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Abstract17

1. Biological colouration presents a canvas for the study of ecological and18

evolutionary processes. Enduring interest in colour-based phenotypes has19

driven, and been driven by, improved techniques for quantifying colour pat-20

terns in ever-more relevant ways, yet the need for flexible, open frameworks21

for data processing and analysis persists.22

2. Here we introduce pavo 2, the latest iteration of the R package pavo. This23

release represents the extensive refinement and expansion of existing meth-24

ods, as well as a suite of new tools for the cohesive analysis of the spectral25

and (now) spatial structure of colour patterns and perception. At its core,26

the package retains a broad focus on (a) the organisation and processing of27

spectral and spatial data, and tools for the alternating (b) visualisation, and28

(c) analysis of data. Significantly, pavo 2 introduces image-analysis capabili-29

ties, providing a cohesive workflow for the comprehensive analysis of colour30

patterns.31

3. We demonstrate the utility of pavo with a brief example centred on mimicry32

in Heliconius butterflies. Drawing on visual modelling, adjacency, and bound-33

ary strength analyses, we show that the combined spectral (colour and lu-34

minance) and spatial (pattern element distribution and boundary salience)35

features of putative models and mimics are closely aligned.36

4. pavo 2 offers a flexible and reproducible environment for the analysis of37

colour, with renewed potential to assist researchers in answering fundamen-38

tal questions in sensory ecology and evolution.39
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Introduction40

The study of colour in nature continues to generate fundamental knowledge:41

from the neurobiology and ecology of information processing (Caves et al., 2018;42

Schnaitmann et al., 2018; Thoen et al., 2014; White & Kemp, 2017), to the evolution-43

ary drivers of life’s diversity (Dalrymple et al., 2015, 2018; Endler, 1980; Maia et al.,44

2013b). Colour is a subjective perceptual experience, however, so our understand-45

ing of the function and evolution of this conspicuous facet of variation depends46

on our ability to analyse phenotypes in meaningful ways. Excellent progress con-47

tinues to be made in this area, with emerging techniques now able to quantify and48

integrate both the spectral (i.e. colour and luminance) and spatial (i.e. the dis-49

tribution of pattern elements) properties of colour patterns (Endler, 2012; Endler50

et al., 2018; Kemp et al., 2015; Renoult et al., 2015; Troscianko et al., 2017). The need51

remains, however, for tools that integrate these complex methods into clear, open,52

and reproducible workflows (White et al., 2015), allowing researchers to retain53

focus on the exploration of interesting questions.54

Here we introduce pavo 2, a major revision and update of the R package pavo55

(Maia et al., 2013a). Since its initial release, the package has provided a cohesive56

framework for the processing and analysis of spectral data, yet the interceding57

years have seen the advent of novel analytical methods and the refinement of58

existing ones. As detailed below, pavo 2 has been extensively expanded to incor-59

porate a suite of new tools, with the most significant advance being the inclusion60

of geometry-based analyses. This allows for the quantification of spectral and spa-61

tial properties of colour patterns within a single workflow, thereby minimising the62

computational and cognitive overhead associated with their otherwise fragmented63

analysis.64
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The pavo package, version 265

The conceptual focus of pavo remains centred on three components: (1) data66

importing and processing, and ongoing feedback between (2) visualisation and67

(3) analysis (Fig. 1). The package is available for direct installation through68

R from CRAN (https://CRAN.R-project.org/package=pavo), while the devel-69

opment version remains available on Github (https://github.com/rmaia/pavo).70

Comprehensive details and examples of the rich functionality of pavo are avail-71

able in help files as well as the package vignettes. Indeed, we strongly encour-72

age readers to refer to the vignettes as the primary source for information on73

pavo’s functionality (accessible through browseVignettes(pavo), and at http:74

//rafaelmaia.net/pavo/), since they are updated as necessary with every pack-75

age release.76

Organisation77

Images and spectra can be loaded into pavo in bulk through the use of getimg()78

and getspec(), respectively. Both are capable of handling multiple data formats,79

such as jpeg, bmp and png in the case of images, and over a dozen formats of spec-80

tral data, including the diverse and complex proprietary formats of the various81

spectrometer vendors. Once loaded, the data are stored as objects of an appropri-82

ate custom S3 class, for use in further functions. Spectral data are of class rspec,83

and inherit methods from data.frame, while images are of class getimg, and are84

multidimensional objects (typically 3D, for an RGB image) that inherits methods85

from array. If more than one image is imported in a single call to getimg(), then86

each image is stored as an element of a list. This class system allows for —87

among other things — the reliable use of generic functions such as plot() and88

summary(), which can be called any time to inspect and visualise data.89

Several functions then facilitate the initial processing of colour data. It is of-90

ten desirable to process spectra to remove unwanted noise, modify the spectral91
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Figure 1: A general overview of the colour-pattern analysis workflow in pavo, as
of version 2, displaying some key functions at each stage.

