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Abstract 23 

Most eukaryotic genes comprise exons and introns thus requiring the precise removal of 24 

introns from pre-mRNAs to enable protein biosynthesis. U2 and U12 spliceosomes catalyze 25 

this step by recognizing motifs on the transcript in order to remove the introns. A process 26 

which is dependent on precise definition of exon-intron borders by splice sites, which are 27 

consequently highly conserved across species. Only very few combinations of terminal 28 

dinucleotides are frequently observed at intron ends, dominated by the canonical GT-AG 29 

splice sites on the DNA level. 30 

Here we investigate the occurrence of diverse combinations of dinucleotides at predicted 31 

splice sites. Analyzing 121 plant genome sequences based on their annotation revealed 32 

strong splice site conservation across species, annotation errors, and true biological 33 

divergence from canonical splice sites. The frequency of non-canonical splice sites clearly 34 

correlates with their divergence from canonical ones indicating either an accumulation of 35 

probably neutral mutations, or evolution towards canonical splice sites. Strong conservation 36 

across multiple species and non-random accumulation of substitutions in splice sites indicate 37 

a functional relevance of non-canonical splice sites. The average composition of splice sites 38 

across all investigated species is 98.7% for GT-AG, 1.2% for GC-AG, 0.06% for AT-AC, and 39 

0.09% for minor non-canonical splice sites. RNA-Seq data sets of 35 species were 40 

incorporated to validate non-canonical splice site predictions through gaps in sequencing 41 

reads alignments and to demonstrate the expression of affected genes. We conclude that 42 

bona fide non-canonical splice sites are present and appear to be functionally relevant in 43 

most plant genomes, if at low abundance. 44 

 45 

 46 

 47 

 48 
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Introduction 49 

Introns separate eukaryotic genes into exons [1, 2]. After their likely origin as selfish 50 

elements [3], introns subsequently evolved into beneficial components in eukaryotic 51 

genomes [4–6]. Historical debates concerning the evolutionary history of introns led to the 52 

“introns-first-hypothesis” which proposes that introns were already present in the last 53 

common ancestor of all eukaryotes [3, 7]. Although this putative ancestral genome is inferred 54 

to be intron-rich, several plant genomes accumulated more introns during their evolution 55 

generating the highly fragmented gene structures with average intron numbers between six 56 

and seven [8]. Introner elements (IEs) [9], which behave similar to transposable elements, 57 

are one possible mechanism for the amplification of introns [10]. Early introns probably 58 

originated from self-splicing class II introns [3, 11] and evolved into passive elements, that 59 

require removal by eukaryote-specific molecular machineries [11]. No class II introns were 60 

identified in the nuclear genomes of sequenced extant eukaryotes [11] except for 61 

mitochondrial DNA (mtDNA) insertions [12, 13]. 62 

The removal of these introns during pre-mRNA processing is a complex and expensive step, 63 

which involves 5 snoRNAs and over 150 proteins building the spliceosome [14]. In fact, a 64 

major U2 [15] and a minor U12 spliceosome [16] are removing different intron types from 65 

eukaryotic pre-mRNAs [17]. The major U2 spliceosome mostly recognises canonical GT-AG 66 

introns, but is additionally reported to remove AT-AC class I introns [18]. Non-canonical AT-67 

AC class II introns are spliced by the minor U2 spliceosome, which is also capable of 68 

removing some GT-AG introns [18, 19]. Highly conserved cis-regulatory sequences are 69 

required for the correct spliceosome recruitment to designated splice sites [20–22]. Although 70 

these sequences pose potential for deleterious mutations [4], some intron positions are 71 

conserved between very distant eukaryotic species like Homo sapiens and Arabidopsis 72 

thaliana [23].  73 

Among the most important recognition sequences of spliceosomes are dinucleotides at both 74 

ends of spliceosomal introns which show almost no variation from GT at the 5’ end and AG 75 
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at the 3’ end, respectively [24]. Different types of alternative splicing generate diversity at the 76 

transcript level by combining exons in different combinations [25]. This process results in a 77 

substantially increased diversity of peptide sequences [2, 26]. Special splicing cases e.g. 78 

utilizing a single nucleotide within an intron for recursive splicing [27] or generating circular 79 

RNAs [28] are called non-canonical splicing events [25] and build an additional layer of RNA 80 

and proteomic diversity. If this process is based on splice sites differing from GT-AG those 81 

splice sites are called non-canonical. Non-canonical splice sites were first identified before 82 

genome sequences became available on a massive scale (reviewed in [29]). GC-AG and AT-83 

AC are classified as major non-canonical splice site combinations, while all deviations from 84 

these sequences are deemed to be minor non-canonical splice sites. More recently, 85 

advances in sequencing technologies and the development of novel sequence alignment 86 

tools now enable a systematic investigation of non-canonical splicing events [25, 30]. 87 

