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Summary: A tissue transcriptome driven classification of nephrotic syndrome patients identified a high 
risk group of patients with TNF activation and established a non-invasive marker panel for pathway 
activity assessment paving the way towards precision medicine trials in NS.   
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Abstract: Nephrotic syndrome from primary glomerular diseases can lead to chronic kidney disease 

(CKD) and/or end-stage renal disease (ESRD). Conventional diagnoses using a combination of clinical 

presentation and descriptive biopsy information do not accurately predict risk for progression in patients 

with nephrotic syndrome, which complicates disease management. To address this challenge, a 

transcriptome-driven approach was used to classify patients with minimal change disease and focal 

segmental glomerulosclerosis in the Nephrotic Syndrome Study Network (NEPTUNE). Transcriptome-

based classification revealed a group of patients at risk for disease progression. High risk patients had a 

transcriptome profile consistent with TNF activation. Non-invasive urine biomarkers TIMP1 and CCL2 

(MCP1), which are causally downstream of TNF, accurately predicted TNF activation in the NEPTUNE 

cohort setting the stage for patient stratification approaches and precision medicine in kidney disease.  
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Introduction 

Nephrotic syndrome (NS) refers to a glomerular disease with a shared clinical presentation, which is 

marked by proteinuria, hypoalbuminemia, hyperlipidemia and edema which can ultimately lead to kidney 

failure. Several underlying diseases can result in this constellation of symptoms, including the primary 

glomerular diseases of minimal change disease (MCD) and focal segmental glomerulosclerosis (FSGS), 

currently classified by the descriptive pattern of injury seen on kidney biopsy. Although these primary 

glomerular diseases are categorized as distinct histopathologic categories, they likely result from 

heterogeneous biological processes given the person to person variability in disease onset, rates of 

progression and response rates to various immunosuppressive therapies (1). Currently, diagnostic, 

prognostic and therapeutic decisions are based on these histopathologic categories and routine clinical 

parameters (e.g. serum creatinine and urine protein) that do not account for the heterogeneity of the 

biological antecedents. Because of the imprecise diagnosis within the current descriptive disease 

classification, molecularly targeted treatments for these diseases are not routinely available, and the 

interpretation of results from observational studies and clinical trials of therapeutic agents, which enroll a 

heterogeneous population of NS patients, are difficult to interpret. In such studies, it is often observed 

while the overall trial reads out negative, a small subset of patients respond well to the trialed therapy (2-

6), yet pre-treatment predictors of response are not available.     

Advances in biomedical research allow for capture of high-dimensional data across the genotype-

phenotype continuum from patients under routine clinical care and can serve as a platform for 

implementation of precision medicine within NS (7). This approach utilizes large scale data integration 

across multiple data domains paired with deep clinical phenotype to establish a disease classification 

which is based in molecular causes as well as clinical presentation. Ultimately, the overarching goal of 

this approach is to assign targeted treatment based on these refined diagnostic categories which can 

reliably be identified using non-invasive markers (Figure 1).   

Kidney diseases are uniquely positioned to implement this approach as a kidney biopsy is the 

diagnostic gold standard for NS, allowing for identification of molecular tissue signatures which can be 

linked to detailed histopathology assessment and non-invasive urine markers and validated against 

clinical outcome.  In this study, we utilize the prospective Nephrotic Syndrome Study Network 

(NEPTUNE) cohort and its European sister network (European Renal cDNA Bank (ERCB)) to implement 

this approach and identify a sub group of patients with a shared molecular signature, potentially 

amenable to targeted therapy.   

 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 27, 2018. ; https://doi.org/10.1101/427880doi: bioRxiv preprint 

https://doi.org/10.1101/427880
http://creativecommons.org/licenses/by/4.0/


Results  

Unbiased Hierarchical Clustering of Tubulointerstitial Compartment Gene Expression to Identify Molecular 

Subgroups of Nephrotic Syndrome: 123 NEPTUNE patients with MCD and FSGS were clustered into 

three groups (n=62, 42, and 19, respectively) according to their tubulointerstitial mRNA expression levels 

from their clinically-indicated renal biopsy (Supplemental Figure 1).  Baseline characteristics of the 

participants in each cluster are listed in table 1. Patients in cluster three were older, and had lower eGFR 

and higher UPCR at baseline. There was no difference in race, sex or duration of disease across the 

clusters.  Although cluster 3 had a greater proportion with FSGS, all three clusters had participants with 

both MCD and FSGS according to the conventional histopathologic classification. In an unadjusted 

survival model, Cluster 3 had a more progressive phenotype, with lower hazard of complete remission (p-

value 0.002) and greater hazard of the composite of ESRD or 40% decline in eGFR from baseline (p-

value 0.007, Figure 2). 

