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Abstract 
 
Recent work has provided strong empirical support for the classic polygenic 
model for trait variation. Population-based findings suggest that most regions of 
genome harbor variation affecting most traits. This view is hard to reconcile with 
the experience of researchers who define gene functions using mutagenesis, 
comparing mutants one at a time to the wild type. Here, we use the approach of 
experimental genetics to show that indeed, most genomic regions carry variants 
with detectable effects on complex traits. We used high-throughput phenotyping 
to characterize demography as a multivariate trait in growing populations of 
Caenorhabditis elegans sensitized by nickel stress. We show that demography 
under these conditions is genetically complex in a panel of recombinant inbred 
lines. We then focused on a 1.4-Mb region of the X chromosome. When we 
compared two near isogenic lines (NILs) that differ only at this region, they were 
phenotypically indistinguishable. When we used additional NILs to subdivide the 
region into fifteen intervals, each encompassing ~0.001 of the genome, we found 
that eleven of intervals have significant effects. These effects are often similar in 
magnitude to those of genome-wide significant QTLs mapped in the recombinant 
inbred lines but are antagonized by the effects of variants in adjacent intervals. 
Contrary to the expectation of small additive effects, our findings point to large-
effect variants whose effects are masked by epistasis or linkage disequilibrium 
between alleles of opposing effect.  
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Understanding the genetic architecture of complex traits is a primary goal of 

quantitative genetics. For more than a century, experimental and theoretical 
studies have examined the extent to which phenotypes are polygenic and the 
distributions of effect sizes associated with genomic loci underlying observed 
variation. Evidence from experimental studies describing quantitative trait 
variation suggests that polygeny is the norm (Boyle et al., 2017; Mackay et al., 
2009; Rockman, 2012). For example, recent analyses of human genetic variation 
have inferred that the majority of 1-Mb windows harbor variation that affects 
schizophrenia risk (Loh et al., 2015), and most 100-kb windows affect height 
(Boyle et al., 2017). These estimates require assumptions about the relationship 
between allele frequency, effect size, and linkage disequilibrium (reviewed by 
Yang et al., 2017), and direct assessment of individual polygene effects is difficult 
in the context of small effects, complex genetic backgrounds, and low minor 
allele frequencies. Here, we use a classical genetics approach to isolate small 
genomic intervals and directly assess their effects on complex traits. We ask, for 
samples of 0.001 of a genome, do the genetic differences between a single pair 
of chromosomes sampled from a population affect complex trait variation? 

 
The ability to identify loci associated with trait variation is dependent on the 

constitution of the mapping population and the number of measurements. Two of 
the most commonly used types of mapping populations are recombinant inbred 
lines (RILs) and near-isogenic lines (NILs). RILs leverage genotypic replication 
across random backgrounds, whereas NILs control for background by holding it 
constant (Doroszuk et al., 2009; Eshed and Zamir, 1995; Keurentjes et al., 2007; 
Koumproglou et al., 2002; Shao et al., 2010). RILs provide an efficient way to 
survey the whole genome for loci with significant marginal effects across multiple 
backgrounds, but those multiple backgrounds also contribute phenotypic 
variation. Thus, when comparing the phenotype distributions for two genotype 
classes at a given genetic marker, RILs have abundant variation within each 
class due to segregating genetic effects. With NILs, those background effects are 
eliminated, providing greater power to detect differences between focal 
genotypes. Moreover, when alleles have effects only in certain backgrounds, 
their marginal effects, detected in RILs, may be quite modest and hard to detect; 
in NILs, where the background is fixed, epistatic effects are converted to all or 
none, depending on the background. 

 
We characterized polygene effects directly by using high-throughput 

phenotyping and high levels of replication to measure heritable differences 
among almost-identical genotypes. Caenorhabditis elegans is well suited for this 
type of study, as it is small, has a very short generation time, and is naturally 
inbred (Barriere and Felix, 2005; Frezal and Felix, 2015; Gray and Cutter, 2014). 
These features allow for relatively quick construction of RILs and NILs, and 
assaying animals in 96-well plates. Although many traits in C. elegans have a 
simple genetic basis (e.g., Palopoli et al., 2008; Ghosh et al., 2012; Zdraljevic et 
al., 2017), complex traits in C. elegans often have polygenic architectures similar 
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to those seen in humans (Noble et al., 2017). We used a sensitizing condition, 
excess of the metal nickel, to expose variation that might not be visible under 
favorable laboratory conditions, and we measured individual and population 
growth rates as a multivariate phenotype. We assayed a large set of recombinant 
inbred advanced intercross lines (RIAILs; Andersen et al., 2015) from a cross of 
strains N2 and CB4856, and a collection of NILs carrying small regions of 
CB4856 donor genome on the X chromosome within an otherwise N2 
background (Bernstein and Rockman, 2016) (Figure 1). 