Comprehensive genome sequence assemblies and large RNA-Seq data sets are publicly 88 

available. Dedicated split-read aligners like STAR [31, 32] are able to detect non-canonical 89 

splice sites during the alignment of RNA-Seq reads to genomic sequences. Numerous 90 

differences in annotated non-canonical splice sites even between accessions of the same 91 

species [30] as well as the extremely low frequency of all non-canonical splice sites indicate 92 

that sequencing, assembly, and annotation are potential major sources of erroneously 93 

inferred splice sites [29, 30, 33]. Distinguishing functional splice sites from degraded 94 

sequences such as in pseudogenes is also still an unsolved issue. Nonetheless, the 95 

combined number of currently inferred minor non-canonical splice site combinations is even 96 

higher than the number of the major non-canonical AT-AC splice site combinations [30, 34].  97 

Here, we analysed 121 whole genome sequences from across the entire plant kingdom to 98 

harness the power of a very large sample size and genomic variation accumulated over 99 

extensive periods of evolutionary time, to better understand splice site combinations. 100 

Although, only a small number of splice sites are considered as non-canonical, the potential 101 

number in 121 species is large. Furthermore, conservation of sequences between these 102 

species over a long evolutionary time scale may also serve as a strong indication for their 103 
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functional relevance. We incorporated RNA-Seq data to differentiate between artifacts and 104 

bona fide cases of active non-canonical splice sites. Active splice sites are revealed by an 105 

RNA-Seq read alignment allowing quantification of splice site activity. We then identified 106 

homologous non-canonical splice sites across species and subjected the genes containing 107 

these splice sites to phylogenetic analyses. Conservation over a long evolutionary time, 108 

expression of the effected gene, and RNA-Seq reads spanning the predicted intron served 109 

as evidence to identify bona fide functional non-canonical splice site combinations.  110 

 111 

Materials & Methods 112 

Collection of data sets and quality control 113 

Genome sequences (FASTA) and the corresponding annotation (GFF3) of 121 plant species 114 

(Additional file 1) were retrieved from the NCBI. Since all annotations were generated by 115 

GNOMON [35], these data sets should have an equal quality and thus allow comparisons 116 

between them. BUSCO v3 [36] was deployed to assess the completeness and duplication 117 

level of all sets of representative peptide sequences using the reference data set 118 

‘embryophyta odb9’. 119 

 120 

Classification of annotated splice sites 121 

Genome sequences and their annotation were processed by a Python script to identify the 122 

representative transcript per gene defined as the transcript that encodes the longest 123 

polypeptide sequence [30, 37]. Like all custom Python scripts relevant for this work, it is 124 

available with additional instructions at https://github.com/bpucker/ncss2018. Genes with 125 

putative annotation errors or inconsistencies were filtered out as done before in similar 126 

analyses [38]. Focusing on the longest peptide is essential to avoid biases caused by 127 

different numbers of annotated isoforms in different species. Splice sites within the coding 128 

sequence of the longest transcripts were analyzed by extracting dinucleotides at the borders 129 
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of all introns. Untranslated regions (UTRs) were avoided due to their more challenging and 130 

thus less reliable prediction [30, 39]. Splice sites and other sequences will be described 131 

based on their encoding DNA sequence (e.g. GT instead of GU for the conserved 132 

dinucleotide at the donor splice site). Based on terminal dinucleotides in introns, splice site 133 

combinations were classified as canonical (GT-AG) or non-canonical if they diverged from 134 

the canonical motif. A more detailed classification into major non-canonical splice site 135 

combinations (GC-AG, AT-AC) and all remaining minor non-canonical splice site 136 

combinations was applied. All following analyses were focused on introns and intron-like 137 

sequences equal or greater than 20 bp. 138 

 139 

Investigation of splice site diversity 140 

A Python script was applied to summarize all annotated combinations of splice sites that 141 

were detected in a representative transcript. The specific profile comprising frequency and 142 

diversity of splice site combinations in individual species was analyzed. Splice site 143 

combinations containing ambiguity characters were masked from this analysis as they are 144 

most likely caused by sequencing or annotation errors. Spearman correlation coefficients 145 

were computed pairwise between the splice site profiles of two species to measure their 146 

similarity. Flanking sequences of CA-GG and GC-AG splice sites in rice were investigated, 147 

because CA-GG splice sites seemed to be the result of an erroneous alignment. The 148 

conservation of flanking sequences was illustrated based on sequence web logos 149 

constructed at https://weblogo.berkeley.edu/logo.cgi. 150 

 151 

Analysis of splice site conservation 152 

Selected protein encoding transcript sequences with non-canonical splice sites were 153 

subjected to a search via BLASTn v2.2.28+ [40] to identify homologues in other species to 154 

investigate the conservation of splice sites across plant species. As proof of concept, one 155 
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previously validated non-canonical splice site containing gene [30], At1g79350 (rna15125), 156 

was investigated in more depth. Homologous transcripts were compared based on their 157 

annotation to investigate the conservation of non-canonical splice sites across species. 158 

