posterior distribution of the
difference in α for VIPs and non-VIPs. D: α(x) for VIPs and non-VIPs as a function of derived allele
frequency x, specifically at the values of x that we use for statistical inference.
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Datasets & inferred adaptation rates
Dataset NS SYN α̂ α̂W α̂S
Whole-exome 29925 38135 0.135 (0.096,0.17) 0.097 (0.0,0.21) 0.041 (0.0,0.13)
VIPs 6249 10309 0.224 (0.17,0.28) 0.098 (0.0,0.24) 0.126 (0.018,0.26)
Non-VIPs 23676 27826 0.12 (0.09,0.15) 0.077 (0.01,0.13) 0.042 (0.0, 0.09)

Table 1: Table of datasets and inferred values for total adaptation rate (α), weak adaptation
(αW ) and strong adaptation (αS). Estimated α values represent the mean of the posterior
distribution. NS represents the number of nonsynonymous fixations and SYN represents the
number of synonymous fixations. Values in parentheses represent the area of 95% highest
posterior density.
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Supplementary Methods525

Model526

We apply a classic directional selection model in which new alleles have selection coefficients s drawn from527

some distribution over s. New mutations arise at rate θ = 4Nµ, and mutations that are synonymous are528

treated as neutral whereas nonsynonymous mutations are beneficial or deleterious.529

Our ultimate goal is to construct an estimator that jointly infers the rate of adaptation (captured by α,530

which is defined to be the proportion of substitutions that are adaptive) and the strength of selection (i.e.,531

the distribution of 2Ns values over functional sites). It will be instructive to begin by reviewing the results532

of Messer & Petrov (23), who developed a novel estimator for α. Subsequently, we extend their results using533

analytical theory and simulations to capture information about the strength of selection.534

Following earlier work (18, 23), we let dN be the substitution rate and we replace N in the subscript535

with N+, N−, or N0 to indicate advantageous, deleterious, or neutral non-synonymous substitutions. When536

dN alone appears, it denotes the total rate for all nonsynonymous variants (i.e. dN = dN− + dN+ + dN0).537

Analogously, dS is the substitution rate for synonymous variants, which are assumed to be neutral (and hence538

do not have additional subscripts).539

Consider now the proportion of functional sites that are fixed by positive selection, α.540

α ≡
dN+

dN
=
dN − (dN− + dN0

)

dN
. (2)

Rearranging, we have541

α = 1−
dN− + dN0

dN
= 1− dS

dN

(dN− + dN0
)

dS
. (3)

Let the number of observed substitutions be denoted D. As noted by (23), dS
dN

can be estimated from542

sequence alignments by taking the ratio of DS and DN , under the assumption that the observed number of543

substitutions is proportional to the rate. However, the ratio (dN− + dN0
)/dS is not straightforward to estimate,544

because the numerator relies on classifying substituted sites by their fitness effects. However, under the as-545

sumption that polymorphic sites are rarely selected (because deleterious sites are removed from the population546

quickly and advantageous sites go to fixation rapidly),547

dN− + dN0

dS
≈ PN
PS

, (4)

and hence548

α ≈ 1− DS

DN

PN
PS

. (5)

Assumptions of the MK framework549

Approx. 4 implicitly assumes that selected polymorphism is rarely observed. In reality, it is likely that550

moderately deleterious alleles sometimes contribute substantially to observed polymorphism, especially at551

low frequency. To guard against this possibility, we can then modify eqn. 5 as552

α(x) ≈ 1− DS

DN

PN (x)

PS(x)
. (6)

where PN (x) and PS(x) are all non-synonymous polymorphism above frequency x and all synonymous poly-553

morphism above frequency x, respectively. We note that the original asymptotic-MK approach takes PN (x)554

and PS(x) as the number of polymorphic sites at frequency x rather than above x, but this approach scales555

poorly as sample size increases since most common allele frequencies x have very few polymorphic sites in556

large samples. We therefore define PN (x) and PS(x) as stated above since these quantities trivially have the557

same asymptote but are less affected by changing sample size.558

It has been noted that many studies have selected a fixed frequency threshold (say, x = 0.15), and removed559

all polymorphisms below this threshold (64). However, if moderately deleterious sites segregate above x, then560

the fixation rate approximation πN− ≈ πN0
is not valid, and α(x) will be downwardly biased (64).561
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Messer & Petrov (23) observed that as the frequency threshold x is increased to be asymptotically close562

to 1, eqn. 6 asymptotes to the true value of α. Intuitively, this is because weakly deleterious alleles (e.g.,563

2Ns = −1) can rise to appreciable frequency, but have substantially different fixation probability than neutral564

sites at all frequencies, meaning that approximation 4 may be poor for all values of derived allele frequency565

x that are substantially less than 1. However, as x is increased to be arbitrarily close to the absorbing state566

at x = 1, eqn. 6 approaches the true value of α because the probability that a site increases to frequency567

x = 1− δ is a good approximation to the probability that a site fixes for very small values of δ.568

In most sequencing experiments, there are very few segregating sites with derived allele frequencies close569

to 1, so simply taking the highest possible value of the threshold frequency x results in a very noisy estimator.570

Hence, Messer & Petrov suggested taking all possible thresholds x and fitting an exponential curve to α(x) (23).571

They showed that when selection is strong, this results in accurate estimates of the adaptation rate α.572

Analytical approximation to α(x)573

While the results of Messer & Petrov account for weakly deleterious polymorphic sites, they do not account574

for the possibility of weakly advantageous sites contributing to PN (23). Here, we use analytical theory to575

investigate to the quality of the approximation in eqn. 6 when adaptation is weak but occurs at an appreciable576

rate, such that positively selected mutations occur frequently but fix only rarely. In this section, we assume577

that the population has constant size, and relax this assumption later with ABC. The calculations in this578

section proceed similarly to those in previous studies (22, 65).579

First, we note that while E[α(x)] = 1 − E
[
DS
DN

PN
PS

]
is not straightforward to calculate, the expectation580

of each quantity on the RHS of eqn. 6 (i.e., PN , PS , DN , DS) is easily calculated from first principles using581

diffusion theory (40). Therefore, we make the first-order approximation582

E[α(x)] = 1− E
[
DS

DN

PN
PS

]
≈ 1− E[DS ]