 
 

 
Figure 1. X chromosomes of the two genetic mapping panels. Left: Sixteen of 
282 Recombinant Inbred Advanced Intercross Lines, each homozygous for a 
unique mosaic of N2 (orange) and CB4856 (blue) genome. At any specific 
marker, approximately half the lines are homozygous N2 and the remainder 
homozygous CB4856. Right: Near Isogenic Lines derive almost entirely from the 
N2 background but carry small regions of CB4856 genome with a 1.4 Mb region 
on the X chromosome. Each CB4856 interval shares a common right end, so that 
pairs of most-similar strains differ only by 53-148 kb of genome. In both panels, 
every strain also carries qgIR1, a 110-kb introgression of CB4856 genome at 4.8 
Mb; this introgression carries the ancestral allele of npr-1, where N2 carries a 
laboratory mutation.    
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Results 
 
High-throughput multivariate phenotyping in RIAILs 

To characterize the genetic basis for variation in growth and reproduction, 
we used a previously established pipeline for high-throughput population 
phenotyping (Andersen et al., 2015; Zdraljevic et al., 2017). We phenotyped N2, 
CB4856, and 282 RIAILs in liquid cultures containing 350 µM nickel chloride. We 
chose NiCl2 because a preliminary survey of diverse stressors suggested that the 
left side of the X chromosome carried a QTL for a nickel-by-genotype interaction 
(data not shown). After placing three L4 hermaphrodites in each well of a 
microtiter plate and allowing them to mature and produce progeny over four 
days, we passed each resulting population through a COPAS BIOSORT large-
particle sorter (Union Biometrica). The sorter counts the number of animals in 
each well, and for each animal it measures time of flight, which serves as a 
measure of body length; extinction, an optical density measure that is a function 
of body length, size, and composition; and autofluorescence. Body length is a 
good proxy for the developmental stage of each animal, allowing us to estimate 
the proportions of different developmental stages, L1, L2+L3, L4, and adult 
animals, in each well (L2 and L3 larvae cannot be reliably distinguished in this 
assay). These stage assignments are based on control conditions, and they 
could be less consistent under nickel stress because growth rate is reduced. The 
four life-stage proportions within a well must sum to one, so we can use any 
three proportions to provide a description of the age-structure of the well. We 
combined offspring number and age-structure into a four-dimensional 
demographic-state phenotype vector (“demography”) for our subsequent genetic 
analyses. Assays were completed in 10 blocks (assay days), and trait values 
were adjusted for assay-day effects by regression (see Methods).  
 
Demography is heritable  

The parental strains, N2 and CB4856, differ significantly in their 
demographies (MANOVA, F4,15 = 18.2, p = 1.3 x 10-5). N2 has more progeny and 
a greater proportion of the progeny were measured as adults, consistent with a 
developmental delay in CB4856 relative to N2.  

To determine the genetic contributions to the trait variation we observed, we 
estimated the broad-sense heritability of demography. We used the phenotypic 
variance among replicates of each of the parental genotypes to estimate 
environmental variance, interpreting the excess phenotypic variance among the 
RIAILs as genetic variance (Brem and Kruglyak, 2005). This method yields 
estimated broad-sense heritabilities of 0.71 to 0.88 for the four components of 
the demography phenotype, all significantly greater than zero based on a 
permutation-derived null distribution (p < 0.01).  
 
QTL identified among the RIAILs are antagonistic  

We performed multivariate QTL mapping to identify regions of the genome 
that influence demography in the RIAILs. We employed simple multivariate 
marker regression (Knott and Haley, 2000) on the assay-corrected RIAIL 
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phenotypes, and we used a forward search strategy with a genome-wide p=0.05 
permutation-based residual empirical threshold (Doerge and Churchill, 1996). 
This approach identified seven significant QTL (Figure 2A). The effects of the 
CB4856 allele at each QTL, projected into bivariate space, are plotted in Figure 
2B. Most of the QTL influence multiple aspects of demography, though several 
are restricted to one or a few trait axes. For example, QTL 5 affects the L2/L3 
and adult proportions, but has little effect on L1 proportion or progeny number. 
QTL 7 influences number of progeny but is nearly orthogonal to the other axes. 
Moreover, the estimated effects are in both directions for each trait, indicating 
that parental strains carry mixtures of antagonistic alleles.  

 
Figure 2. Multivariate demography QTL. A. Multivariate QTL scans with a forward 
search strategy resulted in a seven-locus genetic model. Test statistic profiles (-
log10(p)) for seven sequential scans are plotted in different colors, and the QTL 
retained from each scan indicated by its number. B. Bivariate projections of the 
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QTL effects. Each vector shows the estimated effect of the CB4856 genotype at 
the indicated QTL, numbered and colored as in panel A.   
 