Exon-intron structures of selected transcripts were plotted by a Python script using matplotlib 159 

[41] to facilitate manual inspection. 160 

 161 

Validation of annotated splice sites 162 

Publicly available RNA-Seq data sets of different species (Additional file 2) were retrieved 163 

from the Sequence Read Archive [42]. Whenever possible, samples from different tissues 164 

and conditions were included. The selection was restricted to paired-end data sets to provide 165 

a high accuracy during the read mapping. Only species with multiple available data sets were 166 

considered for this analysis. All reads were mapped via STAR v2.5.1b [31] in 2-pass mode to 167 

the corresponding genome sequence using previously described cutoff values [43]. A Python 168 

script utilizing BEDTools v2.25.0 [44] was deployed to convert the resulting BAM files into 169 

customized coverage files. Next, the read coverage depth at all exon-intron borders was 170 

calculated based on the terminal nucleotides of an intron and the flanking exons. Splice sites 171 

were considered as supported by RNA-Seq if the read coverage depth dropped by at least 172 

20% when moving from an exon into an intron (Additional file 3). 173 

 174 

Phylogenetic tree construction 175 

RbcL (large RuBisCO subunit) sequences of almost all investigated species were retrieved 176 

from the NCBI for the construction of a phylogenetic tree. MAFFT v.7 [45] was deployed to 177 

generate an alignment which was trimmed to a minimal occupancy of 60% in each alignment 178 

column and finally subjected to FastTree v.2.1.10 [46] for tree construction. Species without 179 

an available RbcL sequence were integrated manually by constructing subtrees based on 180 

scientific names via phyloT (https://phylot.biobyte.de/). Due to these manual adjustments, the 181 
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branch lengths in the resulting tree are not accurate and only the topology (Additional file 4) 182 

was considered for further analyses. 183 

 184 

Comparison of non-canonical splice sites to overall sequence variation 185 

A previously generated variant data set [47] was used to identify the general pattern of 186 

mutation and variant fixation between the two A. thaliana accessions Columbia-0 and 187 

Niederzenz-1. All homozygous SNPs in a given VCF file were considered for the calculation 188 

of nucleotide substitution rates. Corresponding substitution rates were calculated for all minor 189 

non-canonical splice sites by assuming they originated from the closest sequence among 190 

GT-AG, GC-AG, and AT-AC. General substitution rates in a species were compared against 191 

the observed substitution in minor non-canonical splice sites via Chi2 test. 192 

 193 

Results 194 

Genomic properties of plants and diversity of non-canonical splice sites 195 

Comparison of all genomic data sets revealed an average GC content of 36.3%, an average 196 

percentage of 7.8% of protein encoding sequence, and on average 95.7% of complete 197 

BUSCO genes (Additional file 5). Averaged across all 121 genomes, a genome contains an 198 

average of 27,232 genes with 4.5 introns per gene. The number of introns per gene was only 199 

slightly reduced to 4.15 when only introns enclosed by coding exons were considered for this 200 

analysis.  201 

Our investigation of these 121 plant genome sequences revealed a huge variety of different 202 

non-canonical splice site combinations (Additional file 6, Additional file 7). Nevertheless, 203 

most of all annotated introns display the canonical GT-AG dinucleotides at their borders. 204 

Despite the presence of a huge amount of non-canonical splice sites in almost all plant 205 

genomes, the present types and the frequencies of different types show a huge variation 206 
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between species (Additional file 8). A phylogenetic signal in this data set is weak if it is 207 

present at all. The total number of splice site combinations ranged between 1,505 208 

(Bathycoccus prasinos) and 372,164 (Gossypium arboreum). Algae displayed a very low 209 

number of non-canonical splice site combinations, but other plant genome annotations within 210 

land plants also did not contain any non-canonical splice sites e.g. Ziziphus jujuba. 211 

Eucalyptus grandis displayed the highest number of non-canonical splice site combinations 212 

(2,902). There is a strong correlation between the number of non-canonical splice site 213 

combinations and the total number of splice sites (Spearman correlation coefficient=0.53, p-214 

value=5.5*10-10). However, there is almost no correlation between the number of splice sites 215 

and the genome size (Additional file 9). 216 

 217 

Non-canonical splice sites are likely to be similar to canonical splice sites  218 

