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Abstract17

1. Biological colouration presents a canvas for the study of ecological and18

evolutionary processes. Enduring interest in colour-based phenotypes has19

driven, and been driven by, improved techniques for quantifying colour pat-20

terns in ever-more relevant ways, yet the need for flexible, open frameworks21

for data processing and analysis persists.22

2. Here we introduce pavo 2.0, the latest iteration of the R package pavo. This23

release represents the extensive refinement and expansion of existing meth-24

ods, as well as a suite of new tools for the cohesive analysis of the spectral25

and (now) spatial structure of colour patterns and perception. At its core,26

the package retains a broad focus on (a) the organisation and processing of27

spectral and spatial data, and tools for the alternating (b) visualisation, and28

(c) analysis of data. Significantly, pavo 2.0 introduces image-analysis ca-29

pabilities, providing a cohesive workflow for the comprehensive analysis of30

colour patterns.31

3. We demonstrate the utility of pavo with a brief example centred on mimicry32

in Heliconius butterflies. Drawing on visual modelling, adjacency, and bound-33

ary strength analyses, we show that the combined spectral (colour and lu-34

minance) and spatial (pattern element distribution and boundary salience)35

features of putative models and mimics are closely aligned.36

4. pavo 2.0 offers a flexible and reproducible environment for the analysis of37

colour, with renewed potential to assist researchers in answering fundamen-38

tal questions in sensory ecology and evolution.39
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Introduction40

The study of colour in nature continues to generate fundamental knowledge:41

from the neurobiology and ecology of information processing (Caves et al., 2018;42

Schnaitmann et al., 2018; Thoen et al., 2014; White & Kemp, 2017), to the evolution-43

ary drivers of life’s diversity (Dalrymple et al., 2015, 2018; Endler, 1980; Maia et al.,44

2013b). Colour is a subjective perceptual experience, however, so our understand-45

ing of the function and evolution of this conspicuous facet of variation depends46

on our ability to analyse phenotypes in meaningful ways. Excellent progress con-47

tinues to be made in this area, with emerging techniques now able to quantify and48

integrate both the spectral (i.e. colour and luminance) and spatial (i.e. the dis-49

tribution of pattern elements) properties of colour patterns (Endler, 2012; Endler50

et al., 2018; Kemp et al., 2015; Renoult et al., 2015; Troscianko et al., 2017). The need51

remains, however, for tools that integrate these complex methods into clear, open,52

and reproducible workflows (White et al., 2015), allowing researchers to retain53

focus on the exploration of interesting questions.54

Here we introduce pavo 2.0, a major revision and update of the R package55

pavo (Maia et al., 2013a). Since its initial release, the package has provided a56

cohesive framework for the processing and analysis of spectral data, yet the inter-57

ceding years have seen the advent of novel analytical methods and the refinement58

of existing ones. As detailed below, pavo 2.0 has been extensively expanded to59

incorporate a suite of new tools, with the most significant advance being the in-60

clusion of geometry-based analyses. This allows for the quantification of spectral61

and spatial properties of colour patterns within a single workflow, thereby min-62

imising the computational and cognitive overhead associated with their otherwise63

fragmented analysis.64
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The pavo package, version 2.065

The conceptual focus of pavo remains centred on three components: (1) data66

importing and processing, and ongoing feedback between (2) visualisation and67

(3) analysis (Fig. 1). The package is available for direct installation through68

R from CRAN (https://CRAN.R-project.org/package=pavo), while the devel-69

opment version remains available on Github (https://github.com/rmaia/pavo).70

Comprehensive details and examples of the rich functionality of pavo are avail-71

able in help files as well as the package vignettes. Indeed, we strongly encour-72

age readers to refer to the vignettes as the primary source for information on73

pavo’s functionality (accessible through browseVignettes(pavo), and at http:74

//rafaelmaia.net/pavo/), since they are updated as necessary with every pack-75

age release.76

Organisation77

Images and spectra can be loaded into pavo in bulk through the use of getimg and78

getspec, respectively. Both are capable of handling multiple data formats, such79