We found no evidence for pairwise or higher-order epistasis among the 
detected QTL (p = 0.54 and 0.80 for comparisons to a purely additive model), 
and the seven-QTL model explains 10, 21, 14, and 31% of the variance in the 
assay-corrected brood size and L1, L2/L3, and adult proportions, respectively.  
As the estimated broad-sense heritabilities ranged from 0.71 to 0.88, the great 
majority of the total genetic variance for each measured trait is not explained by 
the additive effects of these large-effect QTL.        
 
Near Isogenic Lines provide a direct test of a polygenic architecture  

One possible genetic model for our traits ascribes the unexplained heritable 
variation to a large number of variants spread across the genome. Under this 
polygenic model, any region of the genome is likely to harbor phenotypically 
penetrant variants. We used a panel of 16 Near Isogenic Lines to test 15 
consecutive intervals of 53-148 kb (that is, ~0.001 of the 100 Mb genome) spread 
along a 1.4 Mb region on the X chromosome (Bernstein and Rockman, 2016). 
Among the RIAILs, this region exhibits elevated but non-significant linkage to 
demographic traits (Figure 2A). The NILs allow for straightforward tests, 
comparing two strains that differ only in a single interval, with any phenotypic 
differences attributable to genetic differences in that interval. These strains 
simultaneously enable us to control for loci outside the interval (thereby removing 
a major source of within-marker-class variation), and they expose the variation 
within the interval that could be masked by tightly linked antagonistic QTL. In 
total, there are 1,838 SNPs and 635 indels in the NIL interval (Thompson et al., 
2015). We assayed growth across three independent experiments. In each of the 
three experiments, each strain was grown up in five replicate populations over 
several generations to control for shared environmental effects and then 
assigned to a random well position that was fixed across 9 to 11 replicate plates 
within that assay day. In total, we measured NIL demography in 2,312 wells, an 
average of 145 wells per strain. The design allows us to test the effect of 
genotype while accounting for variation due to experimental factors. Note that our 
NIL analysis compares two genotypic classes, each measured approximately 
145 times, while in the RIAIL analysis, each marker genotype class is present in 
approximately 141 (=282/2) strains.  

We used univariate mixed-effect models to extract phenotype values (Best 
Linear Unbiased Predictors) for each of the 12 to 15 replicate populations of each 
NIL, accounting for variation due to assay day, assay plate within each assay 
day, and well position. We then applied a fixed-effect multivariate model to 
estimate each strain’s demography phenotype. As shown in Figure 3, the NILs 
vary in demography. However, most of the variation is confined to a subspace, 
as the L1 proportion and L2/L3 proportion are highly negatively correlated. 
Moreover, the parental NILs, one entirely N2 and the other entirely CB4856 
within the NIL region and otherwise genetically identical, have very similar 
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phenotypes and are not significantly different from one another (MANOVA, F4,218 
= 2.41, p>0.05).  

 

 
 
Figure 3. Multivariate phenotypes of 16 Near Isogenic Lines. The filled circles 
represent the NILs that are entirely CB4856 (blue) or entirely N2 (orange) within 
the 1.4Mb NIL interval (as shown at right, as in Figure 1). The other NILs are 
plotted as open circles, connected to one another in the sequence shown at right.  
 
Multiple QTLs within the NIL interval 

We tested whether the demography phenotype of each strain differed 
significantly from that of the genetically adjacent strain, thereby testing each of 
fifteen genomic intervals. Eleven of the fifteen intervals contained significant 
QTLs, at a Bonferroni-adjusted p-value threshold of 0.003 (Figure 4A).  

The estimated effects of each NIL interval are plotted in Figure 4B, and they 
reveal several striking patterns. First, as in the case of the RIAILs, the effects 
point in both directions for each trait, indicating that the NIL region harbors a 
mixture of antagonistic QTL. Adjacent intervals often have effects in opposite 
directions. For example, intervals l, m, n, and o result in alternate increase, 
decrease, increase, and decrease in the number of progeny, cancelling one 
another’s effects. Second, the effects are generally aligned (i.e., the vectors are 
correlated), consistent with the reduced range of variation in certain axes of 
phenotypic variation. For example, most of the intervals have pleiotropic effects 
that act antagonistically on L1 proportion and L2/L3 proportion, and all intervals 
that increase progeny number decrease adult proportion. Nevertheless, as for 
the RIAILs, some of the NIL QTL affect only one or a few of the phenotypic axes. 
For example, interval a acts almost exclusively on adult proportion, and interval c 
on progeny number. In general, the orientations of the effects are quite different 
from those observed for the QTL detected in the RIAILs (Figure 2B), indicating a 
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substantially different genetic correlation structure in the two experimental 
panels. Finally, the magnitudes of the effects in the NILs are large, comparable to 
those detected in the RIAILs. For example, many of the NIL interval effects 
change the number of progeny per animal by ten offspring.   

