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The biophysical relationships between sensors and actuators [1–5] have been fundamental to the
development of complex life forms; Abundant flows are generated and persist in aquatic environ-
ments by swimming organisms [6–13], while responding promptly to external stimuli is key to
survival [14–19]. Here, akin to a chain reaction [20–22], we present the discovery of hydrodynamic
trigger waves in cellular communities of the protist Spirostomum ambiguum, propagating hundreds
of times faster than the swimming speed. Coiling its cytoskeleton, Spirostomum can contract its
long body by 50% within milliseconds [23], with accelerations reaching 14g-forces. Surprisingly, a
single cellular contraction (transmitter) is shown to generate long-ranged vortex flows at intermedi-
ate Reynolds numbers, which can trigger neighbouring cells, in turn. To measure the sensitivity to
hydrodynamic signals (receiver), we further present a high-throughput suction-flow device to probe
mechanosensitive ion channel gating [24] by back-calculating the microscopic forces on the cell mem-
brane. These ultra-fast hydrodynamic trigger waves are analysed and modelled quantitatively in
a universal framework of antenna and percolation theory [25, 26]. A phase transition is revealed,
requiring a critical colony density to sustain collective communication. Our results suggest that
this signalling could help organise cohabiting communities over large distances, influencing long-
term behaviour through gene expression, comparable to quorum sensing [16]. More immediately, as
contractions release toxins [27], synchronised discharges could also facilitate the repulsion of large
predators, or conversely immobilise large prey. We postulate that beyond protists numerous other
freshwater and marine organisms could coordinate with variations of hydrodynamic trigger waves.

INTRODUCTION

Trigger waves solve two fundamental problems caused
by diffusion in biological signalling; they do not slow
down nor lose amplitude, allowing to reliably commu-
nicate over large distances [20–22]. These feed-forward
wave fronts are often chemical in nature, such as neuronal
spikes at ∼ 100m/s or Ca2+ waves at ∼ 30µm/s [22], but
require an excitable medium (cellular membrane or cyto-
plasm) or physical contact (neurons). On the one hand,
fluid media do not feature such constraints, facilitating
endocrine transport (adrenaline release) at ∼ 30mm/s
[22] or cytoplasmic streaming at ∼ 100µm/s [28], but
generally need minutes for full recirculation, decay with
distance or size, and fundamentally lack midway signal
reinforcement. On the other hand, hydrodynamic inter-
actions can mediate collective motion in ‘living fluids’ [8–
11], but much less is known how this links with biological
sensing and decision making [5, 14–19].

ULTRA-FAST CONTRACTION KINEMATICS

Spirostomum ambiguum is one of the largest unicellu-
lar protozoans, with body length L0 = (1.1 ± 0.2)mm
[Fig. 1A,B]. By coordinating its cilia in metachronal
waves [Movie S1] it swims at low Reynolds numbers,
R0 = L0V0

ν ∼ 0.2, with speed V0 in fresh water of
viscosity ν = 1mm2/s [Movie S2]. However, as a de-
fence against predators, the cell can rapidly contract

to a fraction fc = 0.4 ± 0.03 of its length within τc =
(4.64 ± 0.15)ms [Fig. 1A,C & Movie S3]. Then, as the
Reynolds number surges to Rc ∼ 50, it releases toxins
[27]. After contraction the cell slowly relaxes, in τr ∼ 1s.
A pictorial summary of the underlying biochemical mech-
anisms is given in Fig. 1D and SI §2A.

To quantify these dynamics systematically, we devel-
oped an electrical stimulation apparatus [23] with micro-
second precision, synchronised with high-speed (10,000
fps) microscopy [SI §2]. Figure 1E shows the cell length,
velocity and acceleration, and from statistics of thou-
sands of cells we construct the complete phase diagram
of contractile behaviour [Fig. S1]. The velocity peaks
at Vmax = (0.22 ± 0.01)m/s, and the acceleration at

Amax = (139±28)m/s
2 ∼ 14 g-forces. Unlike other rapid

cellular movements like nematocysts firing [29], Spirosto-
mum is capable of this actuation repeatably - over and
over again - making it a fascinating model organism to
study ultra-fast motion in biology [4].

FLOW GENERATION

The contraction generates long-ranged flows around
the organism, which we analyse in a liquid film exper-
iment [Fig. 2A]. The measured flow structure is contrac-
tile along the cell’s major axis [Figs. 2C,D & Movie S4],
resembling the ‘puller-type stresslet’ often produced by
micro-organisms [7, 10, 13]. A dramatic difference, how-
ever, is that vortices emerge that expand into the medium
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over time. This vortex generation is a signature of iner-
tia, also apparent as a delay in fluid motion [Fig. 2E],
since the boundary layer width grows as δ ∼

√
νt [15].

Indeed, conducting control experiments by suspending
Spirostomum in high-viscosity medium shows no such
delay, and no vortices, in agreement with the Stokesian
stresslet (ν = 50mm2/s and τc = 15ms, so Rc ∼ 0.3).

Therefore, to model the contraction flow with inertia,
we solve the linearised Navier-Stokes (LNS) equations
[12] combined with the method of images [13] to account
for the liquid-air interfaces [Fig. 2B & SI §3]. We extend
the stresslet to a set of equal and opposite point forces,
fk(t′), distributed along the cell, giving the flow

vc(r, t) =
∑
k

∫ t

0

dt′Q(r − rk, t− t′) · fk(t′), (1)

whereQ is the Green’s function tensor with inertial mem-
ory kernel, given explicitly in SI §3B. Importantly, both
the spatial and temporal elements of this model agree
with the measurements, especially how the vortices ex-
pand [Fig. 2C & Movie S5]. We also recover the particle
dynamics when integrating the flow over time [Fig. 2D].

Moreover, the effect of inertial mixing is highlighted by
simulating the organism’s contraction followed by slow
relaxation [Fig. 2F, SI §3C,]. Traditionally, the ‘scallop
theorem’ forbids viscous mixing by any reciprocal motion
[6]. However, using inertia Spirostomum can displace
particles up to 10% of its body length. This effect could
further facilitate the dispersal of toxins and enhance food
transport [3], significantly out-competing thermal diffu-
sion with Péclet numbers Pe = LV/D � 1 even for the
smallest molecules (where D is the diffusion constant).