as jpeg, bmp and png in the case of images, and over a dozen formats of spectral80

data, including the diverse and complex proprietary formats of the various spec-81

trometer vendors. Once loaded, the data are stored as objects of an appropriate82

custom S3 class, for use in further functions. Spectral data are of class rspec, and83

inherit methods from data.frame, while images are of class getimg, and are mul-84

tidimensional objects (typically 3D, for an RGB image) that inherits methods from85

array. If more than one image is imported in a single call to getimg, then each86

image is stored as an element of a list. This class system allows for — among87

other things — the reliable use of generic functions such as plot and summary,88

which can be called any time to inspect and visualise data.89

Several functions then facilitate the initial processing of colour data. It is of-90

ten desirable to process spectra to remove unwanted noise, modify the spectral91
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Figure 1: A general overview of the colour-pattern analysis workflow in pavo, as
of version 2.0, displaying some key functions at each stage.

range, and/or interpolate the standard wavelength intervals, all of which may be92

achieved through procspec. For images, procimg offers similar functionality such93

as the ability to interactively specify the real-world scale of images (in preferred94

units of measurement), rotate and resize images, or define the boundary between95

a focal object and the visual background. The scope of image processing in pavo96

2.0 is relatively limited by design, as much of what might be used during standard97

image handling are either needs best considered and met by researchers during98

image capture and data-checking, or are readily achieved within R using existing99

packages such as imager (Barthelme, 2018) and magick (Ooms, 2018). Indeed, pavo100

2.0 includes two convenience functions, rimg2cimg and cimg2rimg, to convert be-101

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted September 26, 2018. ; https://doi.org/10.1101/427658doi: bioRxiv preprint 

https://doi.org/10.1101/427658


tween image-classes used by pavo and imager, allowing ready access to extensive102

image-processing capabilities.103

Visualisation104

The repeated visualisation of spectral and spatial data is an essential step during105

all stages of analysis, and pavo 2.0 offers numerous tools and publication-ready106

graphics fit for purpose. Once the package is loaded, the plot function recognises107

objects of class rspec and rimg, as well as colspace (the product of visual mod-108

elling, detailed below), and becomes the conduit to most visualisations. For raw109

spectral data, for example, plot will produce a clean plot of the spectra versus110

wavelengths (Fig. 1, centre-left). Following visual modelling, di-, tri-, and tetra-111

chromatic models can instead be visualised, as well as data from more specialised112

models, such as the colour hexagon (Chittka, 1992), CIEXYZ or LAB spaces (Smith113

& Guild, 1931; Westland et al., 2012), categorical space (Troje, 1993), segment anal-114

ysis (Endler, 1990), the colour-opponent coding space (Backhaus, 1991), or the115

’receptor-noise’ space (de Ibarra et al., 2001; Pike, 2012). Images can also be plot-116

ted, with the result depending on whether and how they have been processed.117

When given an unprocessed rimg object, plot will produce a simple raster-based118

plot of the image (Fig. 1, right). Following the results of classify, in which image119

pixels are k-means classified into discrete colour-classes (or if a colour-classified120

image is loaded directly), the plot will use the mean RGB values of each colour-121

class to plot the now-classified image (Fig. 2).122

Analysis123

Since the perception of colour is a subjective experience, significant progress has124

been made in representing its reception using ecologically relevant ’visual models’125

(Kelber et al., 2003; Kemp et al., 2015; Renoult et al., 2015), which pavo 2.0 includes126

in an extended repertoire. The first step in such analyses is a call to vismodel,127
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which models photoreceptor stimulation (quantum-catches, or photon-flux) based128

on information about the viewer’s visual sensitivity and viewing environments.129

While users are free to use their own spectra, pavo includes a suite of built-in130

receptor sensitivities, illuminant and transmission data (be it environmental or131

ocular), and viewing backgrounds, for convenience.132

Once quantum catches are estimated the results can used in a number of mod-133

els, depending on the question and analytical objective at hand (Kemp et al., 2015;134

Renoult et al., 2015). General colourspaces are available through a call to colspace135

which, if provided no further arguments, will model the data in a generalist di-136

tri- or tetrachromatic space informed by the dimensionality of the visual system.137