E[DN ]

E[PN ]

E[PS ]
. (7)

Denoting the distribution of selection coefficients over new mutations as µs (multiplied by the underlying583

mutation rate) and the fixation probability as πs, the expected number of substitutions along a branch of time584

T in a locus of length L is simply585

E[D] = LTd = LT

∫
s

2Nµsπsds. (8)

Note that for neutral mutations, where µs is non-zero only for s = 0 and the fixation probability is given by586

1
2N ,

∫
s

2Nµsπsds reduces to 2Nµ0 × 1
2N = µ0.587

Likewise, the expected number of polymorphisms above frequency x can be calculated from the standard588

diffusion theory for the site frequency spectrum (39), given by589

f(x) =

∫
s

θs
1

x(1− x)

e4Ns(1− e−4Ns(1−x))
e4Ns − 1

ds, (9)

where θs = 4Nµs is the mutation rate for sites with selection coefficient s. We have assumed that there is590

no dominance (note that this assumption can be relaxed, but for simplicity we consider only genic selection591

herein). In a finite sample of 2n chromosomes, we must convolute eqn. 9 with the binomial to obtain the592

downsampled frequency distribution. We deonte the convoluted frequency spectrum as fB(x), defined as the593

expected proportion of polymorphic sites with allele count equal to x in a fixed sample, and note that the594

total number of polymorphic sites P (x) in a sample is given by595

E[P (x)] =
x∗=1∑
x∗=x

fB(x∗). (10)

Hence, we can substitute eqns. 8 and 10 into eqn. 6 for α(x) to make theoretical predictions about the596

shape of α(x) as a function of model parameters.597

α(x) ≈ 1− p0µ

(1− p0)
∫
s

2Nµsπsds

∑1
x(1− p0)fBN (x∗)∑1

x p0fBS (x∗)
, (11)
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where fBS (x∗) and fBN (x∗) are the downsampled site frequency spectra for synonymous and nonsynonymous598

alleles, respectively, and p0 is the probability that a polymorphic site is synonymous (i.e., assumed to be599

neutral). We developed software that calculates eqn. 11 explicitly for the case of a Gamma distribution of600

selection coefficients (see next section).601

Gamma distributed selection coefficients602

While the previous section did not assume a functional form for the distribution of selection coefficients, in603

order to perform simulations and inference we supposed that deleterious selection coefficients were Gamma-604

distributed. Gamma distributions have previously been shown to provide a good fit to human polymorphism605

data, and have revealed that most nonsynonymous alleles are weakly deleterious, with a long tail of strongly606

deleterious variation (37, 46). Additionally, we suppose that advantageous alleles are either strong or weak,607

such that they are drawn from a point mass distribution with two values (sW and sS , where W and S indicate608

Weak and Strong).609

Replacing θs = 4Nµs in eqns. 7-8 with a Gamma distribution Γ[α, β] over selection coefficients (where we610

have ignored the underlying mutation rate constant, which ultimately cancels out in our calculations), we find611

that612

E[D] = E[D+] + E[D−] + E[D0] =

LT

(
p+
(
1− e−2s

)
+ p−(2−αβα(−ζ

[
α,

2 + β

2

]
+ ζ

[
α, 1/2(2− 1

N
+ β)

]
)) + (1− p− − p+)

1

2N

)
, (12)

where p+ is the probability that an allele is deleterious and p− is the probability that it is deleterious, and ζ613

is the Riemann Zeta function. The frequency spectra for Gamma distributions of deleterious effects have been614

previously investigated (66).615

Using asymptotic-MK to infer α616

We used the method of Messer & Petrov (23) to infer α from the simulated data presented in Fig. 1. This617

method fits an exponential curve to α(x) and takes the value of the best-fitting exponential function at x = 1 as618

the inferred value of α. In all three panels of Fig. 1, the true rate of adaptation as observed in the simulations619

is α = 0.2, but the component of α that consists of weakly adaptive substitutions (αW ) varies from 0 to 0.2620

(i.e., when αW = 0.2, all adaptive substitutions are weakly adaptive). To infer α, we used published software621

implementing this method (38). The inferred α is plotted as a black dotted line in Fig. 1, while the 95%622

confidence interval is plotted as a gray bar.623

We used the default setting for the frequency threshold as provided by the software (38), which removes624

all alleles below minor allele frequency of 10%. When inputting the frequency spectrum for all 661 individuals,625

we obtained negative estimates of α, presumably because there are very few alleles per bin at high frequency626

in large samples which induces numerical instability. We therefore binned the frequency spectrum into 5%627

frequency bins in performing the analysis, which resulted in a more stable fit.628

In addition to using the previously published software, we also implemented asymptotic-MK in R using the629

function nls (nonlinear least squares). We fit a curve of the form α(x) = a + becx to alleles between x = 0.1630

and x = 0.9 (i.e., the same default range of frequencies used in the previously published software (38)). We631

applied this fitting procedure to predicted α(x) curves using our analytical approximations. We find that α is632

strongly under-estimated when adaptation is due to weakly-beneficial alleles (Fig. S12A). This result is largely633

insensitive to the distribution of deleterious alleles – decreasing the mean strength of selection on deleterious634

alleles did not substantially change the performance of the estimation procedure (Fig. S12B-C). Removing635

beneficial polymorphism from the frequency spectrum essentially fixes this problem (Fig. S12D-E). Of course,636

it is not possible to remove the beneficial polymorphisms in real data.637

Background selection & adaptive divergence638

Background selection, the action of linked deleterious alleles on patterns of genetic diversity (67–69), may also639

alter the adaptive process. Linked selection reduces the effective population size and hence increases the rate640
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of drift of neutral loci, and may also reduce the efficacy of selection on deleterious alleles and alter fixation641

rates of both deleterious and positively selected alleles (33).642

We investigated the impact of background selection on α and α(x) using analytical theory and simulations.643

