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» Abstract

18 1. Biological colouration presents a canvas for the study of ecological and
19 evolutionary processes. Enduring interest in colour-based phenotypes has
20 driven, and been driven by, improved techniques for quantifying colour pat-
21 terns in ever-more relevant ways, yet the need for flexible, open frameworks
= for data processing and analysis persists.

23 2. Here we introduce pavo 2, the latest iteration of the R package pavo. This
24 release represents the extensive refinement and expansion of existing meth-
25 ods, as well as a suite of new tools for the cohesive analysis of the spectral
26 and (now) spatial structure of colour patterns and perception. At its core,
27 the package retains a broad focus on (a) the organisation and processing of
8 spectral and spatial data, and tools for the alternating (b) visualisation, and
29 (c) analysis of data. Significantly, pavo 2 introduces image-analysis capabili-
30 ties, providing a cohesive workflow for the comprehensive analysis of colour
31 patterns.

5 3. We demonstrate the utility of pavo with a brief example centred on mimicry
3 in Heliconius butterflies. Drawing on visual modelling, adjacency, and bound-
34 ary strength analyses, we show that the combined spectral (colour and lu-
35 minance) and spatial (pattern element distribution and boundary salience)
36 features of putative models and mimics are closely aligned.

37 4. pavo 2 offers a flexible and reproducible environment for the analysis of
38 colour, with renewed potential to assist researchers in answering fundamen-

39 tal questions in sensory ecology and evolution.
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» Introduction

s The study of colour in nature continues to generate fundamental knowledge:
2 from the neurobiology and ecology of information processing (Caves et al., 2018;
5 Schnaitmann et al., 2018; Thoen et al., 2014; White & Kemp, 2017), to the evolution-
w ary drivers of life’s diversity (Dalrymple et al., 2015, 2018; Endler, 1980; Maia et al.,
55 2013b). Colour is a subjective perceptual experience, however, so our understand-
s ing of the function and evolution of this conspicuous facet of variation depends
» on our ability to analyse phenotypes in meaningful ways. Excellent progress con-
48 tinues to be made in this area, with emerging techniques now able to quantify and
4 integrate both the spectral (i.e. colour and luminance) and spatial (i.e. the dis-
s tribution of pattern elements) properties of colour patterns (Endler, 2012; Endler
si etal., 2018; Kemp et al., 2015; Renoult ef al., 2015; Troscianko et al., 2017). The need
> remains, however, for tools that integrate these complex methods into clear, open,
5» and reproducible workflows (White et al., 2015), allowing researchers to retain

4 focus on the exploration of interesting questions.

55 Here we introduce pavo 2, a major revision and update of the R package pavo
s (Maia et al., 2013a). Since its initial release, the package has provided a cohesive
57 framework for the processing and analysis of spectral data, yet the interceding
s years have seen the advent of novel analytical methods and the refinement of
s existing ones. As detailed below, pavo 2 has been extensively expanded to incor-
o porate a suite of new tools, with the most significant advance being the inclusion
e of geometry-based analyses. This allows for the quantification of spectral and spa-
e tial properties of colour patterns within a single workflow, thereby minimising the
&s computational and cognitive overhead associated with their otherwise fragmented

6 analysis.
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- The pavo package, version 2

6 The conceptual focus of pavo remains centred on three components: (1) data
7 importing and processing, and ongoing feedback between (2) visualisation and
e (3) analysis (Fig. 1). The package is available for direct installation through
60 R from CRAN (https://CRAN.R-project.org/package=pavo), while the devel-
7 opment version remains available on Github (https://github.com/rmaia/pavo).
7 Comprehensive details and examples of the rich functionality of pavo are avail-
2 able in help files as well as the package vignettes. Indeed, we strongly encour-
7 age readers to refer to the vignettes as the primary source for information on
7+ pavo’s functionality (accessible through browseVignettes(pavo), and at http:
7 //rafaelmaia.net/pavo/), since they are updated as necessary with every pack-

7 age release.

» Organisation

# Images and spectra can be loaded into pavo in bulk through the use of getimg()
7 and getspec(), respectively. Both are capable of handling multiple data formats,
so such as jpeg, bmp and png in the case of images, and over a dozen formats of spec-
s: tral data, including the diverse and complex proprietary formats of the various
= spectrometer vendors. Once loaded, the data are stored as objects of an appropri-
s; ate custom S3 class, for use in further functions. Spectral data are of class rspec,
s4 and inherit methods from data.frame, while images are of class getimg, and are
s multidimensional objects (typically 3D, for an RGB image) that inherits methods
ss from array. If more than one image is imported in a single call to getimg(), then
s; each image is stored as an element of a 1ist. This class system allows for —
ss among other things — the reliable use of generic functions such as plot() and

so summary (), which can be called any time to inspect and visualise data.