 

Functional context of differentially expressed genes and replication in independent cohort:  2517 genes 

were differentially regulated in the NEPTUNE cohort between cluster 3 versus 1 and 2, with a 1.5 fold-

change and q-value <0.05. TNF itself was increased and found to center one of the top gene interaction 

networks from the differentially expressed gene set (Figure 3A). Genes were further analyzed to 

determine functional context of elevated TNF expression in Cluster 3. The canonical signal transduction 

pathways with the highest enrichment score was granulocyte adhesion and diapedesis with 54 of 151 

(35.8%) pathway genes differentially expressed in cluster 3 (p-value<0.001). Differentially expressed 

genes in this pathway included TNF, which was one of the pathway activation inputs. In upstream 

regulator analysis (an analysis that takes into account both enrichment of and underlying direction of 

differential gene expression changes using cause and effect relationships), the top predicted activated 

protein network was TNF (IPA Z-score=10.2, enrichment p-value=3.65E-84, Figure 3B). A mechanistic 

network centered on downstream effects of TNF activation explained 26% (660/2517) of the differentially 

expressed genes in the analysis and included multiple transcription factors previously implicated in 

chronic kidney diseases including activation of the NFκB complex (as well as activation of NFKB1 

(p105/p50) and RELA (p65) subunits) (8-10), and STAT1 and STAT3 (11). Lastly, 11 of the genes in the 

TNF causal network (including TNF) were supported by multiple literature assertions in IPA (Figure 3C), 

and were also profiled on a targeted proteomic profile panel.   

 

To validate the molecular profiles identified in this cluster, unsupervised hierarchical clustering was 

applied to an independent cohort. Tubulointerstitial transcriptome data from 30 patients with MCD and 

FSGS in the European Renal cDNA Bank (ERCB) was used for validation (Supplementary Table 1). As in 

the NEPTUNE discovery cohort and three clusters were also identified. Patients in the ERCB cluster 3 

also had significantly lower mean eGFR (35 ± 17, n=6, p<0.001) compared to the other two clusters 

(94±35 for the combined cluster 1 and 2, also see Supplementary Table 1). A differential expression 
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analysis was also performed between cluster 3 and the other clusters. Genes that met a q-value<0.05 

threshold in both NEPTUNE and ERCB displayed a high correlated expression profile (Supplemental 

Figure 2, R2 of Log2FC =0.84, p<0.001, with 93% of transcripts sharing directionality of change). To 

further validate the NEPTUNE findings, the same differential expression filter was applied (1.5 fold-

change and q-value<0.05) to the ERCB cohort cluster 3 signature. This resulted in 703 genes and 

consistent with the findings from the NEPTUNE cohort, the top predicted protein network was activation 

of TNF (IPA Z-score=7.2, p-value=1.9E-22). Predicted activation of TNF explained 23% (163/703) of the 

differentially expressed genes in this cohort. 

 

Patient-level TNF score and relationship with cluster:  To be able to quantify TNF activation within 

individual patient samples, and assess its association with NS cluster assignment, a TNF activation score 

was generated using causal assertions were associated with predicted TNF activation in the NEPTUNE 

cohort. Starting with 398 genes that contributed to predicted TNF activation, genes were limited to those 

with multiple (≥3) lines of curated literature evidence (to limit spurious associations), and then further to 

those up-regulated by TNF (as a majority of genes (>95%) contributing to predicted TNF activation were 

up-regulated). This reduced the set of TNF-regulated genes to 145 (Supplementary Table 2). First, Log2 

gene expression data for the 145 genes were converted to Z-scores across the NEPTUNE transcriptomic 

dataset. Next, the mean of each of the 145 Z-score gene expression values from each participant’s profile 

as the TNF activation score.  Participants in cluster 3 had higher TNF activation scores than those in 

clusters 1 or 2.  Mean (SD) score in cluster 3 was 1.01 (0.50), as compared to 0.01 (0.34) in cluster 2 and 