More specialised colourspaces — which may be informed by specific information138

about the visual perception of particular species — are also available via colspace.139

The CIEXYZ, CIELAB, and CIELch models (designed and intended exclusively140

for humans) are available, and colspace will check that the appropriate inputs,141

such as the human colour-matching function, have been used to model receptor142

stimulation, as required (Smith & Guild, 1931; Westland et al., 2012). The colour-143

opponent-coding (Backhaus, 1991) and colour-hexagon (Chittka, 1992) models of144

bee vision are implemented, as is the categorical model of fly colour-vision de-145

tailed by Troje (1993). Plots for every space are accessible through a call to plot146

which, thanks to the underlying class system, will draw on the appropriate vi-147

sualisation for the model at hand — be it a hexagon, a dichromatic segment, a148

Maxwell triangle, or a three-dimensional tetrahedron.149

The receptor-noise limited model of early-stage (retinal) colour processing has150

proven exceptionally popular (Vorobyev et al., 2001; Vorobyev & Osorio, 1998), and151

has been tested to varying degrees in diverse taxa (Barry et al., 2015; Fleishman152

et al., 2016; Kelber et al., 2003; Olsson et al., 2015; White & Kemp, 2016). Following153

the estimation of receptor stimulation in vismodel, the model incorporates infor-154

mation on relative receptor densities and noise through the function coldist, and155

estimates either quantum- or neural-noise weighted colour distances. Version 2.0156
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of pavo introduces several extensions of this approach, such as the bootstrapped157

colour distance of bootcoldist, which provides an estimate of the noise-weighted158

distances (δS’s and/or δL’s) between the centroids of colour samples in multivari-159

ate space, with an appropriate measure of error (Maia & White, 2018). Stimuli can160

also now be expressed and plotted as coordinates in ’perceptual’ (i.e. receptor-161

noise corrected) space by calling jnd2xyz on the distances calculated in coldist162

(de Ibarra et al., 2001; Pike, 2012). Notably, these functions accept n-dimensional163

data, allowing for the modelling of extreme (Chen et al., 2016; Cronin & Marshall,164

1989) or hypothetical high-dimensional visual systems. Of course coldist also165

accepts the results of alternative models — such as the hexagon or CIELab — and166

will return colour distances in units appropriate for each space.167

Exciting recent advances now allow for the analysis of colour pattern geometry168

— that is, the spatial structure of colour patches — in conjunction with the compar-169

atively well-developed approaches to the spectral analysis of colour outlined above170

(Endler, 2012; Endler et al., 2018; Pike, 2018; Troscianko et al., 2017). The most171

significant extension of pavo as of 2.0 is the introduction of an image-based work-172

flow to allow for the combined analysis of the spectral and spatial structure of173

colour patterns, currently centred on the adjacency analysis (Endler, 2012), its ex-174

tension, the boundary strength analysis (Endler et al., 2018), and related measures175

of overall pattern contrast (Endler & Mielke, 2005). Briefly, this process entails176

classifying the pixels of images into a number of discrete colour classes, before177

sampling the now-classified image with an evenly spaced grid. The column-wise178

and row-wise colour-class transitions between adjacent points are then tallied, and179

from this a suite of summary statistics on pattern structure — from simple colour180

proportions, through to colour diversity and pattern complexity — are estimated181

(e.g. Endler et al., 2014; Rojas et al., 2014; Rojas & Endler, 2013). If the colour ’dis-182

tance’ between adjacent colour classes is known, such as might be estimated using183

receptor-noise modelling above, then this can also be incorporated to derive sev-184

eral measures of the salience of patch boundaries, which are important for colour185

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted September 26, 2018. ; https://doi.org/10.1101/427658doi: bioRxiv preprint 

https://doi.org/10.1101/427658


pattern perception (discussed in Endler et al., 2018). In pavo 2.0, these steps are186

carried out through calls to classify, which uses k-means clustering to automati-187

cally or interactively classify all image pixels into discrete colour-classes, followed188

by adjacent, which performs the adjacency analysis and, if appropriate colour189

distances are also specified, the boundary strength analysis.190

Import Process Classify

Analyse

Figure 2: A sample workflow for image handling and analysis in pavo, as of
version 2.0. Images are first imported and optionally processed by, for example,
setting scales (yellow line) or defining objects and backgrounds (red outline). They
may then be colour-classified before being passed to analytical functions, currently
centered on the adjacency and boundary-strength analyses. If backgrounds and
focal objects are defined then they can be analysed separately, concurrently, or
either one can be excluded entirely.