% Several functions then facilitate the initial processing of colour data. It is of-

o ten desirable to process spectra to remove unwanted noise, modify the spectral
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Figure 1: A general overview of the colour-pattern analysis workflow in pavo, as
of version 2, displaying some key functions at each stage.

= range, and/or interpolate the standard wavelength intervals, all of which may be
os achieved through procspec(). For images, procimg() offers similar functionality
os such as the ability to interactively specify the real-world scale of images (in pre-
os ferred units of measurement), rotate and resize images, or define the boundary
s between a focal object and the visual background. The scope of image processing
o7 in pavo 2 is relatively limited by design, as much of what might be used during
s standard image handling are either needs best considered and met by researchers
o during image capture and data-checking, or are readily achieved within R using
w0 existing packages such as imager (Barthelme, 2018) and magick (Ooms, 2018). In-

1 deed, pavo 2 includes convenience functions to convert between image-classes
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12 used by pavo, imager, and magick, allowing ready access to extensive image-

103 processing capabilities.

s Visualisation

s The repeated visualisation of spectral and spatial data is an essential step during
w6 all stages of analysis, and pavo 2 offers numerous tools and publication-ready
1y graphics fit for purpose. Once the package is loaded, the plot() function recog-
08 nises objects of class rspec and rimg, as well as colspace (the product of visual
19 modelling, detailed below), and becomes the conduit to most visualisations. For
uo raw spectral data, for example, plot () will produce a clean plot of the spectra
i versus wavelengths (Fig. 1, centre-left). Following visual modelling, di-, tri-, and
1z tetra-chromatic models can instead be visualised, as well as data from more spe-
u;  cialised models, such as the colour hexagon (Chittka, 1992), CIEXYZ or LAB spaces
1y (Smith & Guild, 1931; Westland et al., 2012), categorical space (Troje, 1993), segment
a5 analysis (Endler, 1990), the colour-opponent coding space (Backhaus, 1991), or the
6 'receptor-noise’ space (de Ibarra et al., 2001; Pike, 2012). Images can also be plotted,
17 with the result depending on whether and how they have been processed. When
us  given an unprocessed rimg object, plot () will produce a simple raster-based plot
ug  Of the image (Fig. 1, right). Following the results of classify() (discussed be-
120 low), in which image pixels are k-means classified into discrete colour-classes (or
= if a colour-classified image is loaded directly), the plot will use the mean RGB

122 values of each colour-class to plot the now-classified image (Fig. 2).

23 Analysis

2y Since the perception of colour is a subjective experience, significant progress has
s been made in representing its reception using ecologically relevant "visual models’
26 (Kelber et al., 2003; Kemp et al., 2015; Renoult et al., 2015), which pavo 2 includes

2; in an extended repertoire. The first step in such analyses is a call to vismodel(),
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=8 which models photoreceptor stimulation (quantum-catches, or photon-flux) based
29 on information about the viewer’s visual sensitivity and viewing environments.
130 While users are free to use their own spectra, pavo includes a suite of built-in
31 receptor sensitivities, illuminant and transmission data (be it environmental or

12 ocular), and viewing backgrounds, for convenience.

133 Once quantum catches are estimated the results can used in a number of mod-
15 els, depending on the question and analytical objective at hand (Kemp et al.,
15 2015; Renoult et al., 2015). General colourspaces are available through a call to
136 colspace() which, if provided no further arguments, will model the data in a
1y generalist di- tri- or tetrachromatic space informed by the dimensionality of the
13 visual system. More specialised colourspaces — which may be informed by spe-
139 cific information about the visual perception of particular species — are also avail-
140 able via colspace(). The CIEXYZ, CIELAB, and CIELch models (designed and
11 intended exclusively for humans) are available, and colspace () will check that the
4= appropriate inputs, such as the human colour-matching function, have been used
13 to model receptor stimulation, as required (Smith & Guild, 1931, Westland et al.,
s 2012). The colour-opponent-coding (Backhaus, 1991) and colour-hexagon (Chit-
s tka, 1992) models of bee vision are implemented, as is the categorical model of fly
16 colour-vision detailed by Troje (1993). Plots for every space are accessible through
17 a call to plot () which, thanks to the underlying class system, will draw on the
us appropriate visualisation for the model at hand — be it a hexagon, a dichromatic

4o segment, a Maxwell triangle, or a three-dimensional tetrahedron.