-0.53 (0.27) in cluster 1, p-value <0.01 (Figure 4).  To address the potential for data overfitting, the 145 

gene set was scored in a similar manner in the ERCB cohort. Consistent with differential gene expression 

profiles, and similar networks identified in the ERCB cohort, the association of TNF activation score with 

cluster 3 was confirmed in these samples (data not shown). Thus, a molecular signal consistent with TNF 

activation in primary NS was represented by a downstream gene signature in multiple cohorts. 

 

Association of TNF activation score with clinical outcomes:  At baseline, TNF activation score was 

correlated with severity of interstitial fibrosis (rho = 0.69, p-value <0.001, Figure 5), but median (IQR) was 

22.5 (10.5 – 49.5) and range was 0 to 71%. To evaluate to what extent TNF activation score from the 

renal tissue expression data captured the variability in loss of eGFR over time observed in cluster 3 as 

compared to clusters 1 and 2, a generalized estimating equation (GEE) model of eGFR over time was fit 

separately with cluster membership and TNF activation score as primary predictors of interest. After 

adjustment for demographics, diagnosis, time, baseline eGFR and UPCR, cluster 3 was associated with a 

19 mL/min/1.73m2 lower eGFR during follow-up as compared to cluster 1. Cluster 2 was not significantly 

different from cluster 1. Similarly, in the fully adjusted model, a 1 unit greater TNF activation score was 

associated with a 12 mL/min/1.73 m2 lower eGFR during follow-up (Table 2).  
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Non-invasive biomarker identification of TNF activation score:  Taking advantage of targeted proteomic 

data sets available as part of the multi-scalar data platform in NEPTUNE, profiles from 54 urinary 

cytokines, matrix metalloproteinases and tissue inhibitor of metalloproteinases were investigated. As 

shown in Figure 3C, 11 proteins with urine biomarker profiles were also part of a TNF causal network (i.e. 

gene expression values were downstream of TNF and a readout or signature of potential TNF activation 

in the kidney). Thus, we hypothesized that a biomarker or group of urine biomarkers might be sufficient to 

recapitulate intra-renal TNF activation and act as non-invasive surrogate biomarkers. Biomarkers with 

expression profiles in the dynamic range in at least 75% of samples, and those with a high level of intra-

renal log2 mRNA versus log10 urine protein (normalized to creatinine) correlation (p<0.0001, r
2
≥0.25) in 

MCD and FSGS were chosen as potentially representative of the intra-renal transcriptional state (Figure 

6A). Two genes, CCL2 and TIMP1 had corresponding urine proteomic profiles meeting these criteria 

(Figure 6B). Urine biomarker profiles for CCL2 (also known as MCP1) and TIMP1 were highly correlated 

with the TNF activation score (p<0.0001, r
2
≥0.25 for both biomarkers, Figure 6C).  Thus, these 

biomarkers were identified as non-invasive surrogates reflective of the intra-renal transcriptional state and 

of the TNF activation score.     

 

Predictive ability of biomarkers:  The base model presented here used eGFR and UPCR and additional 

models added the urinary biomarker levels of TIMP1 and MCP1.  The fully adjusted model had highest c-

statistic and positive predictive value for non-invasive assessment of the TNF activation score (Table 3).  
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Discussion  
 

This work introduces the concept of how a precision medicine strategy can work for nephrotic 

syndrome. The study utilized kidney biopsy tissue transcriptomics to identify a subgroup of nephrotic 

syndrome patients with a shared molecular profile and poor clinical outcome. Using an unbiased analysis 

of tubulointerstitial compartment gene expression data, without clinical or pathology data, a subgroup of 

participants was identified that had less remission of proteinuria and more loss of kidney function over 

time. The molecular profile of this group was evaluated for its underlying biological processes and found 

to center on TNF activation. TNF activation, quantified within individual patients, was sufficient to capture 

association with poor clinical outcome observed by cluster assignment. A combination of clinical features 

and urinary biomarkers could then be identified as non-invasive predictors of tissue TNF activation with 

high accuracy.   