 
Figure 4. NILs reveal antagonistic QTLs. A. The genotypes of the 16 NILs, 

at left, define 15 intervals (a-o). By comparing strains that differ only in a single 
interval, we tested for the effect of the interval on demography, with the results 
plotted as -log10 of the p-value. The bar plot at right shows the number of SNPs 
and indels in each interval. Eleven intervals show significant effects. Each 
significant point is colored to facilitate comparison with panel B. B. Estimated 
effects of the CB4856 genotype for each significant NIL interval. Note that these 
effects represent the vectors that connect the NILs in the phenotype space 
plotted in figure 3.  
 

Simple extrapolation to the 100-Mb genome implies that N2 and CB4856 
differ in more than 700 100-kb intervals with significant effects on demography. 
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The large effect sizes in the NILs raise the question of whether a genome full of 
such effects is consistent with the variation observed from genome-wide 
segregation in the RIAILs. We therefore simulated a RIAIL phenotype (offspring 
number) by assigning effects to a random 700 of the 1454 markers genotyped in 
the RIAILs, with effects drawn from a normal distribution with the inferred NIL 
effect-size variance. In 10,000 simulated datasets, the simulated RIAIL variance 
was on average 10 times greater than the observed RIAIL variance, and never 
as low as the observed variance. We next simulated effect sizes as uniformly 
distributed across the range inferred for the NILs, a distribution more similar to 
the observed pattern. The simulated RIAILs had phenotypic variance on average 
seven times the observed variance, and again, never as low as the observed 
variance. These results suggest that either the causal variants do not act 
additively, or that effects of opposite sign tend to be tightly linked more than 
expected under a random distribution of effect signs (i.e., adjacent antagonistic 
QTLs cancel one another).  

 
Discussion 

Our NIL-based analysis of small genomic region provides a simple and 
direct validation of polygeny: most intervals carry segregating variation that 
affects a complex trait. We used multivariate quantitative genetic analysis to 
examine the genetic basis for demographic variation in C. elegans. Both of our 
experimental panels, RIAILs and NILs, revealed that two strains, CB4856 and 
N2, harbor large numbers of allelic differences that affect demographic traits. 
RIAILs identified significant loci, but most of the heritable variation remained 
unexplained. When we examined one region of genome more closely, using 
NILs, we discovered that most small genomic intervals carry phenotypically 
penetrant variants.  

Eleven of fifteen intervals, each ~95 kb, had significant effects on the 
phenotypes. The focal region of the X chromosome is not particularly noteworthy 
with regard to trait variation as a whole in these strains (Andersen et al., 2015). 
Its SNP density is similar to the X chromosome arms as a whole, and the X 
chromosome arms are considerably less SNP-dense and indel-dense than the 
autosome arms (Thompson et al., 2015). Our simple extrapolation to more than 
700 causal intervals genomewide is likely conservative, given the probability that 
tightly linked variants within the four non-significant intervals may cancel each 
others’ effects, causing us to miss them, as we observed for our parent NILs. 
Moreover, our power to detect very small effects remains quite limited. Projecting 
to the broader C. elegans population, our sample of two strains provides a 
narrow view of phenotypically relevant genetic variation. N2 and CB4856 differ in 
our 1.4-Mb focal genomic region by 1,838 SNPs, while a survey of 249 distinct 
wild isolates (isotypes) identified more than 8,900 single nucleotide variants 
segregating in the region (Cook et al., 2017) (release 20170531).  

Our results contribute to a growing consensus from NIL studies that tightly 
linked antagonistic QTL (whether additive or epistatic) are a common feature of 
complex-trait architectures (Gaertner et al., 2012; Glater et al., 2014; Green et 
al., 2013; Kroymann and Mitchell-Olds, 2005; Shao et al., 2008). Partial selfing 
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may facilitate the evolution of these repulsion-phased complexes, and they may 
contribute to the widely observed pattern of outbreeding depression in the 
partially selfing Caenorhabditis species (Baird and Stonesifer, 2012; Dolgin et al., 
2007; Gimond et al., 2013). Although this pattern may be most common in 
selfers, it should arise in any system in traits under stabilizing selection, as 
evidenced by excess repulsion-phase linkage disequilibrium between coding and 
cis-regulatory variants in humans (Castel et al., 2018). Such linkage 
disequilibrium provides a simple model for the storage of cryptic genetic variation 
in natural populations (Kroymann and Mitchell-Olds, 2005; Paaby and Rockman, 
2014). 
 