As alluded to earlier, our goal is to provide a flexible and relatively simple191

analytical framework for the analysis of a colour pattern’s spatial structure us-192

ing images, without the need for specialised photographic equipment or and/or193

extensive calibration and processing (demonstrated in the colour-plate based ex-194

ample below). We thus make an analytical and conceptual distinction between195

the spectral data afforded by spectrometry, and the spatial data afforded by im-196

ages, with the two able to be conveniently combined during latter analyses (Fig.197

1). This also minimises the unnecessary duplication of efforts of more general-198

purpose tools such as imager (Barthelme, 2018) and magick (Ooms, 2018), and the199
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excellent image analysis toolbox for imageJ (Troscianko & Stevens, 2015), which200

offer rich functionality for image processing and (in the latter case) analysis.201

Worked example: mimicry in Heliconius spp.202

Butterflies of the genus Heliconius are widely involved in mimicry, and have proven203

an exemplary system for studies of colour pattern development, ecology, and evo-204

lution (Jiggins, 2016). Here we demonstrate some of pavo 2.0’s capabilities by205

briefly examining the the visual basis of mimicry in this system, with the objective206

of quantifying the spectral and spatial (dis)similarity between putative models and207

mimics. For our spatial analyses, we follow Endler (2012) and use colour plate XII208

from Eltringham (1916), which is arranged into what he described as model and209

mimic pairs (Fig. 3). For our spectral analyses we collated six reflectance spec-210

tra from each of the the ’red’, ’yellow’, and ’black’ patches of the forewings of two211

species — H. egeria and H. melpomene (Fig. 3, top left pair) — from personal sources212

and the literature (Bybee et al., 2011; Wilts et al., 2017). For reasons of simplicity213

and data availability we restrict our visual modelling to these two species, though214

the below spectral analyses would ideally be repeated for all model/mimic pairs.215

Spectral analysis216

We first focus on the spectral data, since some of the results of this work will217

be drawn on for the latter pattern analyses. We begin by loading the reflectance218

spectra, which are saved in a single tab-delimited text file available at the package219

repository along with the image plates (https://github.com/rmaia/pavo), before220

LOESS-smoothing them to remove any minor electrical noise and zeroing spurious221

negative values.222
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Model Mimic Model Mimic

Figure 3: A modification of Eltringham’s (1916) colour plate of Heliconius butter-
flies, sensu Endler (2012), arranged into putative models and mimics. The left side
of each individual is as per the original, while the right half display pattern ele-
ments that have been classified into discrete classes through k-means clustering,
using the classify function.

# Load spectra

> heli_specs <- getspec('../data', ext = 'txt')

# Smooth spectra and zero negative values

> heli_specs <- procspec(heli_specs,

> opt = 'smooth',

> fixneg = 'zero')

A call to plot(heli_specs, col = spec2rgb(heli_specs)) displays the now-223

clean spectra, with each line coloured according to how it might appear to a hu-224

man viewer (Fig. 4, top left).225

Since our interest is in quantifying the fidelity of visual mimicry, we must226

consider the perspective of ecologically relevant viewers (the primary selective227

agents) which, in the case of aposematic Heliconius, are avian predators (Benson,228
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Figure 4: Reflectance spectra from black, red, and yellow patches of H. egeria
and H. melpomene, along with their positions in a tetrahedral model of avian
vision (left side). The bootstrapped, noise-corrected chromatic and achromatic
patch distances between species (right) predicts that the individual colours of this
model/mimic pair are likely indistinguishable to avian predators.