RHEOSENSING

To detect predators, organisms must sense surround-
ing flows. As the liquid exerts hydrodynamic stresses
[14], the cell membrane stretches and hence mechanosen-
sitive ion channels open [18, 24]. To probe Spirosto-
mum’s rheosensitivity, we developed a high-throughput
(∼ 10cells/s) microfluidic assay [Fig. 3A]. In this radi-
ally symmetric device we introduce organisms on the
outer edge and apply a suction flow drawing liquid to
the central outlet. The resulting flow stretches the organ-
isms, with strain rate γ̇ ∝ 1/ρ2 at position ρ [SI §4A].
This geometry was inspired by ‘spaghettification’ [30],
a stretching induced by tidal forces near a black hole,
rendered here microscopically [SI §4B]. Therefore, as
cells are pulled towards the central region, the strain
increases until they reach a threshold γ̇c and contract
[Movie S6]. Imaged from below, we observe that all cells
are triggered around a ring of radius ρc, the ‘event hori-
zon’ [Fig. 3B]. Ergo, we obtain the critical strain rate,
〈γ̇c〉 = (88± 3)s−1.

Crucially, using this macroscopic flow we can back-
calculate microscopic forces that act on mechanosensi-
tive ion channels. Employing the Method of Regularised
Stokeslets (MRS) [31], for each organism, we compute the
force distribution on the membrane at the moment be-
fore contraction [Fig. 3C and SI §4C]. Hence, we find the
critical membrane tension required for the ion channels
to open, 〈Tc〉 = (0.17± 0.02)mN/m [Fig. 3D]. This assay
can be applied straightforwardly to other organisms with
different sizes or more complex shapes.

These measurements are consolidated with established
theoretical results for ion channel gating [24]. Using
the ‘two-state’ model, the probability for a channel to
open, Po(T ), is estimated as a function of applied ten-
sion [SI §4D]. Indeed, this probability transitions at a
threshold tension T th

c ≈ 0.20mN/m that agrees well
with the experimental values. This result underlines the
significance of the spatial distribution of hydrodynamic
stresses, and allows us to predict the stimulation thresh-
old for other organisms or geometries.

In particular, cell size is expected to contribute a ma-
jor role in rheosensitivity. When mapping the observed
critical strain rate γ̇c against length, we find that larger
cells require smaller stimuli to contract [Fig. 3E], as also
predicted theoretically [SI §4E]. This suggests that longer
organisms are better sensors, likely being an evolutionary
advantage in the endeavour to discern predators, which
could elucidate why Spirostomum is one of the longest
known ciliates and takes its unusual cigar shape.

HYDRODYNAMIC COMMUNICATION

To ascertain the physiological role of hydrodynamic
trigger waves, we observe Spirostomum in undisturbed
growth chambers over long periods of time. Surprisingly,
Spirostomum tends to self-assemble into clusters, as re-
produced by mixing cultures and then recording accu-
mulation with time-lapse imaging [SI §5A & Movie S7].
Once close together, the organisms can exhibit a remark-
able collective behaviour: when a first cell spontaneously
contracts, it generates a flow that can trigger neighbours,
and hence initiate a cascade of contractions that propa-
gates through the colony [Fig. 4A, SI §5B & Movie S8].
These hydrodynamic trigger waves travel at remarkable
speeds, vw ∼ 0.25m/s [Fig. 4B], not inappreciable com-
pared to human neurotransmission [22].

We examine the communication potential by first con-
sidering pairwise interactions [Fig. 4C & SI §5C]. When
organism A (blue) transmits a signal (Eq. 1), organism
B (purple) responds if it crosses the red line, γ̇c. This
model agrees with pairwise experiments for different rela-
tive configurations (ρ, θ, φ) [Fig. 4D,E], showing that not
only the distance but also orientations matter. Specifi-
cally, ‘one-way streets’ can form where a signal can only
travel from A to B, e.g. (ρ, π2 ,

π
2 ) versus (ρ, 0, π2 ), as
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the flow is inherently directional. We quantify this with
antenna theory [SI §5D], originally designed for electro-
magnetic radiators, showing the hydrodynamic signals
are ∼ 2x stronger along the body axis (directive gain
2.79 dB).

Using these building blocks, we consider multi-
organism interactions by simulating large colonies of dif-
ferent cell densities n [SI §5E]. The central cell is trig-
gered at time t = 0, and cascades computed subsequently
[Fig. 4F-H]. At low densities (I, 1 mm−2), neighbours
cannot be reached sufficiently so the signal rapidly dies
out. At high densities (II, 3 mm−2), signals propagate
radially outwards and abundantly reach the colony edge.
In between, near the critical density nsimc ≈ 1.97 mm−2,
the signal does not travel radially but in fractals, much
like lightning discharge patterns. Here the probability
for a signal to reach the colony edge, P (n), transitions
rapidly from zero to one [Fig. 4B]. Importantly, a small
change in density therefore has a large impact on the
communication potential near criticality [Movie S9].

This phase transition is understood in terms of perco-
lation theory [25]. As detailed in SI §5F, the percolation
threshold is estimated analytically as nthc ≈ 1.88 mm−2.
Hence, this theory offers a fair agreement with our simu-
lations, and also with our experiments where signals are
only sustained above nexpc ≈ 1.91 mm−2 [Fig. 4B]. More-
over, the theory predicts a lower percolation threshold
for higher cell aspect ratios, again highlighting Spirosto-
mum’s slender body.

Yet, at the highest densities, (III, 5 mm−2), the wave
velocity vw(n) reduces. The signal is delayed because
every organism (per unit area) requires time to perceive
and respond, as demonstrated in Movie S10. Too high
densities are also disadvantageous in terms of energy ex-
penditure and sharing food reserves. Consequently, or-
ganisms are driven to criticality, to nc, when optimising
for resources and conductivity.

DISCUSSION

To conclude, hydrodynamic communication could be
advantageous to organise cellular communities, either for
the defence against large predators [27] by synchronised
toxin discharge, or conversely to immobilise large prey
[32], or for collective nutrient mixing. Beyond immedi-
ate benefits the signalling could also regulate long-term
behaviour, influencing gene expression. However, the
individual judgement to contract must be gauged care-
fully, for energy efficiency but also because the extreme
forces in repeated contractions can potentially damage
cells. Certain aspects of this decision-making process
may therefore be compared with quorum sensing [16],
considering that signals are sustained only above a criti-
cal organism density.

The presented percolation theory can be extended to

more natural 3D organism colonies using ellipsoids of
revolution. However, on a more fundamental level, we
expect hydrodynamic trigger waves to be part of the
directed percolation universality class [26]. Directional
symmetry breaking, like following ‘one-way streets’ in a
maze, is also observed here. Pursuing this could be an ex-
citing new avenue for future research in biological critical
phenomena.

Finally, similar rapid contraction mechanisms are ob-
served in other model ciliates including Vorticella [1]
and Stentor [5]. Beyond protists, innumerable organ-
isms both generate and sense flows, from bacteria to fish
[2–7, 12–19], which opens a scope for new questions how
broadly hydrodynamic trigger waves could contribute to
collective behaviour [8–11] and, more generally, to science
of active matter and adaptive materials.

SUPPLEMENTARY MATERIALS.