range, and/or interpolate the standard wavelength intervals, all of which may be92

achieved through procspec(). For images, procimg() offers similar functionality93

such as the ability to interactively specify the real-world scale of images (in pre-94

ferred units of measurement), rotate and resize images, or define the boundary95

between a focal object and the visual background. The scope of image processing96

in pavo 2 is relatively limited by design, as much of what might be used during97

standard image handling are either needs best considered and met by researchers98

during image capture and data-checking, or are readily achieved within R using99

existing packages such as imager (Barthelme, 2018) and magick (Ooms, 2018). In-100

deed, pavo 2 includes convenience functions to convert between image-classes101
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used by pavo, imager, and magick, allowing ready access to extensive image-102

processing capabilities.103

Visualisation104

The repeated visualisation of spectral and spatial data is an essential step during105

all stages of analysis, and pavo 2 offers numerous tools and publication-ready106

graphics fit for purpose. Once the package is loaded, the plot() function recog-107

nises objects of class rspec and rimg, as well as colspace (the product of visual108

modelling, detailed below), and becomes the conduit to most visualisations. For109

raw spectral data, for example, plot() will produce a clean plot of the spectra110

versus wavelengths (Fig. 1, centre-left). Following visual modelling, di-, tri-, and111

tetra-chromatic models can instead be visualised, as well as data from more spe-112

cialised models, such as the colour hexagon (Chittka, 1992), CIEXYZ or LAB spaces113

(Smith & Guild, 1931; Westland et al., 2012), categorical space (Troje, 1993), segment114

analysis (Endler, 1990), the colour-opponent coding space (Backhaus, 1991), or the115

’receptor-noise’ space (de Ibarra et al., 2001; Pike, 2012). Images can also be plotted,116

with the result depending on whether and how they have been processed. When117

given an unprocessed rimg object, plot() will produce a simple raster-based plot118

of the image (Fig. 1, right). Following the results of classify() (discussed be-119

low), in which image pixels are k-means classified into discrete colour-classes (or120

if a colour-classified image is loaded directly), the plot will use the mean RGB121

values of each colour-class to plot the now-classified image (Fig. 2).122

Analysis123

Since the perception of colour is a subjective experience, significant progress has124

been made in representing its reception using ecologically relevant ’visual models’125

(Kelber et al., 2003; Kemp et al., 2015; Renoult et al., 2015), which pavo 2 includes126

in an extended repertoire. The first step in such analyses is a call to vismodel(),127
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which models photoreceptor stimulation (quantum-catches, or photon-flux) based128

on information about the viewer’s visual sensitivity and viewing environments.129

While users are free to use their own spectra, pavo includes a suite of built-in130

receptor sensitivities, illuminant and transmission data (be it environmental or131

ocular), and viewing backgrounds, for convenience.132

Once quantum catches are estimated the results can used in a number of mod-133

els, depending on the question and analytical objective at hand (Kemp et al.,134

2015; Renoult et al., 2015). General colourspaces are available through a call to135

colspace() which, if provided no further arguments, will model the data in a136

generalist di- tri- or tetrachromatic space informed by the dimensionality of the137

visual system. More specialised colourspaces — which may be informed by spe-138

cific information about the visual perception of particular species — are also avail-139

able via colspace(). The CIEXYZ, CIELAB, and CIELch models (designed and140

intended exclusively for humans) are available, and colspace() will check that the141

appropriate inputs, such as the human colour-matching function, have been used142

to model receptor stimulation, as required (Smith & Guild, 1931; Westland et al.,143