1972; Chai, 1986). We thus use the receptor-noise limited model (Vorobyev et al.,229

2001; Vorobyev & Osorio, 1998) to predict whether the black, red, and yellow230

colour patches of a representative model and mimic are distinguishable to avian231

predators. This first entails estimating the photoreceptor quantum catches of a232

representative viewer, so we use a built-in average UV-sensitive avian visual phe-233

notype for estimating chromatic distances, and the double-cone sensitivity of the234

blue tit for luminance distances.235

> heli_model <- vismodel(heli_specs,

> visual = 'avg.uv',

> achromatic = 'bt.dc',

> relative = FALSE)

At this point we may wish to get a quick sense of the relative distribution236
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of stimuli by converting them to locations in an avian tetrahedral colourspace237

and plotting the results with plot(colspace(heli_model)) (Fig. 4). With receptor238

stimulation estimated, we now calculate noise-corrected chromatic and achromatic239

distances between patches. The coldist function can be used to return the pair-240

wise distances between every spectrum, which might then be averaged to derive241

a mean distance between species for every patch. This neglects the multivariate242

structure of such data, however, when the objective is to estimate the separation of243

groups in colourspace (Maia & White, 2018). We therefore prefer a bootstrapped244

measure of colour distance using bootcoldist, which provides a robust measure245

of the separation of our focal samples (i.e the red, white, and black patches of246

model versus mimic), along with a 95% confidence interval, which can be in-247

spected to see if it exceeds the theoretical discrimination threshold of one JND. We248

specify a relative receptor density of 1:2:2:4 (ultraviolet:short:medium:long wave-249

length receptors; Maier & Bowmaker (1993)), a signal-to-noise ratio yielding a250

Weber fraction of 0.1 for both chromatic and achromatic receptors, and assume251

that noise is proportional to the Weber fraction and independent of the magnitude252

of receptor stimulation (reviewed in Kelber et al. (2003); Olsson et al. (2017)).253

# Calculate the bootstrapped, noise-corrected colour distance

# between groups, using sample names to specify grouping ID's.

> heli_dist <- bootcoldist(heli_model,

> by = sub('\\..*', '', rownames(heli_model)),

> n = c(1, 2, 2, 4),

> weber = 0.1,

> weber.achro = 0.1)

Inspection of the key comparisons of interest (Fig. 4, right) reveals that the 95%254

CI of all chromatic and achromatic comparisons includes the theoretical threshold255

of one JND. This predicts that the individual colour pattern elements of putative256

model and mimic H. egeria and H. melpomene are indistinguishable, or difficult to257
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discriminate, to avian viewers — the assumed intended recipient of the aposematic258

signals. As noted above, the analysis of this representative pair can be readily259

scaled to encompass all species given the necessary data, and we can now use this260

information to inform our study of the spatial structure of these signals.261

Pattern analysis262

We first load the focal images, which comprise the individual samples from plate263

XII of Eltringham (1916), saved as jpegs (Fig. 3). We then plot one or all of the264

images to check they are as expected.265

# Load all images. Here the 28 jpegs are stored in a folder called

# 'butterflies' located within the current working directory.

> heli_images <- getimg("butterflies")

28 files found; importing images.

# Plot the first image in the list only.

> plot(heli_images[[1]])

# Plot all images, which will progress through

# the sequence automatically.

> plot(heli_images)

We then classify the pixels of all images into discrete colour or luminance cat-266

egories, here using k-means clustering, to create a colour-classified image matrix.267

The function classify will carry this out, though there are numerous specific268

ways in which it may be achieved, including automatically or ’interactively’, with269

the option of a reference image as template. Since our images are heterogeneous,270

it is simplest to use the interactive version of classify, which will cycle through271

each image and ask the user to manually identify a sample from every discrete272

colour or luminance class present, which are then used as cluster centres.273
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# Interactively colour-classify all images using k-means clustering.