TNF is a pro-inflammatory, immunoregulatory cytokine, implicated in many systemic inflammatory 

diseases as well as kidney diseases (12-14). It is produced by infiltrating immune cells, but also by renal 

tissue cells, including podocytes and mesangial cells (15). In isolated rat glomeruli, TNF-alpha 

administration increased albumin permeability (16). In rats that spontaneously develop nephrotic 

syndrome and FSGS (Buffalo/Mna), renal expression of TNF increases before the onset of proteinuria 

(17). In humans, TNF levels from cultured peripheral blood mononuclear cells were higher in children with 

active nephrotic syndrome, compared to those in remission and controls (18). Case reports and small 

studies have reported that anti-TNF therapy may be effective in a subset of nephrotic syndrome patients, 

but no data was available on intra-renal activation of the pathway (19-21). Current clinical practice and 

diagnostic evaluation cannot identify this subset for targeted interventional trials.   

Based on this animal and human evidence, the FONT trial (novel therapies in resistant FSGS) tested 

the TNF inhibitor adalimumab in patients with therapy-resistant FSGS using an unstratified approach (4).  

Of the total 16 patients treated in the phase I and phase II studies, 2 participants had dramatic 

improvements in proteinuria (from 17 to 0.6mg/mg and from 3.6 to 0.6 mg/mg in the other). Although the 

study is considered an unsuccessful trial in demonstrating efficacy of this therapy for all FSGS patients, a 

response in any of the patients with this severe phenotype is notable. This highlights the biologic 

heterogeneity underlying the recruited population to this study and similar clinical trials in FSGS. The 

observation of highly variable and unpredictable response to TNF blockade in the FONT trial is similar to 

that observed in routine clinical practice to standard therapies. It demonstrates the need for a precision 

approach to better assign patients to conventional therapies as well as offering access to experimental 

therapies in the setting of clinical trials to match patients to the most effective medication and sparing 

toxicity from unnecessary medications.   

The pipeline described in this paper could be applied to clinical trial design whereby a nephrotic 

syndrome population could be enriched for patients with a higher probability of having a particular 

pathway upregulated and amenable to targeted therapy. Specifically, the coefficients from a validated 

logistic model could be used to calculate a probability of pathway activation as inclusion criteria for entry 
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into a clinical trial. Thus, this would increase the chance that a trial would include a higher proportion of 

patients with a more homogeneous molecular profile amenable to the investigational target. 

Several limitations of this approach are acknowledged. The clustering was done using the 

tubulointerstitial compartment as opposed to the glomerular compartment which is certainly also relevant 

to the pathophysiology of glomerular diseases. However, tubulointerstitial damage and fibrosis has been 

shown to be one of the strongest predictors of clinical outcome in the NEPTUNE cohort and treatment 

response (22), which crosses the conventional disease classifications. Medications targeting this common 

mechanism may be expected to have efficacy as disease modifying drugs in chronic kidney disease 

across multiple conventionally diagnosed renal diseases (9). For some patients, high TNF activation may 

represent a disease too advanced to be amenable to any therapy. However, the analysis did include 

samples from multiple patients with low interstitial fibrosis and high TNF scores. Bulk expression data was 

utilized and so differentially expressed genes may reflect differences in cell composition between the 

clusters. The accuracy of the non-invasive surrogates as dynamic, i.e. target engagement biomarkers 

requires validation and is being pursued in a proof of concept clinical trial under development.   

In conclusion, this study implements a novel pipeline not previously applied in nephrotic syndrome 

patients to utilize tissue transcriptomics to identify a subgroup of patients with poor clinical outcomes.  

The potentially targetable pathway, TNF, was identified as a primary driver of disease and non-invasive 

markers could identify a patient population enriched for TNF activation. This mechanistic based disease 

classification is the first step to achieving the goal of assigning patients to therapies in a targeted manner 

and thus minimizing toxicity and maximizing benefit.   