We focus on a model in which a coding locus is flanked by loci of length L containing deleterious alleles with644

population-scaled selection coefficient −2Nt undergoing persistent deleterious mutation at rate 4Nµ−. The645

flanking loci recombine at rate r per-base, per-generation. The diversity at the coding locus is decreased646

relative to its neutral expectation by647

π

π0
≈ e

−4µL
2rL+t (13)

as derived previously (68, 69).648

The effects of background selection on dN , dS , the frequency spectrum, and effective population size have649

been the subject of much theoretical work (33, 67, 70). It was shown previously (33) that the probability of650

fixation of a positively selected allele under background selection is reduced by a factor φ, with651

φ(t, s) = e

[
−2µ

t(1+ rL
t

+ 2s
t )

]
(14)

Multiplying across all deleterious linked sites, we find that652

Φ =
L∏
1

φ(t, s) = e
−2tµ(Ψ[1, r+2s+t

r
]−Ψ[1,

r(L+1)+2s+t
r

])
r2 , (15)

where Φ is the total reduction in fixation probability and Ψ is the polygamma function.653

Testing the analytical theory with simulations654

We rigorously tested the theoretical calculations herein using stochastic simulations (35). Fig. S1 reports655

results of background selection simulations, and shows that for a range of expected background selection656

values calculated with eqn. 13, the expected diversity is in close agreement with values of nucleotide diversity657

obtained in forward simulations. In our simulations, we solve eqn. 13 for the desired mutation rate in order658

to obtain the desired reduction in diversity.659

We also show that the predicted frequency spectra for positively selected, negatively selected, and neutral660

alleles are all in close agreement with simulations (Fig. S3), as are the number of diverged sites for neutral661

(Λ0), deleterious (Λ−), and beneficial deleterious (Λ+) alleles (Fig. S2). Note that the curves in Figs. S2&S3662

represent analytical approximations using the results derived herein, and not fits to the data. For these663

simulations, we assumed that α = 0.2, and that the Gamma distribution of deleterious effects is given by a664

values previously inferred from human nonsynonymous polymorphism with a = 0.184 and b = 0.000402 (37).665

We relax these assumptions in later sections when performing inference. Python software for performing these666

calculations and building SFS CODE command lines is available https://github.com/uricchio/mktest.667

Divergence and polymorphism data668

We retrieved the number of polymorphic sites and their allele frequencies in human coding sequences as well669

as the number of human-specific fixed substitutions in coding sequences since divergence with chimpanzees.670

Fixed substitutions were identified by parsimony based on alignments of human (hg19 assembly), chimpanzee671

(panTro4 assembly) and orangutan (ponAbe2 assembly) coding sequences. Human coding sequences from672

Ensembl v73 (71) were blatted (72) on the panTro4 and ponAbe2 assemblies and the best corresponding hits673

were blatted back on the hg19 human assembly to finally identify human-chimp-orangutan best reciprocal674

orthologous hits. We used the Blatfine option to ensure that even short exons at the edge of coding sequences675

would be included in the hits. We further used a Blat protein -minIdentity threshold of 60%. The corresponding676

human, chimp and orangutan coding sequences were then aligned with PRANKs coding sequence evolution677

model (73) after codons containing undefined positions were removed.678

For each human coding gene in Ensembl we considered all possible protein- coding isoforms and aligned679

separately each isoform between human, chimp and orangutan. The numbers of polymorphic or divergent680

sites are therefore the numbers over all possible isoforms of a human gene (however the same polymorphic or681
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divergent site present in multiple isoforms still counts for one). If a polymorphic or divergent site was synony-682

mous in an isoform but non-synonymous in another isoform, it counted as one non-synonymous polymorphic683

or divergent site. Only fixed divergent sites were included, meaning that substitutions still polymorphic in hu-684

mans were not counted as divergent. The derived allele frequency of polymorphic sites is the frequency across685

all African populations from the Thousand Genomes Project phase 3 (TGP), which comprises 661 individuals686

spread across seven different subpopulations (44). Allele frequencies were extracted from vcf files provided687

by the TGP for the phase 3 data. In total, 17,740 human-chimp-orangutan orthologs were included in the688

analysis. Supplemental Data Table S1 provides the number of synonymous and non-synonymous polymorphic689

or divergent sites for each of these 17,740 orthologs, as well as the allelic frequencies of the polymorphic sites.690

Polymorphic sites were counted only if they overlapped those parts of human coding sequences that were691

aligned with chimp and orangutan coding sequences. The ancestral and derived allele frequencies were based692

on the ancestral alleles inferred by the TGP phase 3 and available in the previously mentioned vcf files (44).693

Columns in Supplemental Data Table S1 are as follows: First column – Ensembl coding gene ID. Second694

column – number of non-synonymous polymorphic sites. Third column – respective derived allele frequencies of695

these sites separated by commas. Fourth column – number of synonymous polymorphic sites. Fifth column –696

respective frequencies derived allele frequencies of these sites. Sixth column – number of fixed non-synonymous697

substitutions on the human branch. Seventh column – number of fixed synonymous substitutions on the human698

branch.699

The supplemental table, along with the data that we used to parameterize our model, is available online700

at https://github.com/uricchio/mktest.701

Background selection data & identifying VIPs702

We obtained estimates of background selection strength across the human genome from previous work (34) at703

http://www.phrap.org/othersoftware.html. Since our genetic data was reported in hg19 coordinates, we704

then used the liftover utility in the UCSC Genome Browser to convert the background selection coordinates705

from hg18 to hg19 (https://genome.ucsc.edu/cgi-bin/hgLiftOver). We were able to map 17,028 of the 17,740706

orthologs to background selection scores. This final set of 17,028 was used throughout the analyses reported707

in the paper. We classified virus-interacting proteins by using a previously determined set of 4,066 VIPs (74).708