• Supplementary Information (.pdf)

• Supplementary Movies S1 – S10 (.mov)
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[29] T. Nüchter, M. Benoit, U. Engel, S. Ozbek, and T. W.

Holstein, Curr. Biol. 16, R316 (2006).
[30] S. W. Hawking, A brief History of Time (Bantam Books,

1988).
[31] R. Cortez, L. Fauci, and A. Medovikov, Phys. Fluids 17,

031504 (2005).
[32] K. Hausmann, Jpn. J. Protozool. 35 (2002).

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 26, 2018. ; https://doi.org/10.1101/428573doi: bioRxiv preprint 

http://dx.doi.org/10.1038/236301a0
http://dx.doi.org/10.1126/science.288.5463.95
http://dx.doi.org/10.1126/science.288.5463.95
http://dx.doi.org/ 10.3390/mi8010004
http://dx.doi.org/ 10.3390/mi8010004
http://dx.doi.org/10.1126/science.aao1082
http://dx.doi.org/10.1186/1741-7007-9-57
http://www.damtp.cam.ac.uk/user/gold/pdfs/purcell.pdf
http://dx.doi.org/10.1088/0034-4885/72/9/096601
http://dx.doi.org/10.1088/0034-4885/72/9/096601
http://dx.doi.org/10.1146/annurev-fluid-121108-145434
http://dx.doi.org/10.1146/annurev-fluid-121108-145434
http://dx.doi.org/10.1103/RevModPhys.85.1143
http://dx.doi.org/10.1103/RevModPhys.85.1143
http://dx.doi.org/10.1088/0034-4885/78/5/056601
http://dx.doi.org/10.1088/0034-4885/78/5/056601
http://dx.doi.org/10.1103/RevModPhys.88.045006
http://dx.doi.org/10.1103/RevModPhys.88.045006
http://dx.doi.org/10.1140/epjst/e2016-60087-9
http://dx.doi.org/10.1017/jfm.2016.479
http://dx.doi.org/10.1017/jfm.2016.479
http://dx.doi.org/ 10.1242/jeb.011890
http://dx.doi.org/10.1073/pnas.0903350106
http://dx.doi.org/ 10.1038/NMICROBIOL.2015.5
http://dx.doi.org/ 10.1073/pnas.1703255114
http://dx.doi.org/ 10.1073/pnas.1703255114
http://dx.doi.org/10.1073/pnas.1718294115
http://dx.doi.org/10.1073/pnas.1718294115
http://dx.doi.org/10.1103/PhysRevLett.121.058103
http://dx.doi.org/10.1103/PhysRevLett.121.058103
http://dx.doi.org/10.1016/0167-2789(88)90062-0
http://dx.doi.org/10.1016/0167-2789(88)90062-0
http://dx.doi.org/ 10.1038/nature15709
http://dx.doi.org/10.1091/mbc.e14-08-1306
http://dx.doi.org/10.1091/mbc.e14-08-1306
http://dx.doi.org/10.1002/jcp.1040840209
http://dx.doi.org/10.1002/jcp.1040840209
http://dx.doi.org/10.1201/9781134111589
http://dx.doi.org/10.1201/9781134111589
http://dx.doi.org/10.1103/PhysRevA.38.2650
http://dx.doi.org/ 10.1103/PhysRevLett.99.234503
http://dx.doi.org/ 10.1007/s10750-011-0972-1
http://dx.doi.org/ 10.1007/s10750-011-0972-1
http://dx.doi.org/10.1007/s00709-009-0088-x
http://dx.doi.org/10.1007/s00709-009-0088-x
http://dx.doi.org/ 10.1016/j.cub.2006.03.089
http://dx.doi.org/10.1063/1.2811637
http://dx.doi.org/10.1063/1.1830486
http://dx.doi.org/10.1063/1.1830486
http://www.protistology.jp/journal/jjp35/11-Hausmann.pdf
https://doi.org/10.1101/428573
http://creativecommons.org/licenses/by-nc-nd/4.0/


5

FIG. 1. Spirostomum’s contraction dynamics. A. Anatomy diagram: Micronuclei (Mi), Macronuclear nodules (Ma), Food
vacuoles (Fv), Extrusomes containing toxins (Ex), Cilia (Ci), Cytostome (Cs), Somatic grooves (Sg). B. SEM micrograph.
Insets highlight cilia and somatic grooves. C. Collage of a spontaneous contraction and recovery. D. Biochemistry diagram
of antagonistic contraction and relaxation mechanisms [SI §2A]. E. Kinematics of organism length L, velocity 1

2
∂tL and

acceleration 1
2
∂2
tL. Shown are average values (red) for ten different organisms (gray) triggered by electric stimulation (|E| =

1.5kV/m), with contraction onsets aligned at t = 0.
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FIG. 2. Flow generation during contractions. A. Diagram of experimental setup. A liquid film is suspended in a ring,
with two electrodes. B. Diagram of hydrodynamic image systems reflected by water-air interfaces. C. Comparison of PIV
measurements and LNS theory (Eq. 1), averaged over 40ms after the onset of contraction. D. Comparison of experimental and
simulated tracer dynamics, 20ms after contraction onset. E. Offset in organism boundary (black) and flow velocities, at low
viscosities (water, ν = 1mm2/s, blue) and high viscosities (3% methyl cellulose, ν = 50mm2/s, red). F. Displacement of tracer
particles after contraction and relaxation, simulated for low (blue) and high (red) viscosities.
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FIG. 3. Rheosensing experiments. A. Diagram of microfluidic set-up. Inset: Flow strength vs. radial distance. B.
Gray lines are organism trajectories as they move towards the central outlet. Coloured lines show their maximum membrane
tension and position at the onset of contraction, N = 115. C. Hydrodynamic forces (arrows) and tension (colours) on the cell
membrane, calculated with the MRS. D. Measured distribution of critical membrane tension, pdf(Tc) (blue), and theory for
the gating probability of a mechanosensitive ion channel (black). E. Critical strain rate and tension versus organism length,
γ̇c(L), as measured (colours) and theoretical prediction (black line).
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FIG. 4. Collective hydrodynamic communication. A. Trigger wave propagating though a colony. The graph indicates
which organism triggered which. B. Phase diagram. Percolation probability, P (n), in simulations (blue diamonds) and
theoretical prediction (blue line). Superimposed are wave velocities, vw(n), in simulations (red) and experiments (pink stars).
C-E. Pairwise interactions between transmitter A (blue) and receiver B (purple). C. Generated strain rate (Eq. 1), and the
sensing threshold γ̇c = 100s−1 (solid red). This threshold is approximated by an ellipse (dashed red). D. Strain rate on the
body of B for relative positions (ρ, θ), maximising over all orientations φ. Stars show corresponding experimental observations.
E. Same, for relative orientations (φ, θ), with constant ρ = 1mm. F-H. Simulations of trigger waves in colonies below, near, and
above nc. Gray ellipses are non-triggered organisms. Black lines show the triggered connectivity graph. The first percolating
path to the colony edge is shown with colours scaled to the percolation time (bottom left corners).
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I. ORGANISM CULTURING

Spirostomum ambiguum (Sciento catalog #P346) was
cultured in Hummer medium [1] of spring water in-
fused with Timothy hay (Carolina catalog #132385) and
boiled wheat grains (Carolina catalog #132425). Cul-
tures were incubated at 18◦C in dark conditions, and
reinoculated fortnightly. Organisms used in experiments
were extracted in the exponential growth phase, rinsed
and transferred to fresh medium.