> heli_class <- classify(heli_images, interactive = TRUE)

# Cycle through plots of the colour-classified images, alongside their

# identified colour palettes.

> summary(heli_class, plot = TRUE)

Finally, we use an adjacency analysis to estimate a suite of metrics describ-274

ing the structure and complexity of the colour pattern geometry of model and275

mimic Heliconius, and by including the visually-modelled colour distances esti-276

mated above, the output will include several measures of the salience of colour277

patch edges as part of the boundary strength analysis (Endler, 2012; Endler et al.,278

2018). We will exclude the white background since it is not relevant, simply by279

specifying the colour-category ID belonging to the homogeneous underlay. If the280

image was more complex, such as an animal in its natural habitat, we would in-281

stead interactively identify and separate the focal animal and background using282

procimg (e.g. Fig. 2, second panel).283

# Construct and inspect a data.frame of pairwise colour and luminance

# distances between all colour classes, constructed from the earlier

# receptor-noise modelled estimates. Note that we do not bother

# including colour-class ID 1, since that is the white background

# which is to be excluded from the analysis (see below).

# (Alternatively we could include it, and it would simply be ignored).

> distances <- data.frame(c1 = c(2, 2, 3),

c2 = c(3, 4, 4),

dS = c(10.6, 5.1, 4.4),

dL = c(1.1, 2.5, 3.2))

> distances

c1 c2 dS dL
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2 3 10.50 7.41

2 4 11.76 23.40

3 4 13.29 15.99

# Calculate adjacency and boundary-strength statistics. We specify a

# scale of 50 mm, and note that the 'white' background, which has a class

# ID of 1 in this case, is to be excluded from the analysis.

# We also include the colour distance between all patches, as estimated above.

> heli_adj <- adjacent(heli_class,

> xscale = 50,

> bkgID = 1,

> exclude = 'background',

> coldists = distances)

# Inspect a subset of the resulting data.frame. Variable meanings

# are detailed in the function documentation (see ?adjacent),

# or Endler (2012), Endler et al. (2018), and Endler & Mielke (2005).

> head(heli_adj)[, 1:7]

k N n_off p_2 p_3 p_4 q_2_2 ...

mimic_01 3 345522 6547 0.801 0.130 0.067 0.796

mimic_02 2 1018370 4091 0.835 0.164 NA 0.834

mimic_03 3 265278 6155 0.685 0.198 0.116 0.677

...

We can now inspect the pattern descriptors of particular interest, and explore284

the similarity of models and mimics with respect to their broader colour pattern285

geometry. As seen in Fig. 5, the relative proportions of focal colours (top row),286

measures of pattern diversity and complexity (centre row), and the salience of287

patch boundaries (bottom row) are highly correlated between species pairs. This,288

in conjunction with the above modelling, suggests that the overall colour pat-289
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Figure 5: Select results of the colour pattern analysis of model and mimic Helico-
nius (Fig. 3), using adjacency and boundary strength analyses. Strong correlations
are evident in colour proportions (top row), measures of colour diversity and
complexity (centre row), and estimates of mean chromatic and achromatic edge
salience (bottom row).

terns of putative model and mimic Heliconius — both spectrally and spatially —290

are highly similar, and are thus predicted to be very difficult to discriminate to291

the intended avian viewers of their aposematic signals, as consistent with theory292

(Müller, 1879). More interesting questions remain, of course, including the degree293

to which mimics need resemble models to deceive viewers, and the relative impor-294

tance of different colour pattern elements (e.g. Fig. 5) in mediating the subjective295

resemblance of species pairs, for which pavo is well suited to help answer.296
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Conclusions297

The integrative study of biological colouration has borne rich fruit, though its po-298

tential to illuminate the structure and function of much of the natural world is not299

nearly realised (Endler & Mappes, 2017). As we have sought to demonstrate, pavo300

2.0 (and beyond) provides a flexible framework to assist researchers studying301

the physiology, ecology, and evolution of colour patterns and visual perception.302

We appreciate bug reports and suggestions, via email or the Github issue tracker303

https://github.com/rmaia/pavo/issues.304

Citation of methods305

Many of the methods applied in pavo are described in detail in their original306

publications — as listed in the documentation for the relevant functions — to307

which users should refer and cite as appropriate, along with pavo itself, via this308

publication (as of v2.0).309
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