2012). The colour-opponent-coding (Backhaus, 1991) and colour-hexagon (Chit-144

tka, 1992) models of bee vision are implemented, as is the categorical model of fly145

colour-vision detailed by Troje (1993). Plots for every space are accessible through146

a call to plot() which, thanks to the underlying class system, will draw on the147

appropriate visualisation for the model at hand — be it a hexagon, a dichromatic148

segment, a Maxwell triangle, or a three-dimensional tetrahedron.149

The receptor-noise limited model of early-stage (retinal) colour processing has150

proven exceptionally popular (Vorobyev et al., 2001; Vorobyev & Osorio, 1998),151

and has been tested to varying degrees in diverse taxa (Barry et al., 2015; Fleish-152

man et al., 2016; Kelber et al., 2003; Olsson et al., 2015; White & Kemp, 2016).153

Following the estimation of receptor stimulation in vismodel(), the model incor-154

porates information on relative receptor densities and noise through the function155

coldist(), and estimates either quantum- or neural-noise weighted colour dis-156
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tances. Version 2 of pavo introduces several extensions of this approach, such as157

the bootstrapped colour distance of bootcoldist(), which provides an estimate158

of the noise-weighted distances (δS’s and/or δL’s) between the centroids of colour159

samples in multivariate space, with an appropriate measure of error (detailed in160

Maia & White, 2018). Stimuli can also now be expressed and plotted as coordi-161

nates in ’perceptual’ (i.e. receptor-noise corrected) space by calling jnd2xyz() on162

the distances calculated in coldist() (de Ibarra et al., 2001; Pike, 2012). Notably,163

these functions now accept n-dimensional data (derived independently, but see164

Clark et al., 2017; Gawryszewski, 2018, for valuable discussion). This allows for the165

modelling of extreme (Chen et al., 2016; Cronin & Marshall, 1989, though given the166

lack of support for traditional opponency in these systems, the RN model may be167

of limited use here) or entirely hypothetical visual systems. Of course coldist()168

also accepts the results of alternative models — such as the hexagon or CIELab —169

and will return colour distances in units appropriate for each space.170

Exciting recent advances now allow for the analysis of colour pattern geom-171

etry — that is, the spatial structure of colour patches — in conjunction with the172

comparatively well-developed approaches to the spectral analysis of colour out-173

lined above (Endler, 2012; Endler et al., 2018; Pike, 2018; Troscianko et al., 2017).174

The most significant extension of pavo as of version 2 is the introduction of an175

image-based workflow to allow for the combined analysis of the spectral and spa-176

tial structure of colour patterns, currently centred on measures of overall pattern177

contrast (Endler & Mielke, 2005), the adjacency analysis (Endler, 2012), and its178

extension, the boundary strength analysis (Endler et al., 2018). In pavo 2, the var-179

ious steps for such analyses are carried out through calls to classify(), which180

uses k-means clustering to automatically or interactively classify image pixels into181

discrete colour-classes, and/or adjacent(), which performs the adjacency analy-182

sis and, if appropriate colour distances are also specified, the boundary strength183

analysis (discussed in Endler et al., 2018).184

Briefly, these analyses entail classifying evenly-spaced points within a visual185
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scene into discrete colour classes using spectrometric measurements and/or pho-186

tography. The column-wise and row-wise colour-class transitions between adja-187

cent points are then tallied, and from this a suite of summary statistics on pattern188

structure — from simple colour proportions, through to colour diversity and pat-189

tern complexity — are estimated (e.g. Endler et al., 2014; Rojas et al., 2014; Rojas190

& Endler, 2013; White, 2017). The precise procedure that might be followed by191

researchers may vary considerably depending on the goal and tools at hand, and192

pavo 2 is designed to accommodate such flexibility. In relatively simple cases (as193

in the below example), users may import and calibrate images via getimg() and194

procimg(), k-means classify the entire image using classify(), and combine it195

with spectrometric measurements and visual modelling of the few discrete colour-196

classes in a call to adjacent(). In more complex cases, such as animals in their197

natural habitats, users may instead wish to collect spectrometric measurements198

along a grid-sample of the visual scene, visually model and statistically cluster the199

results (e.g. using vismodel()), then feed the resulting colour-classified grid into200

adjacent() directly (as per ’method 1’: Endler, 2012), without the use of images201

or the classify() function at all.202

As alluded to earlier, our goal is to provide a flexible and relatively simple an-203

alytical framework for the analysis of a colour pattern’s spatial structure using im-204

ages, without the requirement for specialised photographic equipment or and/or205

extensive calibration and processing (demonstrated in the colour-plate based ex-206

ample below). We thus make an analytical and conceptual distinction between207

the spectral data afforded by spectrometry, and the spatial data afforded by im-208

ages, with the two able to be conveniently combined during latter analyses (Fig.209