There is a negative correlation between the frequency of non-canonical splice site 219 

combinations and their divergence from canonical sequences (r= -0.43 p-value=7e-13; 220 

Fig.1;Additional file 7). Splice sites with one difference to a canonical splice site are more 221 

frequent than more diverged splice sites. A similar trend can be observed around the major 222 

non-canonical splice sites AT-AC (Fig.2) and the canonical GT-AG. Comparison of the 223 

overall nucleotide substitution rate in the plant genome and the divergence of minor non-224 

canonical splice sites from canonical or major non-canonical splice sites revealed significant 225 

differences (p-value=0, Chi2 test). For example, the substitutions of A by C and A by G were 226 

observed with a similar frequency at splice sites, while the substitution of A by G is almost 227 

three times as likely as the A by C substitution between the A. thaliana accessions Col-0 and 228 

Nd-1. 229 

The genome-wide distribution of genes with non-canonical splice sites did not reveal striking 230 

patterns. When looking at the chromosome-level genome sequences of A. thaliana, B. 231 

vulgaris, and V. vinifera (Additional file 10, Additional file 11, Additional file 12), there were 232 

slightly less genes with non-canonical splice sites close to the centromere. However, the total 233 
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number of genes was reduced in these regions as well, so likely correlated with genic 234 

content. 235 

 236 

One interesting species-specific property was the high frequency of non-canonical CA-GG 237 

splice site combinations in Oryza sativa which is accompanied by a low frequency of the 238 

major non-canonical GC-AG splice sites. In total, 233 CA-GG splice site combinations were 239 

identified. However, the transcript sequences can be aligned in a different way to support 240 

GC-AG sites close to and even overlapping with the annotated CA-GG splice sites. RNA-Seq 241 

reads supported 224 of these CA-GG splice sites. Flanking sequences of CA-GG and GC-242 

AG splice sites were extracted and aligned to investigate the reason for these erroneous 243 

transcript alignments (Additional file 13). An additional G directly downstream of the 3’ AG 244 

splice site was only present when this splice site was predicted as GG. Cases where the GC-245 

AG was predicted lack this G thus preventing the annotation of a CA-GG splice site 246 

combination. 247 

 248 

Non-canonical splice sites in single copy genes 249 

To assess the impact of gene copy number on the presence of non-canonical splice sites, we 250 

compared a group of presumably single copy genes against all other genes. The average 251 

percentage of genes with non-canonical splice sites among single copy BUSCO genes was 252 

11.4%. The average percentage among all genes was only 10.4%. This uncorrected 253 

difference between both groups is statistically significant (p=0.04, Mann-Whitney U test), but 254 

species-specific effects were obvious. While the percentage in some species is almost the 255 

same, other species show a much higher percentage of genes with non-canonical splice 256 

sites among BUSCO genes (Additional file 14). A couple of species displayed an inverted 257 

situation, having less genes with non-canonical splice sites among the BUSCO genes than 258 

the genome-wide average. 259 
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 260 

Intron analysis 261 

Length distributions of introns with canonical and non-canonical splice site combinations are 262 

similar in most regions (Fig.3). Most striking differences are the higher abundance of very 263 

short introns with non-canonical splice sites, the lower peak at the most frequent intron 264 

length (around 200 bp),  and the high percentage of introns with non-canonical splice sites 265 

that are longer than 5 kb. Although the total number of introns with canonical splice sites 266 

longer than 5 kb is much higher, the proportion of non-canonical splice sites containing 267 

introns is on average at least twice as high as the proportion of introns with canonical splice 268 

site combinations. These differences between both distributions are significant (Wilcoxon 269 

test, p-value=0.02). 270 

The likelihood of having a non-canonical splice site in a gene is almost perfectly correlated 271 

with the number of introns (Additional file 15). Analyzing this correlation across all plant 272 

species resulted in a sufficiently large sample size to see this effect even in genes with about 273 

40 introns. Insufficient sample sizes kept us from investigating it for genes with even more 274 

introns. 275 

 276 

Conservation of non-canonical splice sites 277 

Non-canonical splice site combinations detected in A. thaliana Col-0 were compared to 278 

single nucleotide polymorphisms of 1,135 accessions which were studied as part of the 1001 279 

genomes project. Of 1,296 non-canonical splice site combinations, 109 overlapped with 280 

listed variant positions. At 21 of those positions, the majority of all accessions displayed the 281 

Col-0 allele, while the remaining 88 positions were dominated by other alleles. 282 