 

Materials and Methods 

Study Participants: The study was conducted on 123 participants with biopsy proven Minimal Change 

Disease (MCD) and Focal Segmental Glomerulosclerosis (FSGS) enrolled in the NEPTUNE study and 

who had tissue genome wide mRNA expression profiling completed.  NEPTUNE is a multi-center, 

prospective study of children and adults with >500mg/day of proteinuria, recruited at the time of first 

clinically indicated baseline renal biopsy.  Pathologic diagnosis is confirmed by review of digital whole 

slide images by study pathologists (23). Patients with evidence of other renal disease (e.g., lupus, 

diabetic nephropathy), prior solid organ transplant, and life expectancy < 6 months were excluded.   The 

study enrolled at 21 clinical sites starting in August, 2010.  The objectives and study design of NEPTUNE 

have been previously described (24) and can be found in the clinicaltrials.gov database under 

NCT1209000.   Consent was obtained from individual patients at enrollment, and the study was approved 

by Institutional Review Boards of participating institutions.   A subset of participants from the European 

Renal cDNA Cohort (ERCB) (n=30) with MCD and FSGS were used as a validation cohort for the gene 

expression analyses (25).  
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Clinical Data: NEPTUNE participants are followed prospectively, every 4 months for the first year, and 

then biannually thereafter for up to 5 years.  Detailed information regarding socio-demographics, medical 

history and medication exposure are collected by subject interview and chart review.  Local laboratory 

results are recorded and blood and urine specimens are collected at baseline and in each follow-up visit 

for central measurement of serum creatinine and urine protein/creatinine ratio.  eGFR (mL/min/1.73m2) 

was calculated using the CKD-Epi formula for participants >18 years old and the modified CKiD-Schwartz 

formula for participants <18 years old.  ESRD was defined as initiation of dialysis, receipt of kidney 

transplant or eGFR <15 mL/min/1.73m
2
 for two measurements.  Complete remission was defined as 

UPCR <0.3 mg/mg on either a single void specimen or 24-hour urine collection.  ERCB is a European 

multicenter study capturing renal biopsy tissue for gene expression profiling along with cross-sectional 

clinical information (e.g., demographics, eGFR) collected at the time of a clinically indicated renal 

biopsy(25). 

 

Molecular Data and Analysis:  Genome wide transcriptome analysis was performed on manually micro-

dissected renal biopsy tissue that separated the tubulointerstitial compartment from the glomerular 

compartment.  Total RNA was isolated, reverse transcribed, linearly amplified and hybridized on an 

Affymetrix 2.1 ST platform (NEPTUNE) and U133 platform (ERCB) as described previously (9, 26-29).  

Gene expression was normalized, log-2 transformed and batch corrected with Entrez Gene ID 

annotations.  Only genes expressed 1 standard deviation above the negative control were considered to 

be expressed and included in the analysis.    Unsupervised hierarchical clustering and differential gene 

expression analysis was performed with Multiple Experiment Viewer (WebMeV, mev.tm4.org) using the 

tubulointerstitial compartment expression data.  Differentially expressed genes between clusters of 

interest were analyzed for enrichment of canonical pathways and functional groups using the Ingenuity 

Pathway Analysis Software Suite (IPA). 

 

TNF Score: Genes causally linked downstream of TNF were selected to compose a TNF activation 

score.(30)  Selected genes were significantly up-regulated (>1.5-fold change and q<0.05) in the 

differential expression gene set in cluster 3 compared to 1 and 2 and were predicted to be activated by 

TNF from 3 independent lines of evidence (i.e. literature references supporting the relationship) from IPA.  

145 genes met these criteria (Supplemental table 3) and a z-score was generated for each gene for each 

patient.  The individual z-scores across all 145 genes were averaged to calculate the composite TNF 

alpha activation score for each patient. 

 

Urine Biomarkers:  A panel of 54 urinary cytokines, matrix metalloproteinases and tissue inhibitor of 

metalloproteinases was available on a subset of NEPTUNE participants using the multiplex Luminex 

platform.  All urine protein levels were normalized to urine creatinine.  To be evaluated as a potential non-

invasive marker of TNF activation, the urine protein had to be a product of a gene causally linked 
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downstream of TNF and to be correlated with intra-renal tissue gene expression and TNF activation 

score.   