1). This also minimises the unnecessary duplication of efforts of more general-210

purpose tools such as imager (Barthelme, 2018) and magick (Ooms, 2018), and the211

excellent image analysis toolbox for imageJ (Troscianko & Stevens, 2015), which212

offer rich functionality for image processing and (in the latter case) analysis. We213

emphasise, however, that the convenience of the toolkit provided by pavo 2 belies214
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Import Process Classify

Analyse

Figure 2: A sample workflow for image handling and analysis in pavo, as of
version 2. Images are first imported and optionally processed by, for example,
setting scales (yellow line) or defining objects and backgrounds (red outline). They
may then be colour-classified before being passed to analytical functions, currently
centered on the adjacency and boundary-strength analyses. If backgrounds and
focal objects are defined then they can be analysed separately, concurrently, or
either one can be excluded entirely.

the complexity of the choices demanded of researchers, and that every parameter215

and option requires close consideration and justification. It is rare, for example,216

that image analyses should be used without any input from visually-modelled217

spectrometric data, since naive clustering performed on uncalibrated images will218

typically offer a poor representation of a visual scene as relevant to non-human an-219

imals. For example, even in simple cases, as below, the number of discrete patches220

present (i.e. the argument kcols in cluster()) is best estimated using spectro-221

metric data in an ecologically relevant model, rather than relying exclusively on222

human-subjective estimates of colour segregation. One possible approach is inte-223

grated into the below example, and Endler (2012) details others, such as estimating224

kcols as the number of receptor-noise ellipsoids required to encompass the entire225

sample of spectra.226
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Worked example: mimicry in Heliconius spp.227

Butterflies of the genus Heliconius are widely involved in mimicry, and have proven228

an exemplary system for studies of colour pattern development, ecology, and evo-229

lution (Jiggins, 2016). Here we demonstrate some of pavo 2’s capabilities by briefly230

examining the the visual basis of mimicry in this system, with the objective of231

quantifying the spectral and spatial (dis)similarity between putative models and232

mimics. For our spatial analyses, we follow Endler (2012) and use colour plate XII233

from Eltringham (1916), which is arranged into what he described as model and234

mimic pairs (Fig. 3). For our spectral analyses we collated six reflectance spectra235

from each of the assumed-discrete ’red’, ’yellow’, and ’black’ patches (confirmed236

by spectral measurement, below) of the forewings of two species — H. egeria and237

H. melpomene (Fig. 3, top left pair) — from personal sources and the literature238

(Bybee et al., 2011; Wilts et al., 2017). For reasons of simplicity and data availability239

we restrict our visual modelling to these two species, though the below spectral240

analyses would ideally be repeated for all model/mimic pairs.241

Spectral analysis242

We first focus on the spectral data, both to confirm the assumption that there243

are discrete colour patches and because some of the results of this work will be244

drawn on for the latter pattern analyses. We begin by loading the reflectance245

spectra, which are saved in a single tab-delimited text file along with the image246

plates (available at the package repository; https://github.com/rmaia/pavo, or247

via figshare; https://dx.doi.org/10.6084/m9.figshare.7445840.v1), before LOESS-248

smoothing them to remove any minor electrical noise and zeroing spurious nega-249

tive values.250
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Model Mimic Model Mimic

Figure 3: A modification of Eltringham’s (1916) colour plate of Heliconius butter-
flies, sensu Endler (2012), arranged into putative models and mimics. The left side
of each individual is as per the original, while the right half display pattern ele-
ments that have been classified into discrete classes through k-means clustering,
using the classify() function.

# Load spectra

> heli_specs <- getspec('../data', ext = 'txt')

# Smooth spectra and zero negative values

> heli_specs <- procspec(heli_specs,

> opt = 'smooth',

> fixneg = 'zero')

A call to plot(heli_specs, col = spec2rgb(heli_specs)) displays the now-251

clean spectra, with each line coloured according to how it might appear to a hu-252

man viewer (Fig. 4, top left).253

Our interest is in quantifying the fidelity of visual mimicry, so we must con-254

sider the perspective of ecologically relevant viewers (the primary selective agents)255

which, in the case of aposematic Heliconius, are avian predators (Benson, 1972;256
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Figure 4: Reflectance spectra from black, red, and yellow patches of H. egeria
and H. melpomene, along with their positions in a tetrahedral model of avian
vision (left side). The bootstrapped, noise-corrected chromatic and achromatic
patch distances between species (right) predicts that the individual colours of this
model/mimic pair are likely indistinguishable to avian predators.