To differentiate between randomly occurring non-canonical splice sites (e.g. sequencing 283 

errors) and true biological variation, the conservation of non-canonical splice sites across 284 

multiple species can be analyzed. This approach was demonstrated for the selected 285 
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candidate At1g79350 (rna15125). Manual inspection revealed that non-canonical splice sites 286 

were conserved in three positions in many putative homologous genes across various 287 

species (Additional file 16). 288 

 289 

RNA-Seq-based validation of annotated splice sites 290 

RNA-Seq reads of 35 different species (Additional file 2) were mapped to the respective 291 

genome sequence to allow the validation of splice sites based on changes in the read 292 

coverage depth (Additional file 3, Additional file 17). Validation ratios of all splice sites ranged 293 

from 75.5% in Medicago truncatula to 96.4% in Musa acuminata. A moderate correlation 294 

(r=0.46) between the amount of RNA-Seq reads and the ratio of validated splice sites was 295 

observed (Additional file 18). When only considering non-canonical splice sites, the validation 296 

ranged from 15.2% to 91.3% displaying a similar correlation with the amount of sequencing 297 

reads. Based on validated splice sites, the proportion of different splice site combinations 298 

was analyzed across all species (Fig.4). The average percentages are approximately 98.7% 299 

for GT-AG, 1.2% for GC-AG, 0.06% for AT-AC, and 0.09% for all other minor splice site 300 

combinations. Medicago truncatula, Oryza sativa, Populus trichocarpa, Monoraphidium 301 

neglectum, and Morus notabilis displayed substantially lower validation values for the major 302 

non-canonical splice sites. 303 

 304 

Quantification of splice site usage 305 

Based on mapped RNA-Seq reads, the usage of different splice sites was quantified (Fig.5; 306 

doi:10.4119/unibi/2931315). Canonical GT-AG splice site combinations displayed the 307 

strongest RNA-Seq read coverage drop when moving from an exon into an intron (Additional 308 

file 3). There was a substantial difference in average splice site usage between 5’ and the 3’ 309 

ends of GT-AG introns. The same trend holds true for major non-canonical GC-AG splice site 310 

combinations, while the total splice site usage is lower. Major non-canonical AT-AC and 311 
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minor non-canonical splice sites did not show a difference between 5’ and 3’ end. However, 312 

the total usage values of AT-AC are even lower than the values of GC-AG splice sites. 313 

There is a significant correlation between the usage of a 5’ splice site and the corresponding 314 

3’ splice site. However, the Spearman correlation coefficient varies between all four groups 315 

of splice sites ranging from 0.42 in minor non-canonical splice site combinations to 0.82 in 316 

major non-canonical AT-AC splice site combinations. 317 

 318 

 319 

Discussion 320 

This inspection of non-canonical splice sites annotated in plant genome sequences was 321 

performed to capture the diversity and to assess the validity of these annotations, because 322 

previous studies indicate that annotations of non-canonical splice sites are a mixture of 323 

artifacts and bona fide splice sites [29, 34, 48]. Our results update and expand previous 324 

systematic analyses of non-canonical splice sites in smaller data sets [29, 30, 33, 34]. An 325 

extended knowledge about non-canonical splice sites in plants could benefit gene predictions 326 

[30, 49], as novel genome sequences are often annotated by lifting an existing annotation.  327 

 328 

Confirmation of bona fide splicing from minor non-canonical combinations 329 

Our analyses supported a variety of different non-canonical splice sites matching previous 330 

reports of bona fide non-canonical splice sites [29, 30, 34, 48]. Frequencies of different minor 331 

non-canonical splice site combinations are not random and vary between different 332 

combinations. Those combinations similar to the canonical combination or the major non-333 

canonical splice site combinations are more frequent. Furthermore, our RNA-Seq analyses 334 

demonstrate the actual use of non-canonical splice sites, revealing a huge variety of different 335 

transcripts derived from non-canonical splice sites, which may be evolutionarily significant. 336 
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Although, some non-canonical splice sites may be located in pseudogenes, the 337 

transcriptional activity and accurate splicing at most non-canonical splice sites indicates 338 

functional relevance e.g. by contributing to functional diversity as previously postulated [2, 339 

25, 26]. These findings are consistent with published reports that have demonstrated 340 

functional RNAs generated from non-canonical splice sites [30, 50]. 341 

In general, the pattern of non-canonical splice sites is very similar between species with 342 

major non-canonical splice sites accounting for most cases of non-canonical splicing. While 343 

the average across plants of 98.7% GT-AG canonical splice sites is in agreement with recent 344 

reports for A. thaliana [30], it is slightly lower than 99.2 % predicted for mammals [33] or 345 