II. ULTRA-FAST CONTRACTION
KINEMATICS

A. Biochemical mechanism

Although the exact molecular mechanisms [2–8] of con-
traction and relaxation is not fully understood, the key
elements may be summarized as follows [Fig. 1D of the
main text]; At rest, the cell maintains a low internal Ca2+

concentration using ion pumps (purple). When triggered,
electro- or mechanosensitive ion channels (orange) open
to raise the Ca2+ concentration rapidly. These ions bind
to engage ‘myoneme’ filaments (red) that generate tensile
forces. The rapid acceleration is halted by the cytoskele-
ton (green) building up elastic energy and fluid dissipa-
tion (blue). To recover, the ion pumps reduce the Ca2+

concentration to homeostasis, so the myonemes relax and
the elastic microtubules restore elongation.

B. Experimental details

The dynamics of Spirostomum contractions are mea-
sured with high-speed (Phantom V1210 camera, 10,000
fps) microscopy (Nikon Te2000 scope, 1.5X objective), as
shown in [Fig. S1A]. To collect a large amount of statis-
tics, organisms are stimulated electrically with an electro-
physiological DC pulse generator (Grass instruments,
S88). The organisms are introduced in a rectangular mi-
crofluid chip (Lc = 2.5cm, Wc = 1cm, Hc = 200µm)
of glass slides with copper side walls that act as elec-
trodes. For a given DC voltage V , the applied electric
field strength is |E| = V/We and the pulse duration is
τE . The pulse and camera trigger are synchronized with
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FIG. S1. Measurement of electrically stimulated Spirostomum contraction dynamics. A. Diagram of experimental set-up. B.
Phase diagram of organism response to electric signals. Shown is median behaviour of N > 20 organisms for each data point.
C. Typical kinematics of organism length after stimulation at |E| = 1.5kV/m and τE = 100ms. Inset: Collapse of kinematics,
when normalising the cell length and lining up the onsets of contraction at t = 0. D. Perception and contraction time against
stimulus intensity, with τE = 100ms. Shaded regions are error bars of 95% CL. Inset: same on log scale.

a micro-controller (Arduino Uno) and monitored sepa-
rately with an oscilloscope (Instek GDS-1152A-U).

We first map the organism response to different stim-
uli by varying the pulse duration τE and electric field
strength |E| [Fig. S1B]. Note, for each data point the
channel is rinsed and N > 20 new organisms are intro-
duced. For mild stimuli the organisms temporarily swim
backwards through ciliary reversal, a well established be-
haviour [9, 10]. Intermediate stimuli induce reversible
contractions, as observed in natural conditions with non-
electric stimuli, but strong pulses lead to cell damage.
Therefore, we perform all further electric experiments in
the intermediate regime, with τE = 100ms unless other-
wise stated.

Typical dynamics for |E| = 1.5kV/m are shown for 10
organisms in [Fig. S1C]. The cell lengths L(t) are found
by analyzing the images with MATLAB built-in edge
detection and ellipse fitting. Subsequently, the velocity
V (t) = ∂tL and acceleration A(t) = ∂2

tL are computed,
as shown in Fig. 1 of the main text.

Repeating this experiment for different voltages, we
extract the perception time, the period between the pulse

and contraction onset τp, and the contraction duration τc
[Fig. S1D]. The perception time is large for weak pulses,
τp = (64 ± 13)ms at |E| = 1kV/m, but short otherwise,
τp = (3.5 ± 0.5)ms at |E| > 2.5kV/m. This reflects the
strength of ion fluxes [SI §2A], in agreement with [11].
The contraction time is approximately constant for all
stimuli, τc = (4.64 ± 0.15)ms, as measured for N = 199
organisms, reflecting the time required for the myonemes
to engage. As a result, the contraction dynamics collapse
onto a single curve [Fig. S1C, inset].

C. Kinematics model

Combining the information from these experiments, we
construct a simple model for the contraction kinematics.
The organism length can be described as

L(t) = L0

(
1− fc

2

(
erf

τ̃p√
2τ̃c
− erf

τ̃p − t√
2τ̃c

))
, (1)

where the initial body length is L0 ≈ 1mm, the fraction
of length contraction is fc ≈ 0.5 so the final body length
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is L0fc, the perception time is τp ≈ 3.5ms and the con-
traction duration is τc ≈ 5ms, with τ̃p = τp + τc/2 and
τ̃c = τc/4. Subsequently, the organism velocity is

V (t) =
∂L(t)

∂t
= − L0fc√

2πτ̃2
c

exp

(
− (t− τ̃p)2

2τ̃2
c

)
, (2)

which is a Gaussian peaked halfway the contraction. We
will use this model in the next sections.

We define the Reynolds number during contraction as

Rc =
(1− fc)L0Vc

2ν
∼ 50, (3)

using typical length scale L0 ≈ 1mm, Vc = L0/τc ≈
0.2m/s, and contraction fraction fc ≈ 0.5, where the fac-
tor 2 accounts for the fact that Vc constitutes both the
head and tail end velocities moving towards one another.

III. FLOW GENERATION

A. Experimental details

The flows generated during a contraction is imaged
with high-speed (Phantom V1210 camera, 10,000 fps)
microscopy (Nikon Te2000 scope, 10X objective), under
dark-field illumination. The experimental geometry is
a liquid film, inspired by bacterial mixing experiments
[12, 13]. The film is suspended in an acrylic ring (in-
sulator) of diameter D = 1cm and height H = 500µm,
with thin copper wire electrodes wrapped on either side
[Fig. 2A]. Organisms are taken from cultures in the expo-
nential growth phase, resuspended in fresh medium, and
polystyrene tracer particles (Polybead catalog #17141-5,
diameter 6.0µm) were added at concentration φ ∼ 10−2%
solids (w/v). These beads feature a coating of carboxyl
groups to prevent adhesion to the organisms. A volume
V = πD2H/4 ∼ 393µL of this suspension, including one
organism, is pipetted into the ring. The organism is free
to swim, and triggered (|E| = 1.5kV/m, τE = 100ms)
when located at the centre of the ring.