Estimating α with ABC709

Motivation for performing ABC710

Although we could use analytical theory developed herein to estimate α, it is well known that demography711

also impacts the frequency spectrum of selected alleles (75,76). Some of the impact of recent demography may712

be attenuated by using the ratio of nonsynonymous to synonymous alleles for inference (since both categories713

of sites will be affected (23)), but failure to incorporate both selection and demography in general can distort714

inference of both selection and demography (75). Since it is not straightforward to calculate the frequency715

spectrum under generalized models of selection, demography, and linkage (77–79), we instead use Approximate716

Bayesian Computation (ABC) (42) to infer selection parameters while accounting for recent demography.717

Generic ABC algorithm718

ABC proceeds by first sampling parameter values from prior distributions, next simulating model outcomes us-719

ing these parameter values and calculating informative summary statistics, and lastly comparing the simulated720

summary statistics to observed data. The parameter values that produce summary statistics that best match721

the observed data form an approximate posterior distribution. An additional linear model can be imposed to722

correct for the non-0 distance between the simulated and observed summary statistics (42, 80).723

Here, we follow this generic approach exactly. The main sources of innovation in our method are 1)724

selecting summary statistics that are informative for estimating α values, 2) simulating summary statistics725

across a range of BGS strengths corresponding to the inferred distribution of BGS strengths in the human726

genomic dataset, and 3) employing a resampling-based strategy for generating summary statistics that avoids727

simulating the full model for different parameter combinations.728
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Overview of our ABC approach729

Our ABC approach proceeds in three main steps. First, we run forward simulations with a fixed DFE over730

nonsynonymous alleles (37), a known demography inferred from human genomic samples, and a fixed DFE731

over deleterious alleles flanking the central coding locus. Second, we used biased resampling of alleles from732

these simulations to calculate summary statistics that correspond to a wide range of nonsynonymous allele733

DFEs with varying rates of adaptation and exactly the same number of sampled variants and distribution734

of B scores as the observed data (where B is the strength of BGS from a previous study (34)). Lastly, we735

supply 106 sets of summary statistics sampled from our prior distributions into a published ABC software736

framework (80) to infer parameters from real datasets. Below we describe each of these steps in more detail.737

We simulate a sample of 661 individuals (the same number of samples as the African continental group738

in the TGP phase 3 data) under a demographic model incorporating an expansion in the African ancestral739

population and recent exponential growth (43). Within each coding region, we suppose that the distribution740

of deleterious effects is given by a Gamma-distribution with a0 = 0.184, b0 = 0.000402, which were previously741

inferred as the strength of negative selection in another study using human coding sequences (37) (note that742

the mean strength of negative selection is given by a0

b0
= −457, but the distribution is very heavy-tailed743

with a substantial contribution from weakly deleterious variants). SFS CODE simulates sequences under the744

explicit 64-codon genetic code – using this model, approximately 75% of new mutations in coding regions are745

nonsynonymous. We additionally simulate positive selection with θW = 7.8 × 10−6 for weak adaptation and746

θS = 2.6× 10−7 for strong adaptation (see below for rationale on selecting these values).747

We repeated these simulations over a range of background selection strengths, from π
π0

= 0.2 to π
π0

= 1.0748

in increments of 0.05. Each simulation replicate consists of a central coding locus of 103 bp flanked on each749

side by 2× 105 bp of non-coding loci. We use eqn. 13 to compute the mutation rate for deleterious alleles in750

the flanking sequences such that the desired reduction in diversity is obtained. We simulate 105 genes of 103751

bp in length, for 108 total bp of sequence for each BGS value.752

We seek to infer four parameters, which we draw from prior distributions – in particular, θW = 4NµW , the753

mutation rate for weakly-beneficial alleles, θS = 4NµS , the mutation rate for strongly-beneficial alleles, and a754

and b, the parameters of the Gamma distribution controlling the distribution of deleterious alleles. Since each755

of these parameters are fixed in our original round of simulations, we resample alleles from the simulated data to756

reflect the desired combination of selection parameters (see below for resampling details). Using the resampled757

frequency spectra, DN , and DS , we calculate α(y) for values of y in 1, 2, 4, 5, 10, 20, 50, 200, 500, 1000, where758

y is the derived allele count and the frequency x in α(x) is given by x = y/2× 661. Lastly, a linear model is759

imposed to correct for the non-0 distance between the summary statistic values in the simulations as compared760

to the observed data. We use previously published software to perform this inference step (80).761

We additionally infer the α values (α, αW , and αS) – while these are not parameters of the model, they762

can be inferred in the same ABC framework since they can easily be calculated for any given parameter763

combination. As priors, we suppose that θW is uniform on [0, 7.8× 10−6] and θS is uniform on [0, 2.6× 10−7].764

We chose these values because at the top of the range, αW = 0.4 and αS = 0.4 when the distribution of765

deleterious effects is given by a Gamma distribution with a0 = 0.184, b0 = 0.000402, which were previously766

inferred in another study using human coding sequences (37). We supposed that a and b might deviate from767

their previously inferred values by up to a factor of 4 above or below their previous estimates, and hence we768

sampled exponents afac and bfac uniformly on [-2,2] and we let a = a02afac and b = b02bfac . Hence our prior for769

a and b are centered at a0 and b0, but can vary to allow substantial flexibility in the distribution of deleterious770

effects. In all of our simulations, we suppose that strongly advantageous alleles have 2Ns = 500 and weakly771

advantageous alleles have 2Ns = 10, and we rescale the simulated ancestral population size to N = 500. We772

use a large s approximation for calculating the fixation probability of strongly advantageous alleles by treating773

the adaptive allele trajectory as a Galton-Watson process (57).774

Code that we used to simulate these models is available at https://github.com/uricchio/mktest. Note775

that we designed this software to run on the Stanford HPC cluster, Sherlock – adapting it to run in other776

computing environments would require further modifications. We suggest that parties interested in using the777

software contact the authors for assistance in installing it and applying it.778

Resampled summary statistics & validation779

We resampled polymorphic sites from our set of forward simulations with a = a0, b = b0, θW = 7.8×10−6, and780