 
Materials and Methods 
 
Strains 
We used 282 strains from the Andersen panel of Recombinant Inbred Advanced 
Intercross Lines (Andersen et al., 2015; Zdraljevic et al., 2017) and 16 strains 
from the Bernstein panel of Near Isogenic Lines (Bernstein and Rockman, 2016). 
Construction of the NILs involved use of visible marker mutations, and 
background mutations from the mutant strains (fax-1(gm83) and lon-2(e678); see 
Bernstein and Rockman 2016) may be present in the NILs. In the construction of 
both the RIAIL and NIL panels, the N2-like parental strain carried qgIR1, an 
introgression of 110 kb of CB4856 genome on the X chromosome that includes 
the npr-1 locus. This gene carries a laboratory-derived mutation in the N2 strain 
(McGrath et al., 2009), and the qgIR1 introgression replaces the mutant allele 
with the ancestral wild-type npr-1. Therefore, every NIL and RIAIL carries qgIR1 
and this interval does not contribute to variation within the panels. The RIAIL N2-
like parent, QX1430, also carries ttTi12715, a transposon insertion in the peel-1 
gene that reduces the paternal-effect incompatibility between it and CB4856 
(Andersen). Finally, the N2 strain that was assayed 10 times in parallel with the 
RIAILs and contributes to our estimate of environmental variance for broad-
sense heritability estimation is the reference N2 strain from the C. elegans 
Natural Diversity Resource (Cook et al., 2017).  
 
Growth assay conditions: The RIAILs and the NILs were assayed as described 
previously (Andersen et al., 2015; Zdraljevic et al., 2017). In short, strains were 
passaged for four consecutive generations to reduce any transgenerational 
effects from starvation or other stresses. Strains were then bleach-synchronized 
and aliquoted to 96-well growth plates at approximately one embryo/µl in K 
medium (Boyd et al., 2012). Embryos were then allowed to hatch overnight to the 
L1 larval stage. The following day, hatched L1 animals were fed HB101 bacterial 
lysate (Pennsylvania State University Shared Fermentation Facility) at a final 
concentration of 5 mg/ml and allowed to grow to L4s over the course of two days 
at 20ºC. Three L4 larvae were then sorted using the Union Biometrica Large-
Particle flow cytometer (BIOSORT) into experimental plates containing HB101 
lysate at 10 mg/ml, K medium, 31.25 µM kanamycin, and 350 µM nickel chloride 
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dissolved in water. The animals were then grown for four days at 20ºC. During 
this time, the animals matured to adulthood and laid embryos that subsequently 
hatched and commenced feeding and growing. Prior to measuring the resulting 
populations' demographic parameters, animals were treated with sodium azide 
(50 mM) to straighten their bodies for more accurate length and optical density 
measurements. Phenotypes that were measured by the BIOSORT include brood 
size, animal length (time of flight), and animal optical density (extinction). The 
multivariate phenotype is described in more detail in the results. Data were 
processed using the R package COPASutils (Shimko and Andersen, 2014), 
which is available on github.com/Andersenlab/easysorter. 
 
For the RIAIL experiments, each of the 282 RIAILs was assayed once, while N2 
and CB4856 were replicated ten times each. These experiments took place over 
ten assay days. For all analyses of RIAIL data, we used as phenotypes the 
residuals of a multivariate linear regression of raw phenotypes on assay day, 
modeled as a factor.  
 
For each of three NIL assay days, each of the sixteen NILs was grown in five 
independent populations prior to assaying to explicitly control for variation in 
passaging across strains. The typical NIL was assayed 145-150 times across 
three experiments. Each strain was assayed in 45-55 wells per assay day. Strain 
QG2150 was assayed 98 times total due to growth failure on the first assay day. 
For a given assay day, the position of each strain replicate within the set of nine 
to eleven plates for that day was randomized.  
 
Statistical Analyses: We performed all statistical tests and analyses in R (R 
Core Development Team, 2017), as described below. Fixed-effect multivariate 
analyses used the R package car (Fox and Weisberg, 2011), and mixed-effect 
models used the package lme4 (Bates et al., 2015). The raw data for the RIAILs 
and NILs are provided as supplements (Supplemental Files S1-S2), and an 
annotated reproducible pipeline for all analyses is present in Supplemental File 
S3. 
 
Broad-sense heritability in RIAILs: We estimated broad-sense heritability 
using a multivariate extension of the pooled-variance approach (Brem and 
Kruglyak, 2005). We compared the phenotypic variance among the RIAILs to 
within-strain environmental variance, the latter using the pooled covariance 
estimator for the ten replicates of each parental strain (N2 and CB4856). To 
assess significance, we performed the same analysis on 100,000 datasets with 
permuted strain labels, such that ten wells were assigned the N2 label and ten 
the CB4856 label, with the rest assigned the RIAIL label. All four traits had 
significant broad-sense heritabilities at p < 0.01.  
  