The contraction flow is shown in Movie S4, where the
temporal dynamics are highlighted with FlowTrace [14].
These currents are is analysed with PIVlab [15] for cross-
correlation and TrackMate [16] for direct particle track-
ing. The PIV results are compared with our theory [see
next section] in Fig. 2C. The particle trajectories are used
to calculate the flow speed, by averaging over N = 171
tracers. In Fig. 2E this is compared to the organism
speed, found by taking the first derivative of the organ-
ism length. The fluid inertia causes a delay between the
liquid and its boundary condition, being the moving or-
ganism surface.

As a control for inertia, we repeat our experiments in
a high-viscosity (ν = 50mm2/s) solution of 3% Methyl
Cellulose (Sigma Aldrich catalog #M7140) dissolved in
culture medium. Because of its polymeric nature this

agent is mostly inert to the cell biochemistry. The or-
ganisms contract slower in this solution because of the
higher viscosity, τc = 15ms, so the Reynolds number is
reduced further down to Rc ∼ 0.3. Hence, the flows are
Stokesian, without inertial delay and without vortexes
spreading into the liquid.

B. Contraction flow model

We consider an organism located at the origin, at po-
sition (x, y, z) = (0, 0, 0) in Cartesian coordinates. The
long axis of the cell is oriented in the êx direction.

1. Stokes flow

First, in the absence of inertia, the hydrodynamics of
an incompressible flow at Reynolds number R = 0 are
described by the Stokes equations,

0 = −∇p+ µ∇2u+ F (r, t), (4)

0 = ∇ · u, (5)

where u(r, t) is the flow velocity at position r and time
t, p(r, t) is the pressure, µ is the dynamic viscosity and
F (r, t) is a force acting on the liquid. We first con-
sider the flow in the absence of surfaces, with boundary
conditions u = 0 as |r| → ∞. The fundamental solu-
tion to these equations, the flow due to a point force
F S(r, t) = δ3(r − r′)f(t), is called the Stokeslet

uS(r, t;f) = J (r − r′) · f(t), (6)

where the Oseen tensor Jij(s) has Cartesian components

Jij(r) =
1

8πµ

(
δij
r

+
rirj
r3

)
, (7)

with i, j ∈ {x, y, z} and r = |r|. This solution is shown
in Fig. S2A. Because the point force moves during the
contraction, the position r′ = r′(t) depends on time.
However, as the Stokes equations only depend on time
through the force F (r, t) and the boundary conditions,
the flow adapts instantaneously.

2. Superposition

Because the equations are linear, the flow due to a
number Nk of point forces, Fk = δ3((r − rk)fk(t), can
be written as the superposition

u(r, t) =

Nk∑
k=1

J (r − rk) · fk(t). (8)

Specifically, similar to electrostatics, one can perform
a multipole expansion of the Stokeslet flow [17]. The
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FIG. S2. Comparison of Stokes flow (R � 1) and Linearised Navier-Stokes flow (R ∼ 50). A. Point force solution; Stokeslet
(6). B. LNS tensor solution (14). C-D. Contraction flow in a liquid film (20); for high (C; 1000x water) and low (D; water)
viscosities, with m = ±100 image reflections and k = ±5 grid points on the elongated body. Cf. Movie S5. The Stokes solution
has open stream lines but the LNS solution features vortices that spread out over time. Colours show flow magnitude and
arrows are stream lines.

‘Stokes dipole’ or ‘Stokes stresslet’ is the combination of
two equal and opposite forces,

uD(r, t;f) = lim
δ→0

J (r − δf̂)− J (r + δf̂)

2δ
· f(t), (9)

= −κ(f̂ ·∇r)uS(r, t; f̂), (10)

where κ = 2δ|f | is the dipole strength and the dimen-

sionless direction f̂ = f/|f |. This flow is already a first
approximation of the Spirostomum contraction.

3. Liquid film confinement

To account for the confinement of the experimen-
tal liquid film geometry, we must satisfy the no-shear-
stress boundary condition at the liquid-air interfaces,
z = ±H/2 for film height H = 500µm. Therefore, we
employ the method of images [18], again borrowed from
electrostatics. These images act like ‘mirror reflections’
of the applied forces. Now imagine walking in a hall of
mirrors. Because we have two liquid-air interfaces there
will be a reflection of the reflection, a reflection of the
reflection of the reflection, etc. Thus, the resulting flow
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can be expressed as an infinite series. For forces located
in the middle of the film, at z = 0, the images are located
at z = ±H,±2H,±3H, . . . . Hence, it can be shown that
the solution for a dipole aligned along êx and centered in
the film is

uF (r, t; f êx) =
∞∑

m=−∞
uD(r −mHêz, t; f êx). (11)

This solution converges, as the dipole flow decays with
distance as 1/r2. Hence, the series can be truncated to
±M terms for distances r �MH. We will simulate flows
up to r ∼ 5mm, so we truncate at m = ±100.

There are two points of caution that must be con-
sidered before continuing. First, an infinite series of
Stokeslet forces does not converge unconditionally be-
cause it decays as 1/r, so more care must be taken.
However, we are only concerned with organism contrac-
tions without external forcing. Second, for an experi-
mental geometry between glass sides, instead of a liquid
film, the image systems are more complex [19]. In this
case, the boundaries can induce recirculation even at zero
Reynolds number [20]. This recirculation could be con-
fused with the emergence of inertial vortices. But this
is not the case for our dipolar flows in a liquid film [18],
which feature vortices only at R > 1 but no vortices and
open stream lines in high-viscosity medium.

4. Inertial flow

To account for effects of inertia, we consider the lin-
earized Navier-Stokes (LNS) equations [21–23].

%
∂u

∂t
= −∇p+ µ∇2u+ F (r, t), (12)

0 = ∇ · u, (13)

where % is the fluid density, so the kinematic viscosity is
ν = µ/%. The ‘oscillatory Reynolds number’ associated
with these equations is R = %L2

0/µT0, where L0 and
T0 are typical length and time scales. The fundamental
solution to these equations can also be expressed in terms
of a hydrodynamic tensor,

uS(r, t) =

∫ t

0

dt′Q(r − r′, t− t′) · f(t′), (14)

where the integration over the memory kernel arises be-
cause this inertial flow now requires a period T0 ∼ %L2

0/µ
to adapt to changes in forcing. The explicit expression
of the hydrodynamic tensor is

Qij(r, t) =
1

%

(
A(r, t)δij −B(r, t)

rirj
r2

)
, (15)

in terms of the scalar functions

A(r, t) =

(
1 +

2νt

r2

)
α(r, t)− β(r, t)

r2
, (16)

B(r, t) =

(
1 +

6νt

r2

)
α(r, t)− 3β(r, t)

r2
, (17)

α(r, t) =
1

(4πνt)3/2
exp

(
− r2

4νt

)
, (18)

β(r, t) =
1

4πr
erf

(
r√
4νt

)
. (19)

Indeed, in the high-viscosity limit, when the tensor Q
varies much more slowly in time than the forcing fk, we
recover Q → J , the Oseen tensor (7).