θS = 2.6× 10−7 to compute summary statistics for ABC. The underlying idea of these resampling simulations781
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is that given a fixed strength of BGS, the allele frequency spectrum can be approximated by selecting alleles in782

proportion to their mutation rate given the model parameters relative to the parameter values that were used783

in the original set of simulations. For example, if we suppose that alleles with s = 0.001 have a mutation rate784

of θ = 10−5 in the original forward simulations but θ = 10−6 in the resampling simulations, then we resample785

such alleles at a rate that is 10% of their representation in the original simulations.786

For polymorphic positively selected sites, we resample with replacement from the simulated frequency787

spectra by selecting adaptive polymorphic sites with probability proportional to θW
7.8×10−6 and θS

2.6×10−7 for788

weakly and strongly-beneficial alleles, respectively. We resample negatively selected alleles with replacement789

from the frequency spectrum, but we adjust the sampling probability in proportion to the probability that a790

polymorphic site with selection coefficient s is observed at frequency x given the parameter values a and b using791

the analytical expressions developed in the previous sections. We also analogously adjust the simulated number792

of fixation events at nonsynonymous along the simulated branch. We confirmed that our resampling-based793

approach provides the appropriate frequency spectra by comparing simulated resampled frequency spectra to794

forward simulations performed in SFS CODE for a subset of parameter values at the boundary of our prior795

distributions (Fig. S11).796

To capture the impact of background selection, we ran the original forward simulations with varying797

amounts of BGS in 5% bins ranging from π
π0

= 0.2 to π
π0

= 1.0 and the same parameter values as above. To798

calculate summary statistics corresponding to the desired parameter values, for each allele in our TGP dataset799

we obtained an estimate of BGS strength at the corresponding locus (34) and we sampled a polymorphic allele800

randomly from the frequency spectrum of the simulated BGS bin that is closet to the observed value. We801

excluded all sites with B < 175 (i.e., π
π0
< 0.175) from the inference for computational efficiency, because sim-802

ulating large reductions in diversity requires high mutation rates of deleterious alleles in the flanking sequences.803

We pool all of the simulated polymorphic sites to calculate the α(x) summary statistics corresponding to the804

model parameters. Open source software implementing our approach is available by request and will be posted805

online.806

We tested our ABC approach by simulating a large dataset of parameter values and matched summary807

statistics, and then masking a subset of the parameter values. We tested our ability to infer the masked808

parameter values using the remaining summary statistics for 100,000 replicates. We plot the results of this809

experiment in Fig. S6, where we summarize the inferred parameter value as the mean of the posterior dis-810

tribution. We find that the method returns accurate and unbiased estimates for most quantities of interest,811

although we find that the parameter b controlling the distribution of deleterious effects is somewhat noisily812

estimated.813

Summary of robustness analyses814

Although our model explains the observed α(x) data very well, we were concerned that several possible con-815

founders might also produce similar patterns. We focused on seven sources of confounding, namely 1) ancestral816

state uncertainty, 2) covariation of BGS and sequence conservation, 3) demographic model misspecification, 4)817

misspecification of the strength of selection at sites driving background selection, 5) biased gene conversion, 6)818

selection acting on synonymous alleles, and 7) misspecification of the strength of selection at adaptive variants.819

Ancestral mispolarization could confound our results if some loci with high-frequency derived alleles in820

our dataset are in fact loci with low frequency derived alleles. Mispolarization can have similar effects on821

the frequency spectrum as positive selection, and has been identified as a possible source of bias in selection822

inference (58). To limit the effects of ancestral state uncertainty on our analysis, we only use the summary823

statistics used in our ABC to frequencies at or below 75%, which are much less susceptible to the effects of824

mispolarization (58). Our results are therefore unlikely to be affected by mispolarization.825

Covariation between BGS and sequence conservation could also be a potential source of bias in our ap-826

proach. If negative selection is stronger per site in genes under strong BGS, then the frequency spectrum and827

rate of fixation of weakly deleterious alleles will also vary as a function of BGS strength (denoted B – note that828

a large B corresponds to weak BGS), potentially confounding our results. To test the hypothesis that sequence829

conservation and B covary, we computed the average “rejected substitution” score (RS, as determined by the830

GERP algorithm (81)) on a gene-by-gene basis as a function of B. RS scores represent the number of substi-831

tutions per site that have been rejected due to negative selection, and increase with the strength of negative832

selection. We found a slight negative correlation between B and RS, almost entirely driven by genes with833

B > 875 (Fig. S10). While this correlation is consistent with our model (since we expect more substitutions834
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due to weak adaptation in regions with low BGS), it could also be due to the confounding covariation. To835

eliminate the potential confounding effect of covariation between B and sequence conservation, we repeated836

our ABC-based inference procedure after removing all genes with B > 875 from the analysis. If our signal837

were driven by this covariation rather than a true effect of weakly advantageous alleles, we would expect our838

parameter estimates to change substantially in this experiment, in particular by increasing the mean strength839

of selection against deleterious nonsynonymous alleles. In contrast, we observe almost no change in the esti-840

mated negative selection parameters (Fig. S9), and when we estimated negative selection strength separately841

for each BGS bin, we did not observe any covariation with B (Fig. S20).842

Another possible confounder is demographic model misspecification. Selection and population demography843

both affect the frequency spectrum, and hence failure to accurately account for both demography and selection844

in inference procedures can result in biases (59, 60, 75, 82–84). Although the aMK framework may avoid845

some of these issues by directly comparing nonsynonymous and synonymous alleles (23), both of which are846

subject to the same demography, we nonetheless tested for demographic biases. To test the effects of model847

misspecification, we varied the size of the expansion event in the African ancestral population by sampling848

parameter values from the 95% confidence interval of a previous demographic model (85) that was built using849

TGP sequences (see Supplemental Methods). We simulated under these models with larger or smaller than850

expected bottlenecks, and used summary statistics of our “misspecified” model to perform inference of the851

selection parameters. We find that α is still inferred very accurately, although a subset of simulations resulted852

in over-estimates of α when the true expansion was much larger or much smaller than the expected expansion853