150 The receptor-noise limited model of early-stage (retinal) colour processing has
151 proven exceptionally popular (Vorobyev et al., 2001; Vorobyev & Osorio, 1998),
1= and has been tested to varying degrees in diverse taxa (Barry et al., 2015; Fleish-
15 man et al., 2016; Kelber et al., 2003; Olsson et al., 2015, White & Kemp, 2016).
154 Following the estimation of receptor stimulation in vismodel (), the model incor-
155 porates information on relative receptor densities and noise through the function

16 coldist (), and estimates either quantum- or neural-noise weighted colour dis-
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157 tances. Version 2 of pavo introduces several extensions of this approach, such as
158 the bootstrapped colour distance of bootcoldist (), which provides an estimate
150 Of the noise-weighted distances (05’s and/or JL’s) between the centroids of colour
w0 samples in multivariate space, with an appropriate measure of error (detailed in
o Maia & White, 2018). Stimuli can also now be expressed and plotted as coordi-
w2 Nates in ‘perceptual” (i.e. receptor-noise corrected) space by calling jnd2xyz() on
3 the distances calculated in coldist () (de Ibarra et al., 2001; Pike, 2012). Notably,
1, these functions now accept n-dimensional data (derived independently, but see
s Clark et al., 2017; Gawryszewski, 2018, for valuable discussion). This allows for the
w6 modelling of extreme (Chen et al., 2016; Cronin & Marshall, 1989, though given the
; lack of support for traditional opponency in these systems, the RN model may be
s of limited use here) or entirely hypothetical visual systems. Of course coldist ()
1o also accepts the results of alternative models — such as the hexagon or CIELab —

o and will return colour distances in units appropriate for each space.

171 Exciting recent advances now allow for the analysis of colour pattern geom-
2 etry — that is, the spatial structure of colour patches — in conjunction with the
13 comparatively well-developed approaches to the spectral analysis of colour out-
73 lined above (Endler, 2012; Endler et al., 2018; Pike, 2018; Troscianko et al., 2017).
175 The most significant extension of pavo as of version 2 is the introduction of an
6 image-based workflow to allow for the combined analysis of the spectral and spa-
177 tial structure of colour patterns, currently centred on measures of overall pattern
s contrast (Endler & Mielke, 2005), the adjacency analysis (Endler, 2012), and its
19 extension, the boundary strength analysis (Endler et al., 2018). In pavo 2, the var-
180 ious steps for such analyses are carried out through calls to classify(), which
s uses k-means clustering to automatically or interactively classify image pixels into
2 discrete colour-classes, and/or adjacent (), which performs the adjacency analy-
183 sis and, if appropriate colour distances are also specified, the boundary strength

s analysis (discussed in Endler ef al., 2018).

185 Briefly, these analyses entail classifying evenly-spaced points within a visual
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86 scene into discrete colour classes using spectrometric measurements and/or pho-
; tography. The column-wise and row-wise colour-class transitions between adja-
w8 cent points are then tallied, and from this a suite of summary statistics on pattern
89 structure — from simple colour proportions, through to colour diversity and pat-
1o tern complexity — are estimated (e.g. Endler et al., 2014; Rojas et al., 2014; Rojas
w: & Endler, 2013; White, 2017). The precise procedure that might be followed by
12 researchers may vary considerably depending on the goal and tools at hand, and
103 pavo 2 is designed to accommodate such flexibility. In relatively simple cases (as
104 in the below example), users may import and calibrate images via getimg() and
15 procimg(), k-means classify the entire image using classify(), and combine it
106 With spectrometric measurements and visual modelling of the few discrete colour-
17 classes in a call to adjacent (). In more complex cases, such as animals in their
18 natural habitats, users may instead wish to collect spectrometric measurements
19 along a grid-sample of the visual scene, visually model and statistically cluster the
20 Tesults (e.g. using vismodel()), then feed the resulting colour-classified grid into
20 adjacent () directly (as per ‘'method 1”: Endler, 2012), without the use of images