5. Combined flow

Combining this LNS solution (14-19) with the concepts
of superposition (8) and the method of images (11), we
model the Spirostomum contraction flow as

vc(r, t) =
∑
k

∑
m

∫ t

0

dt′

Q
(
r − rk(t′)−mHêz, t− t′

)
· fk(t′). (20)

The equal and opposite forces that the organism exerts on
the liquid are distributed as a set of Nk = 10 points over
the body, k ∈ {±1,±2, . . . ,±5}, with force positions de-
termined by the contraction dynamics (1-2), which gives

rk(t′) =
k

5

L(t′)

2
êx. (21)

Next, the forces are estimated by the Stokes law,

fk(t′) = 6πµR0
∂rk(t′)

∂t′
(22)

= −6πµR0
kL0fc

10
√

2πτ̃2
c

exp

(
− (t′ − τ̃p)2

2τ̃2
c

)
êx, (23)

where the effective organism width R0 ≈ 100µm. Fi-
nally, assembling Eqs. (20-23) provides a complete ap-
proximation for the contraction flow. The memory kernel
convolved with the Gaussian force is readily integrated
numerically. This solution is shown in Fig. S2, for high
(1000x water) and low (water) viscosities, but with con-
traction time τc constant.

C. Mixing

To analyse the mixing potential of the consecutive con-
traction and relaxation, we consider an ensemble of ran-
domly distributed tracer particles in the organism vicin-
ity, |rp| < 5mm. The contraction flow is defined as in
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(20). The relaxation flow is given by the same equa-
tions, but with reversed contraction kinematics and much
slower, with τ ′c = 1s. We integrate these numerically for
a period of tf = 10s, using a fourth order Runge-Kutta
scheme. The resulting tracer trajectories are shown in
Fig. 2F of the main text. We then compute the final
displacement after contraction and relaxation,

∆r = rp(tf )− rp(0). (24)

For the particles in 3% methyl cellulose, with kinematic
viscosity ν = 50mm2/s, the hydrodynamics is dominated
by viscosity, so the contraction and relaxation are recip-
rocal in time. In agreement with the scallop theorem
[24], the forward trajectories are the same as the back-
ward route, so the final displacement is negligible. For
the particles in water however, with ν = 1mm2/s, this
symmetry is broken and substantial mixing is observed,
up to ∆r ≈ 0.1L0.

IV. RHEOSENSING

A. Experimental details

To measure their sensitivity to flows, organisms are
tested in a novel microfluidic device that exerts hydro-
dynamic stresses on the cell body [Fig. S3]. The device
is composed of two parallel disks (light blue) separated
by a spacer (red), encased in an upright cylinder (gray)
that holds liquid with organisms (dark blue). Organisms
enter the flow chamber between the disks through four
large inlets, and leave by the central outlet that is con-
nected to a microfluidic pump. The chamber height is
H = (700 ± 20)µm, the inner radius ρ1 = 1mm and the
outer radius ρ2 = 4cm. The disks are made of trans-
parent acrylic that are imaged through with an inverted
microscope (Nikon Te2000, 2X objective).

The exact solution of the flow pattern inside the cham-
ber is known, the axisymmetric Jeffery-Hamel flow

vf (ρ) = −M
ρ

(
1−

(
2z

H

)2
)
ρ̂, (25)

in cylindrical coordinates, with

M =
H2∆p

8µ ln(ρ2/ρ1)
=

3Φ

4πH
, (26)

where ∆p is the pressure drop and Φ = (2.4± 0.1)cm3/s
is the calibrated flow rate.

In this design, the flow increases with decreasing dis-
tance from the outlet, vf (ρ) ∝ −1/ρ, so while organisms
are drawn towards the centre of the device they experi-
ence increasingly more hydrodynamic stress. The rate-
of-strain tensor is defined in Cartesian components as

Eij =
1

2

(
∂vi
∂rj

+
∂vj
∂ri

)
, (27)

with i, j ∈ {x, y, z} and the strain rate is defined as

γ̇ =

√
EijEji

2
, (28)

where the repeated indexes are summer over. Therefore,
the strain rate in the middle of the flow chamber (25) is

γ̇ = M/ρ2. (29)

Thus, as an organism is drawn closer to the central out-
let, the strain rate increases. When a critical value is
reached, γ̇c, it contracts. This is observed around the
critical radius, or the ‘event horizon’

ρc =
√
M/γ̇c. (30)

An additional advantage of this set-up is that elongated
organisms naturally align with the radial direction, ρ̂,
because they perform Jeffery-like trajectories with en-
hanced the time spent in the shear-extensional orienta-
tion [25, 26].

B. Analogy with tidal forces

Interestingly, one can make a direct analogy between
the stretching of organisms in this suction flow device
and ‘spaghettification’ near a black hole [27], a stretching
induced by tidal forces due to non-homogeneous gravita-
tional (cf. hydrodynamic) fields. Specifically, the New-
tonian gravitational force on a body can be written as

Fg(ρ) = − G̃
ρ2
ρ̂, (31)

where G̃ = GMm is the gravitational prefactor and ρ is
the radial distance. A body of length L aligned along ρ̂
then experiences different forces at its head and tail ends,
being

Fg(ρ± L/2) = − G̃

(ρ± L/2)2
ρ̂ (32)

= − G̃
ρ2
ρ̂± G̃L

ρ3
ρ̂+ . . . (33)

Here, the difference between the head and tail, the last
term, gives the tidal force Ft(L, ρ) = 2G̃L/ρ3.

Equivalently, the Jeffery-Hamel flow (25) is also non-
homogeneous, decaying with distance ρ as vf (ρ) =
−(M/ρ)ρ̂, as evaluated at z = 0. Therefore, it also in-
duces a difference in flow strength at the head and tail,
giving the ‘hydrodynamic tidal force’

Ft(L, ρ) =

∣∣∣∣vf (ρ+
L

2
)− vf (ρ− L

2
)

∣∣∣∣µt (34)

=
LMµt
ρ2

, (35)
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FIG. S3. Rheosensing device (not to scale). Liquid with suspended organisms is held in a cylindrical container, with a narrow
flow chamber in the bottom compartment. Liquid is drawn into the chamber on the sides and pumped out from a central tube.
This creates an axisymmetric Jeffery-Hamel flow (25). A. 3D diagram of this experimental set-up. B. Side view, and schematic
of flow profile. The organism (green) is stretched because the anterior flow is stronger than the posterior (28).

where µt is a resistance factor, proportional to the fluid
viscosity, that links the velocity with force. This expres-
sion can be compared directly to the strain rate (29).
Also notice that it increases with cell length, L, which
already suggests that longer cells can be better sensors.
To understand this better, and how it depends on the or-
ganism shape, we study the distribution of tension that
this tidal flow induces on the cell membrane, as discussed
in the next section.