Linkage mapping in RIAILs: We performed multivariate marker regression 
(Knott and Haley, 2000). The model is Y = XB + E, where Y is the 282 x 4 matrix 
of RIAIL phenotypes, X is a 282 x 2 design matrix, with 1s in the first column and 
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marker genotypes (0 or 1) in the second, and B is the 2 x 4 matrix of effects, with 
intercepts in the first row and marker effects in the second. E is the multivariate 
normal residual error. We fitted this fixed-effect model for each marker using 
R/qtl (Broman et al., 2003), calculating a p-value for the marker from an 
approximate F statistic based on the Pillai-Bartlett test statistic. We performed 
forward selection with a residual empirical threshold to build a QTL model 
(Doerge and Churchill, 1996). After a marker regression scan, we tested whether 
any marker exceeded a genome-wide empirical significance threshold of p = 0.05 
by analyzing 1000 datasets with permuted strain labels. The top marker genome-
wide that passed the empirical threshold was then incorporated into a genetic 
model of the trait vector, and we repeated the scan and permutations on the 
multivariate residuals of that model. We continued these cycles of scans and 
permutations until no additional markers exceeded the relevant residual empirical 
threshold. The final model includes seven QTL (i.e., the design matrix includes 
eight rows), and we report the variance explained by the model for each trait as 
the trait-wise multiple r-squared from the multivariate model. We tested for 
epistasis among the seven QTLs using approximate F-statistics based on the 
Pillai-Bartlett trace to compare an additive model and one with all pairwise 
interactions, and then an additive model and one with all possible interactions.  
 
Analysis of Near-Isogenic Lines:  
We accounted for experimental variation in our measures of NIL demography by 
treating assay day, assay plate, well position, and biological growth replicate as 
random effects in univariate analyses of each trait. Each strain was measured in 
12 to 15 growth replicates, and we used the Best Linear Unbiased Predictor for 
each of the 237 growth replicates as the phenotype corresponding to that 
replicate. To test for the effect of each interval on the multivariate demography 
phenotype, we compared two fixed-effect multivariate models of the 237 growth-
replicate phenotypes. For a given pair of most-related strains, we first modeled 
the entire data set including strain as a fixed effect with 16 distinct levels, and 
then we fitted a nested model in which a single pair of most-similar strains are 
treated as a single genotype. We compared these models using the Pillai-Bartlett 
test statistic to obtain p-values for the degree of improvement from the merged 
model to the complete model. We used this same approach to test for a 
significant difference between the two parental NILs.  
 
Acknowledgments 
This work was supported by NIH R01GM089972 and R01GM121828 (MVR), and 
funding to ECA from an NIH subcontract (GM107227), the Chicago Biomedical 
Consortium with support from the Searle Funds at the Chicago Community Trust, 
and an American Cancer Society Research Scholar Grant (127313- RSG-15-
135-01-DD). Support for SZ came from the NIH Cell and Molecular Basis of 
Disease training grant (T32GM008061). 
 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 27, 2018. ; https://doi.org/10.1101/428466doi: bioRxiv preprint 

https://doi.org/10.1101/428466
http://creativecommons.org/licenses/by/4.0/


Page 13 of 15 

Supplementary Files 
File S1. RIAIL data 
File S2. NIL data 
File S3. R code for reproducible analyses. 
 
References 

 
Andersen, E.C., Shimko, T.C., Crissman, J.R., Ghosh, R., Bloom, J.S., Seidel, 

H.S., Gerke, J.P., Kruglyak, L., 2015. A powerful new quantitative genetics 
platform, combining Caenorhabditis elegans high-throughput fitness assays 
with a large collection of recombinant strains. G3 5, 911-920. 

Baird, S.E., Stonesifer, R., 2012. Reproductive isolation in Caenorhabditis 
briggsae: dysgenic interactions between maternal- and zygotic-effect loci 
result in a delayed development phenotype. Worm 1, 189-195. 

Barriere, A., Felix, M.A., 2005. Natural variation and population genetics of 
Caenorhabditis elegans. WormBook, 1-19. 

Bates, D., Machler, M., Bolker, B.M., Walker, S.C., 2015. Fitting linear mixed-
effects models using lme4. J Stat Softw 67, 1-48. 

Bernstein, M.R., Rockman, M.V., 2016. Fine-scale crossover rate variation on the 
Caenorhabditis elegans X chromosome. G3 (Bethesda) 6, 1767-1776. 