99.3% as previously reported for Arabidopsis based on cDNAs [51]. In contrast, the 346 

frequency of major non-canonical GC-AG splice sites in plants is almost twice the value 347 

reported for mammals [33]. Most importantly the proportion of 0.09% minor non-canonical 348 

splice site combinations in plants is substantially higher than the estimation of 0.02% initially 349 

reported for mammals [33]. Taking these findings together, both major and minor non-350 

canonical splice sites could be a more significant phenomenon of splicing in plants than in 351 

animals. This hypothesis would be consistent with the notion that splicing in plants is a more 352 

complex and diverse process than that occurring in metazoan lineages [52–54]. An in-depth 353 

investigation of non-canonical splice sites in animals and fungi would be needed to validate 354 

this hypothesis. 355 

 356 

Species-specific differences in minor non-canonical splice site combinations 357 

As previous studies on non-canonical splice sites were often focused on one species [51] or 358 

a few model organisms [33, 34, 38], the observed variation among the plant genomes 359 

investigated here updates the current knowledge and revealed potential species-specific 360 

differences. The group of minor non-canonical splice sites displayed the largest variation 361 

between species, and a frequent non-canonical splice site combination (CA-GG) which 362 

appeared peculiar to O. sativa is probably due to an alignment error. In other words, the 363 
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predicted CA-GG splice site combinations in rice can be conceived as major non-canonical 364 

GC-AG events by just splitting the transcript sequence in a different way during the alignment 365 

over the intron. An additional downstream G at the 3’ splice site seems to be responsible for 366 

leading to this annotation, because cases where GC-AG was correctly annotated do not 367 

display this G in the respective position. Dedicated alignment tools are needed to 368 

bioinformatically distinguish these events [55], otherwise manual inspection must be used to 369 

correctly resolve these situations.  370 

Despite all artifacts described here and elsewhere [29, 33, 56], non-canonical splice sites 371 

seem to have conserved functions as indicated by conservation over long evolutionary 372 

periods displayed as presence in homologous sequences in multiple species [23, 29]. Our 373 

own analyses across multiple accessions of A. thaliana support this conjecture and suggest 374 

that some non-canonical splice sites are conserved in homologous loci at the intra-specific 375 

level. At the same time, there is intra-specific variability [30] that might be attributed to the 376 

accumulation of mutations prior to purifying selection. Assessing the variability within a 377 

species could be an additional approach to distinguish bona fide splice sites from artifacts or 378 

recent mutations. 379 

 380 

Putative mechanisms for processing of minor non-canonical splice sites 381 

We sought to understand possible correlations with minor non-canonical splice site 382 

combinations in order understand the mechanisms driving their occurrence. Therefore, we 383 

explored the impact of genomic position relative to centromeres, the effect of increased gene 384 

number, and the impact of intron length. The occurrence of non-canonical splice sites is 385 

reduced with proximity to the centromere, but this is likely due to reduced gene content in 386 

centromeric regions. Averaged across all species, there a significantly higher proportion of 387 

non-canonical sites in single copy genes, but species-specific differences also violate this 388 

observation, suggesting that gene copy number is not an important determinant. However, 389 

non-canonical splice sites may be more important in splicing very long introns, because they 390 
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appear in introns above 5 kb with a higher relative likelihood than canonical splice sites. 391 

Previous studies postulated different non-spliceosomal removal mechanisms for such introns 392 

including the IRE1 / tRNA ligase system [57, 58] and short direct repeats leading to 393 

transcriptional slippage [59, 60]. It should be mentioned that many sequence variants of 394 

snRNAs are encoded in plant genomes [61]. The presence of multiple spliceosome types in 395 

addition to the canonical U2 and the non-canonical U12 spliceosome could be another 396 

explanation [38]. 397 

Another hypothesis suggests parasitic splice sites using neighbouring recognition sites for 398 

the splicing machinery to enable their processing [33]. The mere presence of GT close to the 399 

5’ non-canonical splice site and AG close to the 3’ non-canonical splice site might be 400 

sufficient for this process to take place. These non-canonical splice sites are expected to be 401 

in frame with the associated GT-AG signals which could be responsible for recruiting the 402 

splicing machinery [33]. This hypothesis is supported by the observation that splice sites 403 

seem to be missed sometimes thus leading to the use of the next splice site which is usually 404 

in frame with the original one [51].  Further investigation might connect neighbouring 405 

sequences to the processing of minor non-canonical splice sites. 406 

There is no evidence for RNA editing to modify splice sites yet, but previous studies found 407 

that modifications of mRNAs are necessary to enable proper splicing in some cases [62]. 408 

Even so such a system is probably not in place for all minor non-canonical splice sites, a 409 

modification of nucleotides in the transcript would be another way to regulate gene 410 

expression at the post-transcriptional level. 411 

Although, these hypotheses could be an additional or alternative explanations for the 412 

situation observed in O. sativa, considering the CA-GG cases as annotation and alignment 413 

errors seems more likely due to their unique presence in this species. 414 

 415 

Usage of non-canonical splice sites 416 
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Our results could provide a strong foundation to further analyses of the splicing process by 417 

providing detailed information about the frequency at which splicing occurred at a certain 418 

splice site. The results indicate that this usage of different splice site types could vary 419 

substantially. A possible explanation for these observed differences is the mixture of RNA-420 