202 OF the classify() function at all.

203 As alluded to earlier, our goal is to provide a flexible and relatively simple an-
204 alytical framework for the analysis of a colour pattern’s spatial structure using im-
205 ages, without the requirement for specialised photographic equipment or and/or
26 extensive calibration and processing (demonstrated in the colour-plate based ex-
207 ample below). We thus make an analytical and conceptual distinction between
208 the spectral data afforded by spectrometry, and the spatial data afforded by im-
29 ages, with the two able to be conveniently combined during latter analyses (Fig.
a0 1). This also minimises the unnecessary duplication of efforts of more general-
au purpose tools such as imager (Barthelme, 2018) and magick (Ooms, 2018), and the
. excellent image analysis toolbox for image] (Troscianko & Stevens, 2015), which
a3 offer rich functionality for image processing and (in the latter case) analysis. We

-y emphasise, however, that the convenience of the toolkit provided by pavo 2 belies
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Analyse

Import Process Classify

Figure 2: A sample workflow for image handling and analysis in pavo, as of
version 2. Images are first imported and optionally processed by, for example,
setting scales (yellow line) or defining objects and backgrounds (red outline). They
may then be colour-classified before being passed to analytical functions, currently
centered on the adjacency and boundary-strength analyses. If backgrounds and
focal objects are defined then they can be analysed separately, concurrently, or
either one can be excluded entirely.

a5 the complexity of the choices demanded of researchers, and that every parameter
26 and option requires close consideration and justification. It is rare, for example,
a7 that image analyses should be used without any input from visually-modelled
a8 spectrometric data, since naive clustering performed on uncalibrated images will
a9 typically offer a poor representation of a visual scene as relevant to non-human an-
20 imals. For example, even in simple cases, as below, the number of discrete patches
21 present (i.e. the argument kcols in cluster()) is best estimated using spectro-
22 Mmetric data in an ecologically relevant model, rather than relying exclusively on
23 human-subjective estimates of colour segregation. One possible approach is inte-
=4 grated into the below example, and Endler (2012) details others, such as estimating
225 kcols as the number of receptor-noise ellipsoids required to encompass the entire

26 sample of spectra.
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- Worked example: mimicry in Heliconius spp.

=3 Butterflies of the genus Heliconius are widely involved in mimicry, and have proven
29 an exemplary system for studies of colour pattern development, ecology, and evo-
20 lution (Jiggins, 2016). Here we demonstrate some of pavo 2’s capabilities by briefly
»n  examining the the visual basis of mimicry in this system, with the objective of
=2 quantifying the spectral and spatial (dis)similarity between putative models and
.3 mimics. For our spatial analyses, we follow Endler (2012) and use colour plate XII
2 from Eltringham (1916), which is arranged into what he described as model and
=5  mimic pairs (Fig. 3). For our spectral analyses we collated six reflectance spectra
26 from each of the assumed-discrete ‘'red’, “yellow’, and ’black” patches (confirmed
7 by spectral measurement, below) of the forewings of two species — H. egeria and
28 H. melpomene (Fig. 3, top left pair) — from personal sources and the literature
20 (Bybee et al., 2011; Wilts et al., 2017). For reasons of simplicity and data availability
20 We restrict our visual modelling to these two species, though the below spectral

. analyses would ideally be repeated for all model/mimic pairs.

x4 Spectral analysis

25 We first focus on the spectral data, both to confirm the assumption that there
24 are discrete colour patches and because some of the results of this work will be
25 drawn on for the latter pattern analyses. We begin by loading the reflectance
246 spectra, which are saved in a single tab-delimited text file along with the image
7 plates (available at the package repository; https://github.com/rmaia/pavo, or
8 via figshare; https://dx.doi.org/10.6084/mg.figshare.7445840.v1), before LOESS-
29 smoothing them to remove any minor electrical noise and zeroing spurious nega-

250 tive values.
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Model Mimic Model Mimic

Figure 3: A modification of Eltringham’s (1916) colour plate of Heliconius butter-
flies, sensu Endler (2012), arranged into putative models and mimics. The left side
of each individual is as per the original, while the right half display pattern ele-
ments that have been classified into discrete classes through k-means clustering,
using the classify() function.

**

Load spectra

> heli_specs <- getspec('../data', ext = 'txt')
# Smooth spectra and zero negative values

> heli_specs <- procspec(heli_specs,

> opt = 'smooth',

> fixneg = 'zero')

251 A call to plot(heli_specs, col = spec2rgb(heli_specs)) displays the now-
22 clean spectra, with each line coloured according to how it might appear to a hu-

;53 man viewer (Fig. 4, top left).