 

Statistical Analysis of the Association with Clinical data and Urine Biomarkers: Descriptive statistics, 

including mean and standard deviation (SD) for normally distributed variables, median and interquartile 

range (IQR) for skewed variables and proportions for categorical variables were used to characterize 

baseline participant characteristics by molecular cluster.  Multi-variable linear generalized estimating 

equations (GEE) were used to assess association of molecular cluster and TNF score with eGFR during 

follow-up.  Pearson’s correlation was used to assess the relationship between TNF score and urinary 

biomarker concentration or mRNA expression.  Urinary biomarker levels were divided by urinary 

creatinine to correct for urinary concentration/dilution and were log2 transformed to achieve a normal 

distribution.  Logistic regression models were fit to assess the association of urinary biomarkers with a 

positive vs. negative TNF score.  C-statistics were calculated from the logistic models to characterize the 

discrimination of the models.  The improved predictive value of urinary biomarkers was assessed using 

the LR test for nested models.   Analyses were performed using STATA, v12.1 (College Station, TX) with 

two-sided tests of hypotheses and p-value <0.05 as the criterion for statistical significance.   
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Figure 1: Overall strategy to identify non-invasive urinary 
markers for tissue-derived molecular patient subgroups. 
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Figure 2:  Unadjusted Kaplan Meier curves by cluster membership for complete remission of 
proteinuria from time of screening, p-value 0.002 (A), and composite of ESRD/40% drop in eGFR from 
baseline, p-value 0.007 (B).   

 

*Patients reaching endpoint prior to at risk entry were excluded from the analysis 
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Upstream 
regulator 

Log2 FC 
for DEGs 

IPA Z-
score p-value # of genes 

TNF 0.9 10.2 3.65E-84 398 
IFNG 

 
9.3 8.46E-72 317 

IL1B 
 

10 1.89E-51 222 
IL6 

 
7.3 2.21E-48 189 

NFkB (Complex) 8.7 2.82E-38 157 
STAT3 

 
5.6 3.27E-35 141 

RELA 
 

6.2 4.03E-27 102 
STAT1 

 
5.9 5.26E-26 88 

NFKBIA 
 

2.4 3.59E-22 110 
NFKB1 

 
4.8 8.24E-21 71 

JUN 1.05 1.5 6.98E-20 101 
IRF1 0.99 4.8 9.52E-15 47 

A. B. 

C. 

Figure 3. Transcriptomic profiles of subjects in 
cluster 3 compared to subjects in cluster 1 and 2 
support TNF activation. (A) IPA gene interaction 
network centered on TNF. Genes up-regulated are 
colored in red and genes down-regulated are colored 
green (B) Upstream regulators that were part of the 
predicted TNF activation network. The number of 
genes supporting the IPA Z-score and p-value 
enrichment are shown. (C). Genes causally 
downstream of the TNF activation network that were 
also part of the NEPTUNE biomarker panel. Orange 
indicates predicted activation of TNF and red genes 
indicate a gradient of fold change up-regulation in 
cluster 3 NEPTUNE participants.  
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Figure 4:  Distribution of TNF patient scores across all profiled participants and by cluster 
membership.   
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Figure 5:  TNF alpha activation was correlated with interstitial fibrosis.   
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Figure 6.  Urinary inflammatory biomarkers correlate with TNF activation score. (A) A prioritization 
schema was applied to identify biomarkers with the most reliable intra-renal mRNA and urine proteomic 
profile correlations. (B) Intra-renal and urine biomarker profile correlation plots in subjects with MCD or 
FSGS for CCL2 (left panel) and TIMP1 (right panel). (C) TNF activation score plotted against urine 
biomarker profiles for MCP1 and TIMP1.  
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Table 1: Baseline characteristics of participants by gene expression cluster.  Continuous, 
normally distributed variables are presented as mean (SD).  Continuous, non-normally distributed 
variables are presented as median (IQR).  Categorical variables are presented as n(%).   