Seq data sets, which contains samples from various tissues and different environmental or 421 

physiological conditions. Sequencing reads reflect the splicing events occurring under these 422 

specific conditions. As previously indicated  by several reports, non-canonical splice sites 423 

might be more frequently used under stress conditions [25, 48, 60]. 424 

The observation of a stronger usage of the donor splice site over the acceptor splice site in 425 

GT-AG and GC-AG splice site combinations is matching previous reports where one donor 426 

splice site can be associated with multiple acceptor splice sites [51, 63]. The absence of this 427 

effect at minor non-canonical splice site combinations might hint towards a different splicing 428 

mechanism, which is restricted to precisely one combination of donor and acceptor splice 429 

site. 430 

 431 

Limitations of the current analyses 432 

Some constraints limit the power of the presented analyses. In accordance with the important 433 

plant database Araport11 [37] and previous analyses [30], only the transcript encoding the 434 

longest peptide sequence was considered when investigating splice site conservation across 435 

species. Although the exclusion of alternative transcripts was necessary to compensate 436 

differences in the annotation quality, more non-canonical splice sites could be revealed by 437 

investigations of all transcript versions in the future. The exclusion of annotated introns 438 

shorter than 20 bp as well as the minimal intron length cutoff of 20 bp during the RNA-Seq 439 

read mapping prevented the investigation of very small introns. Although recent reports 440 

indicate a minimal intron length of less than 30 bp in humans [64], it is unclear if very short 441 

sequences should be called introns. Since spliceosomal removal of these very short 442 

sequences via lariat formation seems unlikely, a new terminology might be needed. The 443 
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applied length cutoff was selected to avoid previously reported issues with false positives 444 

[48]. However, de novo identification of very short introns as recently performed for Mus 445 

musculus and H. sapiens [48, 65] could become feasible as RNA-Seq data sets based on 446 

similar protocols become available for a broad range of plant species. Variations between 447 

RNA-Seq samples posed another challenge. Since there is a substantial amount of variation 448 

within species [66, 67], we can assume that small differences in the genetic background of 449 

the analyzed material could bias the results. Splice sites of interest might be canonical splice 450 

site combinations in some accessions or subspecies, respectively, while they are non-451 

canonical in others. Despite our attempts to collect RNA-Seq samples derived from a broad 452 

range of different conditions and tissues for each species, data of many specific physiological 453 

states are missing for most species. Therefore, we cannot exclude that certain non-canonical 454 

splice sites were missed in our splice site usage analysis due to a lack of gene expression 455 

under the investigated conditions.  456 

 457 

Future Perspectives 458 

As costs for RNA-Seq data generation drops over the years [68], improved analyses will 459 

become possible over time. Investigation of homologous non-canonical splice sites poses 460 

several difficulties, as the exonic sequence is not necessarily conserved. Due to upstream 461 

changes in the exon-intron structure [69], the number of the non-canonical intron can differ 462 

between species. However, a computationally feasible approach to investigate the phylogeny 463 

of all non-canonical splice sites would significantly enhance our knowledge e.g. about the 464 

emergence and loss of non-canonical splice sites. Experimental validation of splice sites in 465 

vivo and in vitro could be the next step. It is crucial for such analyses to avoid biases 466 

introduced by reverse transcription artifacts e.g. by comparing different enzymes and 467 

avoiding random hexameters during cDNA synthesis [70]. Splice sites could be 468 

experimentally validated e.g. by integration in the Aequoria vicotria GFP sequence [71] to 469 

see if they are functional in plants. Our analyses support the concept that differences 470 
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between plant species need to be taken into account when performing such investigations 471 

[72, 73]. 472 
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validate splice sites. The read coverage depth should drop when moving from an exon into 660 

an intron. Red arrows indicate the four positions considered for this analysis. 661 

Additional file 4. Phylogenetic tree. RbcL sequences were used to construct a 662 

phylogenetic tree of all species involved in the analysis. Missing data points were corrected 663 

by relying on the NCBI taxonomy thus the branch lengths are not to scale. 664 

Additional file 5. Genome statistics. Statistical information about each analyzed genome 665 

sequence and the average values across all species are listed. 666 
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Additional file 6. Number of splice sites per species. Canonical and non-canonical splice 667 

sites were counted per species as described in the method section. 668 

Additional file 7. Splice site diversity per species. The occurrence of all possible splice 669 

site combinations was counted for all species as described in the method section. 670 

Additional file 8. Similarity of the non-canonical splice site pattern across plants. The 671 