254 Our interest is in quantifying the fidelity of visual mimicry, so we must con-
255 sider the perspective of ecologically relevant viewers (the primary selective agents)

»s6 which, in the case of aposematic Heliconius, are avian predators (Benson, 1972;
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Figure 4: Reflectance spectra from black, red, and yellow patches of H. egeria
and H. melpomene, along with their positions in a tetrahedral model of avian
vision (left side). The bootstrapped, noise-corrected chromatic and achromatic
patch distances between species (right) predicts that the individual colours of this
model/mimic pair are likely indistinguishable to avian predators.

> Chai, 1986). We thus use the receptor-noise limited model (Vorobyev et al., 2001;
8 Vorobyev & Osorio, 1998) to predict whether the black, red, and yellow colour
259 patches of a representative model and mimic are distinguishable to avian preda-
x0 tors. This first entails estimating the photoreceptor quantum catches of a repre-
x sentative viewer, so we use a built-in average UV-sensitive avian visual phenotype
2 for estimating chromatic distances, and the double-cone sensitivity of the blue tit

263 for luminance distances.

> heli_model <- vismodel(heli_specs,

> visual = 'avg.uv',
> achromatic = 'bt.dc',
> relative = FALSE)

264 At this point we may wish to get a quick sense of the relative distribution
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x5 of stimuli by converting them to locations in an avian tetrahedral colourspace
26 and plotting the results with plot (colspace(heli_model)) (Fig. 4). With receptor
26y stimulation estimated, we now calculate noise-corrected chromatic and achromatic
s distances between patches. The coldist () function can be used to return the pair-
260 Wise distances between every spectrum, which might then be averaged to derive
2o a mean distance between species for every patch. This neglects the multivariate
2 structure of such data, however, when the objective is to estimate the separation of
22 groups in colourspace (Maia & White, 2018). We therefore prefer a bootstrapped
;3 measure of colour distance using bootcoldist (), which provides a robust mea-
273 sure of the separation of our focal samples (i.e the red, white, and black patches
25 of model versus mimic), along with a 95% confidence interval, which can be in-
26 spected to see if it exceeds the theoretical discrimination threshold of one JND. We
27 specify a relative receptor density of 1:2:2:4 (ultraviolet:short:medium:long wave-
s length receptors; Maier & Bowmaker (1993)), a signal-to-noise ratio yielding a
29 Weber fraction of 0.1 for both chromatic and achromatic receptors, and assume
0 that noise is proportional to the Weber fraction and independent of the magnitude

28 of receptor stimulation (reviewed in Kelber et al. (2003); Olsson et al. (2017)).

# Calculate the bootstrapped, mnoise-corrected colour distance
# between groups, using sample names to specify grouping ID's.

> heli_dist <- bootcoldist(heli_model,

> by = sub('\\..*', '', rownames(heli_model)),
> n=c(l, 2, 2, 4),
> weber = 0.1,
> weber.achro = 0.1)
282 Inspection of the key comparisons of interest (Fig. 4, right) reveals that the 95%

83 ClI of all chromatic and achromatic comparisons includes the theoretical threshold
8, of one JND. This predicts that the individual colour pattern elements of putative

s model and mimic H. egeria and H. melpomene are indistinguishable, or difficult to
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6 discriminate, to avian viewers — the assumed intended recipient of the aposematic
8, signals. As noted above, the analysis of this representative pair can be readily
=8 scaled to encompass all species given the necessary data, and we can now use this

89 information to inform our study of the spatial structure of these signals.

«0 Pattern analysis

21 We first load the focal images, which comprise the individual samples from plate
22 XII of Eltringham (1916), saved as jpegs (Fig. 3). We then plot one or all of the

203 images to check they are as expected.

# Load all tmages. Here the 28 jpegs are stored in a folder called
# 'butterflies' located within the current working directory.
> heli_images <- getimg("butterflies")

28 files found; importing images.

# Plot the first image in the list only.

> plot(heli_images[[1]])

# Plot all images, which will progress through
# the sequence automatically.

> plot(heli_images)

204 We then classify the pixels of all images into discrete colour or luminance cat-
205 egories, here using k-means clustering, to create a colour-classified image matrix.
26 The function classify() will carry this out, though there are numerous specific
27 ways in which it may be achieved, including automatically or “interactively’, with
208 the option of a reference image as template. Since our images are heterogeneous, it
299 15 simplest to use the interactive version of classify(), which will cycle through
w0 each image and ask the user to manually identify a sample from every discrete

o0 colour or luminance class present, which are then used as cluster centres.
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# Interactively colour-classify all images using k-means clustering.