Boyd, W.A., Smith, M.V., Freedman, J.H., 2012. Caenorhabditis elegans as a 
model in developmental toxicology. Methods Mol Biol 889, 15-24. 

Boyle, E.A., Li, Y.I., Pritchard, J.K., 2017. An expanded view of complex traits: 
from polygenic to omnigenic. Cell 169, 1177-1186. 

Brem, R.B., Kruglyak, L., 2005. The landscape of genetic complexity across 
5,700 gene expression traits in yeast. Proc Natl Acad Sci U S A 102, 1572-
1577. 

Broman, K.W., Wu, H., Sen, S., Churchill, G.A., 2003. R/qtl: QTL mapping in 
experimental crosses. Bioinformatics 19, 889-890. 

Castel, S.E., Cervera, A., Mohammadi, P., Aguet, F., Reverter, F., Wolman, A., 
Guigo, R., Iossifov, I., Vasileva, A., Lappalainen, T., 2018. Modified 
penetrance of coding variants by cis-regulatory variation contributes to 
disease risk. Nature Genetics 50, 1327-1334. 

Cook, D.E., Zdraljevic, S., Roberts, J.P., Andersen, E.C., 2017. CeNDR, the 
Caenorhabditis elegans natural diversity resource. Nucleic Acids Res 45, 
D650-D657. 

Doerge, R.W., Churchill, G.A., 1996. Permutation tests for multiple loci affecting 
a quantitative character. Genetics 142, 285-294. 

Dolgin, E.S., Charlesworth, B., Baird, S.E., Cutter, A.D., 2007. Inbreeding and 
outbreeding depression in Caenorhabditis nematodes. Evolution 61, 1339-
1352. 

Doroszuk, A., Snoek, L.B., Fradin, E., Riksen, J., Kammenga, J., 2009. A 
genome-wide library of CB4856/N2 introgression lines of Caenorhabditis 
elegans. Nucleic Acids Res 37, e110. 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 27, 2018. ; https://doi.org/10.1101/428466doi: bioRxiv preprint 

https://doi.org/10.1101/428466
http://creativecommons.org/licenses/by/4.0/


Page 14 of 15 

Eshed, Y., Zamir, D., 1995. An introgression line population of Lycopersicon 
pennellii in the cultivated tomato enables the identification and fine mapping 
of yield-associated QTL. Genetics 141, 1147-1162. 

Fox, J., Weisberg, S., 2011. An R companion to applied regression, Second ed. 
Sage, Thousand Oaks, CA. 

Frezal, L., Felix, M.A., 2015. C. elegans outside the Petri dish. Elife 4. 
Gaertner, B.E., Parmenter, M.D., Rockman, M.V., Kruglyak, L., Phillips, P.C., 

2012. More than the sum of its parts: a complex epistatic network underlies 
natural variation in thermal preference behavior in Caenorhabditis elegans. 
Genetics 192, 1533-1542. 

Gimond, C., Jovelin, R., Han, S., Ferrari, C., Cutter, A.D., Braendle, C., 2013. 
Outbreeding depression with low genetic variation in selfing Caenorhabditis 
nematodes. Evolution 67, 3087-3101. 

Ghosh, R., Andersen, E.C., Shapiro, J.A., Gerke, J.P., Kruglyak L. 2012. Natural 
variation in a chloride channel subunit confers avermectin resistance in C. 
elegans. Science 335, 574-578. 

Glater, E.E., Rockman, M.V., Bargmann, C.I., 2014. Multigenic natural variation 
underlies Caenorhabditis elegans olfactory preference for the bacterial 
pathogen Serratia marcescens. G3 4, 265-276. 

Gray, J.C., Cutter, A.D., 2014. Mainstreaming Caenorhabditis elegans in 
experimental evolution. Proc Biol Sci 281, 20133055. 

Green, J.W., Snoek, L.B., Kammenga, J.E., Harvey, S.C., 2013. Genetic 
mapping of variation in dauer larvae development in growing populations of 
Caenorhabditis elegans. Heredity 111, 306-313. 

Keurentjes, J.J., Bentsink, L., Alonso-Blanco, C., Hanhart, C.J., Blankestijn-De 
Vries, H., Effgen, S., Vreugdenhil, D., Koornneef, M., 2007. Development of a 
near-isogenic line population of Arabidopsis thaliana and comparison of 
mapping power with a recombinant inbred line population. Genetics 175, 891-
905. 

Knott, S.A., Haley, C.S., 2000. Multitrait least squares for quantitative trait loci 
detection. Genetics 156, 899-911. 

Koumproglou, R., Wilkes, T.M., Townson, P., Wang, X.Y., Beynon, J., Pooni, 
H.S., Newbury, H.J., Kearsey, M.J., 2002. STAIRS: a new genetic resource 
for functional genomic studies of Arabidopsis. Plant J 31, 355-364. 