Spearman correlation coefficient between each pair of plants was calculated based on the 672 

observed frequency of all possible splice site combinations. Red color indicates similarity 673 

while blue color indicates substantial differences. 674 

Additional file 9. Correlation of splice site frequencies with genome size. For each 675 

investigated species the number of canonical and non-canonical splice sites is displayed. 676 

The Spearman correlation coefficient between splice site number and genome size is r=0.14 677 

for canonical splice sites and r=0.02 for non-canonical splice sites. 678 

Additional file 10. Genome-wide distribution of non-canonical splice sites in A. 679 

thaliana. The distribution of genes with non-canonical splice sites (red dots) across the five 680 

chromosome sequences (black lines) of A. thaliana was analysed. 681 

Additional file 11. Genome-wide distribution of non-canonical splice sites in B. 682 

vulgaris. The distribution of genes with non-canonical splice sites (red dots) across the nine 683 

chromosome sequences (black lines) of B. vulgaris was analysed. 684 

Additional file 12. Genome-wide distribution of non-canonical splice sites in V.vinifera. 685 

The distribution of genes with non-canonical splice sites (red dots) across the nineteen 686 

chromosome sequences (black lines) of V. vinifera was analysed. 687 

Additional file 13. Conserved sequences around splice sites in Oryza sativa. Predicted 688 

splice site combinations observed in Oryza sativa are indicated by a black line below them. 689 

Donor splice sites are on the left, acceptor splice sites on the right. The minor non-canonical 690 

splice combination CA-GG at the top could be converted into the major non-canonical GC-691 

AG combination by just shifting one nucleotide to the left. The presence of two Gs at the 692 
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acceptor splice site seems to correlate with the prediction of this CA-GG splice site 693 

combination instead of a major non-canonical GC-AG.  694 

Additional file 14. Non-canonical splice sites in single copy genes. The occurrence of 695 

non-canonical splice sites in single copy genes (BUSCO) and in all genes was assessed per 696 

species. 697 

Additional file 15. Proportion of non-canonical splice sites. The green line indicates the 698 

average (median) proportion of genes with a non-canonical splice site combination. Grey 699 

lines indicate the range between 25% and 75% quantiles. Genes with more introns are more 700 

likely to have a non-canonical splice site combination. There is an almost perfect correlation 701 

up to 40 introns per gene. Insufficient sample sizes above this intron number prevent further 702 

analyses.  703 

Additional file 16. Conservation of non-canonical splice sites. Non-canonical splice sites 704 

at conserved positions in putative homologous of At1g79350 across various species. 705 

Additional file 17. Supported splice sites. Percentage of splice sites supported by RNA-706 

Seq reads is given per species.  707 

Additional file 18. RNA-Seq data set sizes. There is a moderate correlation between the 708 

amount of bases in the used RNA-Seq data sets and the number of supported splice sites. 709 

The trend is similar for canonical (r=0.46) and non-canonical (r=0.43) splice site 710 

combinations.  711 

 712 

 713 

Fig. 1: Correlation between splice site sequence divergence and frequency. Spearman 714 

correlation coefficient between the splice site combination divergence from the canonical GT-715 

AG and their frequency is r=-0.43 (p-value = 7*10-13). 716 
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Fig. 2: Splice site combination frequency. The frequencies of selected splice site 717 

combinations across 121 plant species are displayed. Splice site combinations with high 718 

similarity to the canonical GT-AG or the major non-canonical GC-AG/AT-AC are more 719 

frequent than other splice site combinations. 720 

Fig. 3: Intron length distribution. Length distribution of introns with canonical (green) and 721 

non-canonical (red) splice site combinations are displayed. Values of all species are 722 

combined in this plot resulting in a consensus curve. Most striking differences are (1) at the 723 

intron length peak around 200 bp where non-canonical splice site combinations are less 724 

likely and (2) at very long intron lengths where introns with non-canonical splice sites are 725 

more likely.  726 

Fig. 4: Splice site frequency. Occurrences of the canonical GT-AG, the major non-727 

canonical GC-AG and AT-AC as well as the combined occurrences of all minor non-728 

canonical splice sites (others) are displayed. The proportion of GT-AG is about 98.7%. There 729 

is some variation, but most species show GC-AG at about 1.2% and AT-AC at 0.06%. All 730 

others combined account usually for about 0.09% as well. 731 

Fig. 5: Usage of splice sites. Usage of splice sites was calculated based on the number of 732 

RNA-Seq reads supporting the exon next to a splice site and the number of reads supporting 733 

the intron containing the splice site. There is a substantial difference between the usage of 5’ 734 

and 3’ splice sites in favor of the 5’ splice sites. Canonical GT-AG splice site combinations 735 

are used more often than major or minor non-canonical splice site combinations.  736 

 737 
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