C. MRS calculations

Because the flow profile is known analytically in this
device, it is possible to back-calculate the full distribution
of forces that the liquid exerts on the membrane of the
organism. We use the Method of Regularised Stokeslets
(MRS) developed by Cortez et al. [28]. As the name
implies, instead of the singular Oseen tensor (Eq. 7), a
regularised tensor is introduced

J εij(rn, rm) = δij
s2 + 2ε2

(s2 + ε2)3/2
+

sisj
(s2 + ε2)3/2

, (36)

where s = rn − rm, s = |s| and ε is the regularisation
parameter.

To account for the elongated Spriostomum shape, its
surface is discretised with N points. We use the axisym-
metric grid point distribution

rn −R =
L

2

(
cosϕn

√
1− z2

n

Γ
,

sinϕn
√

1− z2
n

Γ
, zn

)
,

(37)

where we measure, for each individual organism, the cen-
troid position just before contraction R, the cell length
L ∼ 1mm, and the aspect ratio Γ ∼ 10. We use Nϕ = 25
and Nz = 100 so N = 2500, and

ϕn =
π

Nϕ
+

2π(nϕ − 1)

Nϕ
, (38)

zn = −1 +
1

Nz
+

2(nz − 1)

Nz
, (39)

where the indexes nϕ,mϕ ∈ {1, 2, . . . , Nϕ} and nz,mz ∈
{1, 2, . . . , Nz}. For this geometry, the regularisation pa-

rameter is set to ε = 0.5
√
AT /N , comparable to the dis-

tance between grid points, and defined in terms of the
total surface area AT = 2.8 10−7m2.

Now, the velocity of each point n on the organism can
be decomposed in three components

un = U + Ω× rn + uBCn , (40)

a rigid body translation U , a rigid body rotation Ω and a
surface deformation due to the applied flow, the bound-
ary condition uBCn . As in Eq. 8, these velocities are linked
to the forces fm that the organism exerts on the liquid,

un =
1

8πµ

N∑
m=1

J ε(rn, rm) · fmAm, (41)

where µ is the fluid viscosity and Am are the quadrature
weights,

Am =
2π

Nϕ

2

Nz

L2
0

4Γ2

√
Γ2 + (Γ2 − 1)z2

n. (42)
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To find the forces that the liquid exerts on the mem-
brane (−fm), we must invert the linear system (41) sub-
ject to the constraints that the net force and torque must
add up to zero in the absence of external contributions,

0 =
N∑
m=1

Amfm, 0 =
N∑
m=1

Am(fm × rm). (43)

The boundary conditions are set by equating the flow
inside the microfluidic device (25) to the surface velocity

uBCn = vf (rn). (44)

Therefore, we have 3N + 6 equations (41-44) and the
same number of unknowns (fn, U ,Ω).

This system is solved numerically for each organism
at the moment just before contraction. Since we mea-
sure the positions rn, we compute the flows at each grid
point vf (rn) and then find the forces fn [black arrows in
Fig. 3C]. Once the forces [N] are known, we compute the
surface tension [N/m] along the long axis of the organ-
ism by dividing the summed forces over the surface cross
section

ζ(nz) = −
nz∑

mz=1

Nϕ∑
mϕ=1

Amf
z
m

πL/Γ
, (45)

where Γ is the aspect ratio and L/Γ is the organism
width. At the organism ends the membrane tension van-
ishes, ζ(0) = ζ(Nz) = 0, due to the constraint (43). How-
ever, for a certain value nz halfway the tension peaks
[colours in Fig. 3C]. Thus, we find the quantity of inter-
est: the critical membrane tension, Tc = maxnz

ζ(nz),
for each measured organism.

D. Ion channel theory

The membrane tension changes the probability that
a mechanosensitive ion channel opens. To estimate this
probability, we refer to the ‘two-state’ model by Phillips
et al. [29], page 261 of the first edition. The channel can
reside in the open (σ = 1) or closed (σ = 0) state. The
energy of this system can be written as

E(σ) = σEopen + (1− σ)Eclosed − σT∆A, (46)

where the energies of the open and closed states are Eopen

and Eclosed, respectively, so ∆E = Eclosed−Eopen [J], the
applied membrane tension is T [N/m] and the change in
area upon gating is ∆A [m2]. The last term in Eq. 46
favours the open state, and reflects the work done to pull
open the channel. The probability of finding the channel
in a state with energy E is then given by the Boltzmann
distribution, P (E) = e−βE/Z, where Z =

∑
σ e
−βE(σ)

is the partition function and β = 1/kBT . Therefore,
the channel gating probability as a function of applied

tension is

Po(T ) =
e−β(Eopen−T∆A)

e−β(Eopen−T∆A) + e−βEclosed
(47)

=
1

1 + e−β(∆E+T∆A)
. (48)

This function is plotted in Fig. 3D with ∆E = −5kBT
and ∆A = (10nm)2. The critical membrane tension
corresponds to the inflection point, Tc = −∆E/∆A ≈
0.2mN/m, which compares well with the measured value
〈Tc〉 ≈ 0.17mN/m.

E. Strain-rate calculation for cell sizes

Instead of computing the membrane tension from the
applied flow (§ IV C), conversely, it is also possible to
compute the critical strain rate γ̇c given the measured
threshold tension 〈Tc〉 = (0.17 ± 0.02)mN/m. This can
be also done for different organism geometries. In partic-
ular, to answer the question what makes a better sensor,
we are interested in γ̇c as a function of the cell size L.

We model this by using the Method of Regularised
Stokeslets (MRS) once more. A virtual organism of
length L is discretised (37) and placed in the flow (25)
with virtual strength Mv. The cell is oriented in the flow
direction ρ̂ with its centroid at radius ρc, so the virtual
strain rate is γ̇v = Mv/ρ

2
c . Exactly as before, we compute

the forces fm and find the virtual maximum membrane
tension Tv. Then, we find the real critical flow rate Mc

required to reach the known critical tension Tc, using the
fact that the forces and the flow are linearly connected,
Tv

Mv
= Tc

Mc
, so we find Mc = Tc

Tv
Mv. Hence, the critical

strain rate required to trigger an organism of length L is

γ̇c(L) =
Mc(L)

ρ2
c

=
Tc

Tv(L)

Mv

ρ2
c

. (49)

Note that the baseline flow Mv and position ρc are ar-
bitrary, so we chose the measured experimental values.
The resulting prediction is shown in Fig. 3E (black line).