 All  
(N = 123) 

Cluster 1  
(N = 62) 

Cluster 2 
(N = 42) 

Cluster 3  
(N = 19) 

p-value 

Age (years) 29 (22) 17 (16) 39 (23) 44 (18) <0.001 

Black Race 40 (34%) 18 (31%) 12(30%) 10 (53%) 0.17 

Female 41 (35%) 22 (38%) 18 (44%) 6 (32%) 0.31 

FSGS 67 (57%) 22 (38%) 30 (73%) 15 (79%) <0.001 

Disease Duration 
(months) 

4 (1, 26) 4.5 (1.5, 17.5) 6.5 (2, 52) 1.0 (0, 20) 0.06 

eGFR 
(mL/min/1.73m2) 88 (36) 108 (31) 79 (28) 45 (20) <0.001 

UPCR (mg/mg) 1.2 (0.3, 3.5) 0.7 (0.1, 2.7) 1.5 (0.7, 3.6) 2.4 (1.5, 4.6) 0.01 

% IF 5 (1, 19) 1 (0, 5) 9 (4, 19) 27 (18, 56) <0.001 

On RAAS Blockade 
67 (57%) 24 (41%) 31 (76%) 12 (63%) 0.003 

On IST 60 (51%) 37 (64%) 18 (44%) 5 (26%) 0.01 

 
*eGFR: estimated glomerular filtration rate; MCD: Minimal Change Disease; FSGS: Focal Segmental 
Glomerulosclerosis; UPCR: Urine protein to creatinine ratio; IF: Interstitial Fibrosis; RAAS: Renin-
angiotensin Aldosterone System; IST: Immunosuppressive Therapy 

Table 2:  Generalized Estimating Equations (GEE) of eGFR (mL/min/1.73m2) after the baseline visit.  
Separate models for cluster membership and TNF activation score as primary predictors of interest.     

  Univariable Model  Multivariable Model* 

 Predictor Coefficient (95% 
CI) 

 

p-value  Coefficient (95% 
CI) 

p-value 

Model 1: Cluster 
Membership 

Cluster 1 Ref   Ref.  

Cluster 2 -28 (-17, -38) <0.001  -9 (0.5, -19) 0.06 

Cluster 3 -55 (-40, -70) <0.001  -19 (-5, -32) 0.006 

 

Model 2: TNF 
activation Score 

TNF 
Activation 

Score 
-31 (-23, -40) <0.001  -12 (-4, -19) 0.002 

*Multivariable model adjusted for age, sex, race, diagnosis, baseline eGFR, UPCR and time. 
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Table 3:  Logistic Regression of positive TNF activation score  

Luminex  
(n=61, 23 Events) 

Model 1  
c-statistic 0.86 
PPV 79% 
correctly classified 80% 

Model 2 
c-statistic 0.79 
PPV 67% 
Correctly classified 
71% 

Model 3 
c-statistic 0.86 
PPV 82% 
Correctly Classified 80% 

Mode 4 
c-statistic 0.91 
PPV 81% 
Correctly Classified 
84% 

 OR P-value OR P-value OR P-value OR p-value 

Log2(uTIMP1/Creat) 2.23 0.001   1.92 0.03   

Log2(uMCP1/Creat)   2.23 0.001 1.29 0.43   

Age       0.99 0.76 

UPCR       1.99 0.02 

eGFR       0.94 0.001 
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Supplementary Materials 

 
Supplemental Table 1:  Baseline characteristics of ERCB participants by gene expression cluster.  
Continuous, normally distributed variables are presented as mean (SD).  Continuous, non-normally 
distributed variables are presented as median (IQR).  Categorical variables are presented as n(%).  
 