Chai, 1986). We thus use the receptor-noise limited model (Vorobyev et al., 2001;257

Vorobyev & Osorio, 1998) to predict whether the black, red, and yellow colour258

patches of a representative model and mimic are distinguishable to avian preda-259

tors. This first entails estimating the photoreceptor quantum catches of a repre-260

sentative viewer, so we use a built-in average UV-sensitive avian visual phenotype261

for estimating chromatic distances, and the double-cone sensitivity of the blue tit262

for luminance distances.263

> heli_model <- vismodel(heli_specs,

> visual = 'avg.uv',

> achromatic = 'bt.dc',

> relative = FALSE)

At this point we may wish to get a quick sense of the relative distribution264
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of stimuli by converting them to locations in an avian tetrahedral colourspace265

and plotting the results with plot(colspace(heli_model)) (Fig. 4). With receptor266

stimulation estimated, we now calculate noise-corrected chromatic and achromatic267

distances between patches. The coldist() function can be used to return the pair-268

wise distances between every spectrum, which might then be averaged to derive269

a mean distance between species for every patch. This neglects the multivariate270

structure of such data, however, when the objective is to estimate the separation of271

groups in colourspace (Maia & White, 2018). We therefore prefer a bootstrapped272

measure of colour distance using bootcoldist(), which provides a robust mea-273

sure of the separation of our focal samples (i.e the red, white, and black patches274

of model versus mimic), along with a 95% confidence interval, which can be in-275

spected to see if it exceeds the theoretical discrimination threshold of one JND. We276

specify a relative receptor density of 1:2:2:4 (ultraviolet:short:medium:long wave-277

length receptors; Maier & Bowmaker (1993)), a signal-to-noise ratio yielding a278

Weber fraction of 0.1 for both chromatic and achromatic receptors, and assume279

that noise is proportional to the Weber fraction and independent of the magnitude280

of receptor stimulation (reviewed in Kelber et al. (2003); Olsson et al. (2017)).281

# Calculate the bootstrapped, noise-corrected colour distance

# between groups, using sample names to specify grouping ID's.

> heli_dist <- bootcoldist(heli_model,

> by = sub('\\..*', '', rownames(heli_model)),

> n = c(1, 2, 2, 4),

> weber = 0.1,

> weber.achro = 0.1)

Inspection of the key comparisons of interest (Fig. 4, right) reveals that the 95%282

CI of all chromatic and achromatic comparisons includes the theoretical threshold283

of one JND. This predicts that the individual colour pattern elements of putative284

model and mimic H. egeria and H. melpomene are indistinguishable, or difficult to285
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discriminate, to avian viewers — the assumed intended recipient of the aposematic286

signals. As noted above, the analysis of this representative pair can be readily287

scaled to encompass all species given the necessary data, and we can now use this288

information to inform our study of the spatial structure of these signals.289

Pattern analysis290

We first load the focal images, which comprise the individual samples from plate291

XII of Eltringham (1916), saved as jpegs (Fig. 3). We then plot one or all of the292

images to check they are as expected.293

# Load all images. Here the 28 jpegs are stored in a folder called

# 'butterflies' located within the current working directory.

> heli_images <- getimg("butterflies")

28 files found; importing images.

# Plot the first image in the list only.

> plot(heli_images[[1]])

# Plot all images, which will progress through

# the sequence automatically.

> plot(heli_images)

We then classify the pixels of all images into discrete colour or luminance cat-294

egories, here using k-means clustering, to create a colour-classified image matrix.295

The function classify() will carry this out, though there are numerous specific296

ways in which it may be achieved, including automatically or ’interactively’, with297

the option of a reference image as template. Since our images are heterogeneous, it298

is simplest to use the interactive version of classify(), which will cycle through299

each image and ask the user to manually identify a sample from every discrete300

colour or luminance class present, which are then used as cluster centres.301
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# Interactively colour-classify all images using k-means clustering.