(Figs. S7&S8). We also observed modest biases in αW and αS , with αW under-estimated when the magnitude854

of the expansion is over-estimated and over-estimated when the expansion is under-estimated (Fig. S7&S8),855

but the vast majority of inferred total α values fell close to the diagonal in both cases. These results suggest856

that our main results are robust to recent demographic uncertainty, although slight quantitative biases in αW857

and αS could be induced by demographic model misspecification.858

Misspecification of the strength of selection acting on alleles driving BGS could also cause bias in our859

inferences. We supposed that the mean strength of selection against alleles inducing BGS was γ = 2Ns = −83,860

which reflects a mixture of previous estimates of the strength of selection against polymorphism in human861

coding (37) and conserved non-coding (86), weighted by the percentage of the genome that is composed of862

each type of element. If the true strength of selection driving BGS was much smaller or much larger, we might863

change the expected dependency of α(x) on B. In essence, if γ is closer to 0, BGS should have a smaller effect864

on the fixation rate of weakly-beneficial alleles. We therefore considered a range of γ values from -10 to -100865

– consistent with expectations, we find that weaker selection against BGS alleles induces α(x) to vary less866

markedly as a function of BGS strength, but the effect is very modest (Fig. S13).867

To further address the possibility that misspecification of the BGS DFE could affect our results, we also868

repeated our entire inference pipeline with three additional distributions of fitness effects for the BGS alleles (a869

weak DFE with 2Ns = −10, a strong DFE with 2Ns = −500, and a gamma-distributed DFE that mixes strong870

and weak alleles as inferred by Boyko et al (37) – see Fig. S14). These varying DFEs had almost no effect on871

the inferred value of α, but note that the gamma DFE resulted in slightly lower estimates of αW but slightly872

higher estimates of αS . Accordingly, we conclude that our results are not strongly dependent on the strength873

of selection against alleles driving BGS, but misspecification of the BGS DFE could result in slight biases in874

the weak and strong components of α that are similar in magnitude to misspecification of the demographic875

model (Figs. S7&S8). Lastly, for each of the BGS DFEs that we considered, we checked explicitly that purely876

non-adaptive simulations could not fit the data. We took the subset of simulated summary statistics that877

approximately match the empirical α(x) data at low frequency (i.e., fall within 0.1 of the lowest-frequency878

data point) and additionally have very low adaptation (simulated α < 0.01). We plot these summary statistics879

along with the real data (Fig. S15). The simulated summary statistics fall below the real data at all values of880

x at high frequency.881

We also supposed that biased gene conversion (BGC) could be a confounder in our results. BGC can mimic882

positive selection by favoring the fixation of weak to strong mutations (87). We therefore recomputed α(x)883

using the 661 TGP samples after removing all the weak to strong mutations and fixations from the dataset.884

We find that the empirical α(x) curve is not substantially affected by the removal of weak to strong sites at885

frequencies that we use for ABC (Fig. S5), suggesting that BGC is unlikely to affect our inferences.886

In response to a suggestion by multiple reviewers, we also considered the impact that selection against887

synonymous alleles might have on our results. Recent studies have suggested that synonymous alleles are888

likely to be subject to weak negative selection (62, 88), which would violate an assumption of the MK test889
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framework. We tested the robustness of our results to this assumption by calculating the analytical expectation890

of α(x) curves using a DFE over synonymous alleles that mimics recently inferred distributions from human891

genomic data. In particular, Huang & Siepel found that 70.5% of mutations were effectively neutral, while892

26% were moderately deleterious and 3.5% were strongly deleterious (62). We modeled this by mixing neutral893

alleles (70% of alleles) with a Gamma distribution inferred from conserved non-coding sites (86) – under this894

distribution (gamma parameters a = 0.0415 and b = 0.00515, which has a mean value of ab = 2Ns = −8.1) 27%895

of alleles are weakly or moderately deleterious (|2Ns| < 10) and 3% are strongly deleterious (|2Ns| > 10).896

We also considered an ad hoc distribution with gamma parameters a = 0.1 and b = 0.1, which has mean897

a
b = 2Ns = −1 and 29% weakly deleterious alleles and 1% strongly deleterious alleles – we made this choice898

since weakly deleterious alleles are more likely to be problematic for the MK framework, due to their potential899

to segregate for long times. Our calculations proceed by simply replacing the neutral terms in eqn. 11 with a900

mixture of neutral and deleterious distributions.901

In Fig. S17, we show α(x) summary statistics for these synonymous DFEs as compared to purely neutral902

alleles, which differ only subtly from each other. Crucially, when adaptation is absent, selection on synonymous903

alleles does not induce false adaptation signals (Fig. S18). The results of these calculations suggest that904

selection against synonymous alleles would have to differ substantially from current estimates in order to905

strongly affect our inference. In practice, cryptic selection against synonymous alleles may affect inference906

through the application of non-equilibrium demographic models, which are often inferred from synonymous907

alleles or other putatively neutral variants. Multiple studies have now found that demographic inference can be908

biased by linked selection or direct selection (23,59,60,83,89). More work will be needed to better understand909

how such inference errors will affect adaptation rate estimation in the MK framework.910

Lastly, we considered the impact that misspecification of the strength of positive selection for alleles in911

the strongly-beneficial and weakly-beneficial categories might have on inference. We performed analytical912

calculations for a variety of selection coefficients to compare their α(x) summary statistics. For strong alpha,913

there is almost no difference in the computed summary statistics in the absence of BGS and a small difference914

when BGS is strong (Fig. S16). This is the expected behavior, since strongly-beneficial alleles rarely contribute915

to segregating polymorphism and are only very weakly affected by BGS. For weak alpha, there are small916

differences in the values of the summary statistics for each of the α(x) curves when BGS is absent – when917

BGS is strong most adaptive alleles are removed and the difference between different selection coefficients918

is diminished. This suggests that while strongly- and weakly-beneficial alleles have qualitatively different919

behaviors, we will have little power to infer the full DFE over beneficial alleles from these summary statistics.920