 All  
(N = 30) 

Cluster 1  
(N = 5) 

Cluster 2 
(N =19 ) 

Cluster 3  
(N = 6) 

p-value 
(Clust. 3 vs 

1+2) 

Age (years) Mean (SD) 47(15) 39(18) 48(21) 0.55 

Female N (%) 4 (80%) 8 (42%) 2 (33%) 0.65 

FSGS N (%) 3 (60%) 9 (47%) 5 (83%) 0.19 

eGFR 
(mL/min/1.73m2) 

Mean (SD) 71 (45) 100 (30) 35 (17) <0.001 

*eGFR: estimated glomerular filtration rate; MCD: Minimal Change Disease; FSGS: Focal Segmental 
Glomerulosclerosis. 
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Supplemental Table 2: TNF-regulated genes contributing to the TNF activation score 

 

Entrez 
ID 

Gene 
Symbol 

Entrez 
ID 

Gene 
Symbol 

Entrez 
ID 

Gene 
Symbol 

Entrez 
ID 

Gene 
Symbol 

Entrez 
ID 

Gene 
Symbol 

12 SERPINA3 1436 CSF1R 3575 IL7R 5359 PLSCR1 7127 TNFAIP2 
31 ACACA 1520 CTSS 3587 IL10RA 5696 PSMB8 7128 TNFAIP3 

154 ADRB2 1524 CX3CR1 3606 IL18 5698 PSMB9 7130 TNFAIP6 
165 AEBP1 1536 CYBB 3624 INHBA 5699 PSMB10 7133 TNFRSF1B 
240 ALOX5 1545 CYP1B1 3627 CXCL10 5788 PTPRC 7412 VCAM1 
241 ALOX5AP 1634 DCN 3659 IRF1 5806 PTX3 7424 VEGFC 

330 BIRC3 1848 DUSP6 3676 ITGA4 6036 RNASE2 7474 WNT5A 
355 FAS 1903 S1PR3 3678 ITGA5 6279 S100A8 7852 CXCR4 

567 B2M 1906 EDN1 3683 ITGAL 6288 SAA1 7980 TFPI2 
597 BCL2A1 1958 EGR1 3684 ITGAM 6347 CCL2 8870 IER3 
602 BCL3 1999 ELF3 3685 ITGAV 6351 CCL4 9021 SOCS3 

629 CFB 2113 ETS1 3689 ITGB2 6352 CCL5 9023 CH25H 
718 C3 2213 FCGR2B 3690 ITGB3 6356 CCL11 9180 OSMR 
834 CASP1 2335 FN1 3694 ITGB6 6363 CCL19 9536 PTGES 
837 CASP4 2353 FOS 3725 JUN 6364 CCL20 9636 ISG15 
920 CD4 2634 GBP2 3726 JUNB 6367 CCL22 10512 SEMA3C 

929 CD14 2833 CXCR3 3934 LCN2 6372 CXCL6 10537 UBD 
942 CD86 2920 CXCL2 4050 LTB 6401 SELE 10563 CXCL13 
952 CD38 3082 HGF 4071 TM4SF1 6403 SELP 11221 DUSP10 
958 CD40 3091 HIF1A 4233 MET 6422 SFRP1 25816 TNFAIP8 

960 CD44 3133 HLA-E 4313 MMP2 6772 STAT1 26298 EHF 

1009 CDH11 3383 ICAM1 4318 MMP9 6868 ADAM17 51284 TLR7 
1026 CDKN1A 3428 IFI16 4323 MMP14 6890 TAP1 58191 CXCL16 
1051 CEBPB 3459 IFNGR1 4609 MYC 7040 TGFB1 64332 NFKBIZ 
1191 CLU 3489 IGFBP6 4688 NCF2 7052 TGM2 79689 STEAP4 

1233 CCR4 3554 IL1R1 5054 SERPINE1 7076 TIMP1 112464 PRKCDBP 
1236 CCR7 3563 IL3RA 5284 PIGR 7097 TLR2 114548 NLRP3 
1316 KLF6 3566 IL4R 5328 PLAU 7099 TLR4 414062 CCL3L3 

1435 CSF1 3574 IL7 5329 PLAUR 7124 TNF 729230 CCR2 
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Supplemental Figure 1: Cluster dendrogram of (A) NEPTUNE MCD and FSGS participants based on 
kidney biopsy tubulointerstitial gene expression data and (B) ERCB MCD and FSGS participants based 
on kidney biopsy tubulointerstitial gene expression data. 
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Supplemental Figure 2. Log2 fold changes are presented for each dataset. Genes significantly 
differentially expressed (1,259 genes, q<0.05) in samples from cluster 3 patients for both NEPTUNE and 
ERCB cohorts are presented. 
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