> heli_class <- classify(heli_images, interactive = TRUE)

# Cycle through plots of the colour-classified images, alongside their

# identified colour palettes.

> summary(heli_class, plot = TRUE)

Finally, we use an adjacency analysis to estimate a suite of metrics describ-302

ing the structure and complexity of the colour pattern geometry of model and303

mimic Heliconius, and by including the visually-modelled colour distances esti-304

mated above, the output will include several measures of the salience of colour305

patch edges as part of the boundary strength analysis (Endler, 2012; Endler et al.,306

2018). We will exclude the white background since it is not relevant, simply by307

specifying the colour-category ID belonging to the homogeneous underlay. If the308

image was more complex, such as an animal in its natural habitat, we might in-309

stead interactively identify and separate the focal animal and background using310

procimg() (e.g. Fig. 2, second panel). Alternatively, we might forego the use of311

images altogether, and instead grid-sample and cluster the spectra across the vi-312

sual scene and use these in directly in the call to adjacent() (sensu ’method 1’ in313

Endler 2012, mentioned above).314

# Construct and inspect a data.frame of pairwise colour and luminance

# distances between all colour classes, built from the earlier

# receptor-noise modelled estimates. Note that we do not bother

# including colour-class ID 1, since that is the white background

# which is to be excluded from the analysis (see below).

# (Alternatively we could include it, and it would simply be ignored).

> distances <- data.frame(c1 = c(2, 2, 3),

c2 = c(3, 4, 4),

dS = c(10.6, 5.1, 4.4),
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dL = c(1.1, 2.5, 3.2))

> distances

c1 c2 dS dL

2 3 10.50 7.41

2 4 11.76 23.40

3 4 13.29 15.99

# Calculate adjacency and boundary-strength statistics. We specify a

# scale of 50 mm, and note that the 'white' background, which has the class

# ID of 1 in this case, is to be excluded from the analysis.

# We also include the colour distance between all patches, as estimated above.

> heli_adj <- adjacent(heli_class,

> xscale = 50,

> bkgID = 1,

> exclude = 'background',

> coldists = distances)

# Inspect a subset of the resulting data.frame. Variable meanings

# are detailed in the function documentation (see ?adjacent),

# or Endler (2012), Endler et al. (2018), and Endler & Mielke (2005).

> head(heli_adj)[, 1:7]

k N n_off p_2 p_3 p_4 q_2_2 ...

mimic_01 3 345522 6547 0.801 0.130 0.067 0.796

mimic_02 2 1018370 4091 0.835 0.164 NA 0.834

mimic_03 3 265278 6155 0.685 0.198 0.116 0.677

...

We can now inspect the pattern descriptors of particular interest, and explore315

the similarity of models and mimics with respect to their broader colour pattern316

geometry. As seen in Fig. 5, the relative proportions of focal colours (top row),317
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Figure 5: Select results of the colour pattern analysis of model and mimic Helico-
nius (Fig. 3), using adjacency and boundary strength analyses. Strong correlations
are evident in colour proportions (top row), measures of colour diversity and
complexity (centre row), and estimates of mean chromatic and achromatic edge
salience (bottom row).

measures of pattern diversity and complexity (centre row), and the salience of318

patch boundaries (bottom row) are highly correlated between species pairs. This,319

in conjunction with the above modelling, suggests that the overall colour pat-320

terns of putative model and mimic Heliconius — both spectrally and spatially —321

are highly similar, and are thus predicted to be very difficult to discriminate to322

the intended avian viewers of their aposematic signals, as consistent with theory323

(Müller, 1879). More interesting questions remain, of course, including the degree324
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to which mimics need resemble models to deceive viewers, and the relative impor-325

tance of different colour pattern elements (e.g. Fig. 5) in mediating the subjective326

resemblance of species pairs, for which pavo 2 is well suited to help answer.327

Conclusions328

The integrative study of biological colouration has borne rich fruit, though its329

potential to illuminate the structure and function of much of the natural world is330

not nearly realised (Endler & Mappes, 2017). As we have sought to demonstrate,331

pavo 2 (and beyond) provides a flexible framework to assist researchers studying332

the physiology, ecology, and evolution of colour patterns and visual perception.333

We appreciate bug reports and suggestions, via email or the Github issue tracker334

https://github.com/rmaia/pavo/issues.335

Citation of methods336

Many of the methods applied in pavo 2 are described in detail in their original337

publications — as listed in the documentation for the relevant functions — to338

which users should refer and cite as appropriate, along with pavo itself, via this339

publication.340
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