> heli_class <- classify(heli_images, interactive = TRUE)

# Cycle through plots of the colour-classified images, alongside their
# i1dentified colour palettes.

> summary(heli_class, plot = TRUE)

302 Finally, we use an adjacency analysis to estimate a suite of metrics describ-
53 ing the structure and complexity of the colour pattern geometry of model and
54 mimic Heliconius, and by including the visually-modelled colour distances esti-
55 mated above, the output will include several measures of the salience of colour
w6 Ppatch edges as part of the boundary strength analysis (Endler, 2012; Endler et al.,
57 2018). We will exclude the white background since it is not relevant, simply by
8 specifying the colour-category ID belonging to the homogeneous underlay. If the
x9 image was more complex, such as an animal in its natural habitat, we might in-
;o stead interactively identify and separate the focal animal and background using
su  procimg() (e.g. Fig. 2, second panel). Alternatively, we might forego the use of
;2 images altogether, and instead grid-sample and cluster the spectra across the vi-
53 sual scene and use these in directly in the call to adjacent () (sensu ‘'method 1” in

514 Endler 2012, mentioned above).

# Construct and inspect a data.frame of pairwise colour and luminance
# distances between all colour classes, built from the earlier

# receptor-noise modelled estimates. Note that we do not bother

# including colour-class ID 1, since that is the white background

# which ts to be excluded from the analysis (see below).

# (Alternatively we could include it, and it would simply be ignored).

> distances <- data.frame(cl = c(2, 2, 3),
c2 = c(3, 4, 4),
dS = c(10.6, 5.1, 4.4),
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dL = c(1.1, 2.5, 3.2))
> distances
cl c2 dS dL
2 3 10.50 7.41
2 4 11.76 23.40

3 4 13.29 15.99

# Calculate adjacency and boundary-strength statistics. We specify a

# scale of 50 mm, and note that the 'white' background, which has the class

# ID of 1 in this case, 1s to be excluded from the analysis.

# We also include the colour distance between all patches, as estimated above.

> heli_adj <- adjacent(heli_class,

> xscale = 50,

> bkgID = 1,

> exclude = 'background',
> coldists = distances)

# Inspect a subset of the resulting data.frame. Variable meanings
# are detailed in the function documentation (see ?adjacent),
# or Endler (2012), Endler et al. (2018), and Endler & Mielke (2005).
> head(heli_adj) [, 1:7]
k N n_off p_2 p-3 p-4 q-2_2
mimic_01 3 345522 6547 0.801 0.130 0.067 0.796
mimic_02 2 1018370 4091 0.835 0.164 NA 0.834

mimic_03 3 265278 61556 0.685 0.198 0.116 0.677

315 We can now inspect the pattern descriptors of particular interest, and explore
;i the similarity of models and mimics with respect to their broader colour pattern

sy geometry. As seen in Fig. 5, the relative proportions of focal colours (top row),
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Figure 5: Select results of the colour pattern analysis of model and mimic Helico-
nius (Fig. 3), using adjacency and boundary strength analyses. Strong correlations
are evident in colour proportions (top row), measures of colour diversity and
complexity (centre row), and estimates of mean chromatic and achromatic edge
salience (bottom row).

;i measures of pattern diversity and complexity (centre row), and the salience of
519 patch boundaries (bottom row) are highly correlated between species pairs. This,
»0 in conjunction with the above modelling, suggests that the overall colour pat-
s terns of putative model and mimic Heliconius — both spectrally and spatially —
22 are highly similar, and are thus predicted to be very difficult to discriminate to
3 the intended avian viewers of their aposematic signals, as consistent with theory

24 (Miiller, 1879). More interesting questions remain, of course, including the degree
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s to which mimics need resemble models to deceive viewers, and the relative impor-
»6 tance of different colour pattern elements (e.g. Fig. 5) in mediating the subjective

57 resemblance of species pairs, for which pavo 2 is well suited to help answer.

= Conclusions

29 The integrative study of biological colouration has borne rich fruit, though its
;0 potential to illuminate the structure and function of much of the natural world is
sn not nearly realised (Endler & Mappes, 2017). As we have sought to demonstrate,
;2 pavo 2 (and beyond) provides a flexible framework to assist researchers studying
s» the physiology, ecology, and evolution of colour patterns and visual perception.
;5 We appreciate bug reports and suggestions, via email or the Github issue tracker

35 https://github.com/rmaia/pavo/issues.

.+ Citation of methods

5> Many of the methods applied in pavo 2 are described in detail in their original
;3 publications — as listed in the documentation for the relevant functions — to
;9 which users should refer and cite as appropriate, along with pavo itself, via this

0 publication.
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