This does not preclude the possibility that more complex DFEs could also fit the summary statistics (see921

Discussion section in main text).922

Genetic draft923

Our modeling uses a diffusion approximation to dynamics of allele frequency shifts that accounts for background924

selection but not draft. If genetic draft (i.e., the impact of linked positive selection on the frequency trajectories925

of linked alleles) also drives systematic variation in diversity genome-wide, then this approximation may break926

and invalidate some of the assumptions of our modeling (23).927

To test the sensitivity of our results to genetic draft, we compared simulations with and without genetic928

draft to our theory for a range of selection strengths and rates. We simulated a gene under simultaneous929

negative and positive selection, flanked by 1 MB sequences. We compared models with and without BGS,930

and with and without draft, for a range of parameter values. We set α = 0.4 within the gene, and supposed931

that 5% of the flanking sequence was a potential target for positive selection that was both as strong and as932

frequent as that within the gene.933

Consistent with earlier results (23), we find that draft can decrease α, likely by increasing the rate of fixation934

of weakly deleterious alleles and/or interference between strongly-beneficial alleles (56, 57). However, even in935

the extreme scenario where adaptation is driven by very strongly advantageous alleles with 2Ns = 2000 and936

α = 0.4, we observe only a modest departure from the expectation in the absence of draft at the frequencies937

that we use in inference, all but one of which are below 37% frequency (Fig. S4). This suggests that our938

inference should be only modestly affected by draft, and only in regions of the genome experiencing strong,939

recurrent sweeps.940
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Simulations for demographic model misspecification941

We tested the impact of demographic model misspecification by sampling “worst-case” parameters from the942

95% confidence interval of a previous study that fit a maximum-likelihood demographic model to TGP se-943

quences (85). The maximum likelihood estimates from this model for the ancestral human population size944

and expanded population size are NA = 7, 300 and NAF = 12, 300, respectively. We supposed that the largest945

possible expansion would correspond to the 2.5% quantile estimate of NA and the 97.5% quantile estimate of946

NAF ( 13,900
4,400 = 3.15), while the smallest possible expansion would correspond to the 97.5% quantile estimate of947

NA and 2.5% quantile estimate of NAF ( 11,500
10,100 = 1.13). We then ran simulations under our model, sampling948

parameters from the same prior distributions as described above, and generated summary statistics. We then949

attempted to infer the parameters that were used to generate the summary statistics using our misspecified950

demographic model. Results of this experiment are shown in Fig. S7 & Fig. S8, and are described in the main951

text.952
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Supplemental figures953
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Figure S1: Simulated(πobs) vs expected (πexp) nucleotide diversity for simulations performed in
SFS CODE. The expected value was calculated using the model of Hudson & Kaplan (68).
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Figure S2: Simulated (points) and expected (lines) fixation rates for neutral, negatively selected,
and positively selected alleles. Eqns. for the expected fixation rates are given in the supplemental
text. The top row represents results in the context of weakly-beneficial adaptation (2Ns = 10), while
the bottom row represents strongly-beneficial adaptation (2Ns = 500).
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Figure S3: Simulated (points) and expected (lines) frequency spectra for neutral, negatively selected,
and positively selected alleles. S(x) is the number of alleles above frequency x.

32

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 28, 2019. ; https://doi.org/10.1101/427633doi: bioRxiv preprint 

https://doi.org/10.1101/427633
http://creativecommons.org/licenses/by-nc/4.0/


2Ns = 500

−0.1

0.0

0.1

0.2

0.3

0.4

0.01 0.10 1.00

x (DAF)

α(
x

)

no BGSA

−0.1

0.0

0.1

0.2

0.3

0.4

0.01 0.10 1.00

x (DAF)

α(
x

) model
no draft
draft

with BGSB

2Ns = 2000

−0.1

0.0

0.1

0.2

0.3

0.4

0.01 0.10 1.00

x (DAF)

α(
x

)

no BGSC

−0.1

0.0

0.1

0.2

0.3

0.4

0.01 0.10 1.00

x (DAF)

α(
x

) model
no draft
draft

with BGSD

Figure S4: Comparison of simulations with and without genetic draft. In all simulations we set
α = 0.4, and suppose that 5% of the sequence in the 1MB flanking a gene is subject to recurrent
sweeps. The black line shows the theoretical expectation from eqn. 11.
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Figure S5: Comparison of α(x) computed from TGP samples for all sites (black) and with weak to
strong sites removed (red).
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Figure S6: Performance of our parameter estimation for all of parameters and quantities that we
infer. In each panel, the true parameter value is plotted on the x-axis, while the inferred value is
plotted on the y. The diagonal is plotted as a dashed black line. The inferred value is summarized
as the mean of the posterior distribution. Each plot contains 100,000 simulations.
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Figure S7: Performance of our parameter estimation for all of parameters and quantities that we
infer, in the case when the true model has an ancestral expansion event that is ≈ 2 larger than
the model used in the inference procedure. In each panel, the true parameter value is plotted on
the x-axis, while the inferred value is plotted on the y. The diagonal is plotted as a dashed black
line. The inferred value is summarized as the mean of the posterior distribution. Each plot contains
100,000 simulations.
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Figure S8: Performance of our parameter estimation for all of parameters and quantities that we
infer, in the case when the true model has an ancestral expansion event that is ≈ 1