Kroymann, J., Mitchell-Olds, T., 2005. Epistasis and balanced polymorphism 
influencing complex trait variation. Nature 435, 95-98. 

Loh, P.R., Bhatia, G., Gusev, A., Finucane, H.K., Bulik-Sullivan, B.K., Pollack, 
S.J., Schizophrenia Working Group of Psychiatric Genomics, C., de Candia, 
T.R., Lee, S.H., Wray, N.R., Kendler, K.S., O'Donovan, M.C., Neale, B.M., 
Patterson, N., Price, A.L., 2015. Contrasting genetic architectures of 
schizophrenia and other complex diseases using fast variance-components 
analysis. Nat Genet 47, 1385-1392. 

Mackay, T.F., Stone, E.A., Ayroles, J.F., 2009. The genetics of quantitative traits: 
challenges and prospects. Nat Rev Genet 10, 565-577. 

McGrath, P.T., Rockman, M.V., Zimmer, M., Jang, H., Macosko, E.Z., Kruglyak, 
L., Bargmann, C.I., 2009. Quantitative mapping of a digenic behavioral trait 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 27, 2018. ; https://doi.org/10.1101/428466doi: bioRxiv preprint 

https://doi.org/10.1101/428466
http://creativecommons.org/licenses/by/4.0/


Page 15 of 15 

implicates globin variation in C. elegans sensory behaviors. Neuron 61, 692-
699. 

Noble, L.M., Chelo, I., Guzella, T., Afonso, B., Riccardi, D.D., Ammerman, P., 
Dayarian, A., Carvalho, S., Crist, A., Pino-Querido, A., Shraiman, B., 
Rockman, M.V., Teotonio, H., 2017. Polygenicity and epistasis underlie 
fitness-proximal traits in the Caenorhabditis elegans Multiparental 
Experimental Evolution (CeMEE) panel. Genetics 207, 1663-1685. 

Paaby, A.B., Rockman, M.V., 2014. Cryptic genetic variation: evolution's hidden 
substrate. Nat Rev Genet 15, 247-258. 

R Core Development Team, 2017. R: a language and environment for statistical 
computing, 2.14.1 ed. R Foundation for Statistical Computing, Vienna, 
Austria. 

Rockman, M.V., 2012. The QTN program and the alleles that matter for 
evolution: all that's gold does not glitter. Evolution 66, 1-17. 

Shao, H., Burrage, L.C., Sinasac, D.S., Hill, A.E., Ernest, S.R., O'Brien, W., 
Courtland, H.W., Jepsen, K.J., Kirby, A., Kulbokas, E.J., Daly, M.J., Broman, 
K.W., Lander, E.S., Nadeau, J.H., 2008. Genetic architecture of complex 
traits: large phenotypic effects and pervasive epistasis. Proc Natl Acad Sci U 
S A 105, 19910-19914. 

Shao, H., Sinasac, D.S., Burrage, L.C., Hodges, C.A., Supelak, P.J., Palmert, 
M.R., Moreno, C., Cowley, A.W., Jr., Jacob, H.J., Nadeau, J.H., 2010. 
Analyzing complex traits with congenic strains. Mamm Genome 21, 276-286. 

Shimko, T.C., Andersen, E.C., 2014. COPASutils: an R package for reading, 
processing, and visualizing data from COPAS large-particle flow cytometers. 
PLoS One 9, e111090. 

Thompson, O.A., Snoek, L.B., Nijveen, H., Sterken, M.G., Volkers, R.J., 
Brenchley, R., Van't Hof, A., Bevers, R.P., Cossins, A.R., Yanai, I., Hajnal, A., 
Schmid, T., Perkins, J.D., Spencer, D., Kruglyak, L., Andersen, E.C., 
Moerman, D.G., Hillier, L.W., Kammenga, J.E., Waterston, R.H., 2015. 
Remarkably divergent regions punctuate the genome assembly of the 
Caenorhabditis elegans Hawaiian strain CB4856. Genetics 200, 975-989. 

Yang, J., Zeng, J., Goddard, M.E., Wray, N.R., Visscher, P.M., 2017. Concepts, 
estimation and interpretation of SNP-based heritability. Nat Genet 49, 1304-
1310. 

Zdraljevic, S., Strand, C., Seidel, H.S., Cook, D.E., Doench, J.G., Andersen, 
E.C., 2017. Natural variation in a single amino acid substitution underlies 
physiological responses to topoisomerase II poisons. PLoS Genet 13, 
e1006891. 

 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 27, 2018. ; https://doi.org/10.1101/428466doi: bioRxiv preprint 

https://doi.org/10.1101/428466
http://creativecommons.org/licenses/by/4.0/