2 as large as
the model used in the inference procedure. In each panel, the true parameter value is plotted on
the x-axis, while the inferred value is plotted on the y. The diagonal is plotted as a dashed black
line. The inferred value is summarized as the mean of the posterior distribution. Each plot contains
100,000 simulations.
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Figure S9: A-D. Posteriors for θW , θS , the mean strength of negative selection (2Ns), and the ratio
of αBGS (the estimated value of α in humans after accounting for BGS) to α1000 (the value of α for
regions of the genome with B = 1000, i.e., regions unaffected by BGS) as predicted by our model.
E-H: The same quantities, as inferred using only genes that were not classified as VIPs. I-L: The
same quantities, as inferred using only genes that were classified as VIPs. N-O: The same quantities,
as inferred using only genes with B < 875. We do not infer αBGS/α1000 in this row because genes with
B ≈ 1 are not included in this analysis.
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Figure S10: The relationship between BGS (B) and average sequence conservation (RS ) for ≈
10,000 genes for which we were able to obtain estimates of both quantities. The blue line is fit to the
data using geom smooth in ggplot2, while the red line is plotted at B = 875. Most of the negative
correlation between B and RS is driven by alleles with B > 875. Note that B is defined in previous
work (34), and is equivalent to 1000× π

π0
.
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Figure S11: We compare simulated frequency spectra obtained with SFS CODE (points) to fre-
quency spectra that we obtained using our resampling-based approach (lines) for a range of param-
eter values corresponding to the strength of negative selection. We observe good agreement between
the approaches. One downside of the resampling based approach is that stochastic fluctuations in the
dataset from which resampling is performed are replicated across different samples (e.g., the spike
at ≈ 0.015 is replicated in both A and B).
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Figure S12: We plot estimates of adaptation rate (α̂) using asymptotic-MK as a function of true α
for a range of 2Ns values of adaptive alleles (colors) and a range of deleterious selection coefficient
distributions (each panel is a different distribution of deleterious effects). A&D correspond to the
distribution of deleterious effects inferred in (37) (which has a mean value of 2Ns = −457), while
B&E have a mean value of 2Ns = −114 and C&F have mean 2Ns = −22. In A-C, all alleles are used
in the estimation procedure, while in D-F we exclude positively selected alleles from the calculation.
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Figure S13: α(x) as a function of DAF for a range of selection strengths (γ) on alleles driving BGS.
Each curve represents a different value of π

π0
. In each panel, the strength of selection on adaptive

alleles is 2Ns = 10.

42

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 28, 2019. ; https://doi.org/10.1101/427633doi: bioRxiv preprint 

https://doi.org/10.1101/427633
http://creativecommons.org/licenses/by-nc/4.0/


0.00 0.05 0.10 0.15 0.20 0.25
α

po
st

er
io

r 
de

ns
ity

αS

αW

αW + αS

A

0.00 0.05 0.10 0.15 0.20 0.25
α

po
st

er
io

r 
de

ns
ity

αS

αW

αW + αS

B

0.00 0.05 0.10 0.15 0.20 0.25
α

po
st

er
io

r 
de

ns
ity

αS

αW

αW + αS

C

Figure S14: Inferred posterior distributions of αS , αW , and αS+αW for three different DFEs of alleles
driving BGS. In A, alleles in flanking regions around genes have 2Ns = −10, in B 2Ns = −500, and
in C 2Ns is a gamma-distributed mixture of weakly deleterious and strongly deleterious alleles (37).
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Figure S15: Summary statistics for simulations with very low adaptation (α < 0.01) as compared
to the observed data for three different DFEs of alleles driving BGS. In A, alleles in flanking regions
around genes have 2Ns = −10, in B 2Ns = −500, and in C 2Ns is a gamma-distributed mixture of
weakly deleterious and strongly deleterious alleles (37).
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Figure S16: Comparison of analytical approximations to α(x) summary statistics for a range of 2Ns
values at adaptive alleles. The dashed line at α(x) = 0.2 represents the true α in the absence of
BGS. In A&B, there is no BGS, while π

π0
= 0.2 in C&D.
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Figure S17: Analytical approximation to α(x) summary statistics when selection acts on synonymous
alleles (dotted line) or does not act on synonymous alleles (solid line). In all panels, the true rate
of adaptation α = 0.2 and 70% of synonymous alleles are assumed to be neutral. A&B: 29%
of synonymous alleles are moderately deleterious and 1% are strongly deleterious. C&D 27% of
synonymous alleles are moderately deleterious and 3% are strongly deleterious. In the left column,
2Ns = 10 for adaptive alleles, and in the right column 2Ns = 500 for adaptive alleles. These
DFEs for synonymous alleles were motivated by Huang & Siepel (62), who estimated the DFE of
synonymous alleles from human genomic data (62).
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Figure S18: Analytical approximation to α(x) summary statistics when selection does (dotted line)
or does not (solid line) act on synonymous alleles. In both panels, the true rate of adaptation α = 0.0
and 70% of synonymous alleles are assumed to be neutral. A: 29% of synonymous alleles are mod-
erately deleterious and 1% are strongly deleterious. B 27% of synonymous alleles are moderately
deleterious and 3% are strongly deleterious. These DFEs were motivated by an attempt to qualita-
tively match the distribution of Huang & Siepel, who estimated the DFE of synonymous alleles from
human genomic data (62).
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Figure S19: Median posterior estimates of α, αW , and αS for both VIPs (black dashed lines) and
1,000 independent sets of genes sampled from non-VIPs to approximately match VIPs for 13 potential
confounding variables (histograms). For the set of VIPs that we identified, we built an equal-sized
control set of non-VIPs that that has the same overall average values for 13 factors (DS, PN, PS,
GC content, recombination rate, coding sequence length, average expression across 53 GTEx tissues,
average GTEx expression in testis, average GTEx expression in lymphocytes, the number of protein-
protein interactions, McVickers B for background selection, the coding sequence density, the overall
density of PhastCons conserved elements). We randomly sampled non-VIPs such that each of the 13
factors does not depart on average by more than ±5% of their average for VIPs.
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Figure S20: Posterior estimates of mean strength of negative selection (− ¯2Ns) against deleterious
nonsynonymous alleles as a function of estimated BGS strength. The line shows the best fit linear
regression curve as determined by the method geom smooth in the package ggplot2. The estimated
correlation coefficient is ρ = 0.028.

49

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 28, 2019. ; https://doi.org/10.1101/427633doi: bioRxiv preprint 

https://doi.org/10.1101/427633
http://creativecommons.org/licenses/by-nc/4.0/