V. HYDRODYNAMIC TRIGGER WAVES

A. Clustering

We observe a robust clustering behaviour in Spirosto-
mum, both in lab and in field conditions. After releasing
organisms in a petri dish, the cells swim towards one an-
other over typical time scales of a few minutes [Movie S7].
This accumulation is very consistent, even after manual
fluid mixing.

The clustering mechanism is not well understood,
but likely contributors are chemotaxis or biophysical
pathways leading to motility-induced phase separation
(MIPS) [30]. As organisms come close together, they
could sense each other’s flows produced by swimming. If
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FIG. S4. Collective hydrodynamic signalling. A. Example of configuration of organisms A − O. The first cell to contract is
A (blue), and the last are K −N (red). One organism is not triggered, O (gray). The circle is used to compute the organism
density around cell D (green). B. Connectivity graph of the same configuration.

these small stimuli lead to ciliary reversal [Fig. S1B], then
the mean swimming speed is reduced with increasing or-
ganism density vs ∝ 1/n, leading to dynamical cluster-
ing. Future research should look into this further.

B. Group contraction experiments

Collective dynamics were examined with high-speed
(15002 fps) imaging of a dense (self-concentrated) organ-
ism suspension, gently transferred into a channel of par-
allel glass slides. The channel height, H = 200µm, is not
large compared to the cell width, W ∼ 100µm, to ensure
the dynamics are primarily two-dimensional. Note that
3D group contractions are readily seen in petri dishes or
culture flasks, but visualisation in 2D is more controlled.
No electrical or other external stimuli were used here,
but instead we waited until one organism would contract
‘spontaneously’, because of collision or flows generated
by swimming. The resulting cascade then triggers a large
group, ∼ 100 cells in the field of view.

Recordings are analysed with a custom MATLAB
script that (1) detects organism positions and orienta-
tions, (2) detects contraction events, and (3) deduces
which organism triggered which, based on topography
and timing, with statistical maximum likelihood.

From this information we construct a ‘connectivity
graph’ that encodes each organism as a ‘vertex’ and each
hydrodynamic signal as an ‘edge’ of the graph. Like a
family tree, contractions are passed on from one gen-
eration to the next [Fig. S4]. At each signal event we
extract the number density, n = N/(πR2), where N is
the number of cells within a radius R = 1mm. We also
find the time between contractions of each graph edge,
〈τe〉 = (2.5±0.3)ms, which is indeed comparable with the

electrical perception time measured in § II. Then, given
the the centroid distance between sender and receiver, ρe,
we compute the trigger wave speed, 〈vw〉 = 〈ρe/τe〉. This
trigger wave speed is plotted as a function of organism
density [Fig. 4B].

C. Pair-wise interactions

Next to the above experiments at high organism den-
sities (n ∈ [0.5, 5] cells/mm2), we also run low-density
assays (globally ∼ 0.1 cells/mm2). Here swimming cells
encounter each other only occasionally in pairs, with a
low probability that a third organism is nearby. We
record long time lapses (8.93 fps, Leica DM4000 micro-
scope, Hamamatsu camera) and detect pair-wise contrac-
tions with a custom MATLAB script. Thus, N = 79 in-
teraction events were captured and analysed to extract
the relative position (ρ, θ) and orientation (φ) between
the transmitting and receiving organisms, (A,B), respec-
tively [Fig. 4D,E, black stars].

We compare this to our theoretical model for flow gen-
eration and sensing. From the contraction flow (Eq. 20)
we compute the strain rate γ̇ defined by Eq. 28 at the mo-
ment the flow is strongest, when t = τ̃p in Eq. 2. To keeps
the model tractable, we consider the case without reflect-
ing film surfaces (m = 0 only) and apply the Stokesian
limit Q → J . Both cell lengths are set to L0 = 1mm.

Figure 4C shows this strain rate γ̇(ρ, θ) around the
transmitting organism, A. Contours are shown for
γ̇ = 25, 50, 100s−1 with green, orange and red lines,
respectively, where the latter is the critical strain rate
γ̇c = 100s−1. Then, we calculate the same strain rate at
N points (37) along the body of the receiving organism
B, for all configurations (ρ, θ, φ). In Fig. 4D this is plot-
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ted as a function of relative position, where the relative
orientation and points on the body are maximised over;

γ̇′(ρ, θ) = max
φ

N
max
n=1

[γ̇(ρ, θ, φ)]. (50)

Similarly, the angular dependence is shown in Fig. 4E
with fixed separation distance

γ̇′′(θ, φ) =
N

max
n=1

[γ̇(θ, φ, ρ = 1mm)]. (51)

From this analysis we conclude that, indeed, the receiving
organism B is most likely to contract when it crosses the
red line, γ̇c, the ‘region of influence’.

D. Antenna theory

An analogy can be made here with electromagnetic
antenna theory [31], where the distribution of output
power in the (θ, ϕ) directions (in spherical coordinates)
is given by the radiation intensity U(θ, ϕ) in units
[Watt/steradian]. All real electromagnetic emitters and
receivers are anisotropic, to satisfy the Helmholtz wave
equation, enhanced by using parabolic dishes, which is of-
ten useful to transfer information in a specific direction.
The directivity or directive gain is

D(θ, ϕ) = (θ, ϕ)/Ū , (52)

where Ū =
∫ ∫

U(θ, φ)dΩ/4π is the mean radiation inten-
sity. The maximum directivity in any direction is then

Dm = max
θ,ϕ

D(θ, ϕ). (53)

Thus, a value larger than 1 is considered gain. For
example, a conventional half-wave dipole antenna has

U(θ) ∝ cos2( 1
2π cos(θ))

r2 sin2(θ)
, so the directive gain is Dm = 1.64

(2.15 dB).
Spirostomum also emits and receives hydrodynamic

signals anisotropically, as shown in Fig. 4C. To ap-
proach this analytically we consider the Stokes dipole
(10), which can be written in spherical coordinates as

uD = κ 1−3 cos2 θ
r2 r̂ [32]. The corresponding strain rate

(28) is then given by

γ̇D(r, θ) =
κ
√

3
√

6 cos(2θ) + 3 cos(4θ) + 7

2r3
, (54)

which like Fig. 4C also features two main lobes at θ = 0, π
and side lobes at θ = π/2. Hence, we obtain the dipole
flow directive gain,

DD
m =

maxθ,ϕ γ̇
D(θ)

1
4π

∫ ∫
γ̇D(θ) sin θdθdϕ

≈ 1.90 = 2.79dB (55)

This quantifies that the hydrodynamic signals are trans-
mitted ∼ 2 times stronger in the direction of the long
body axis. This dipole flow (10,54) is the most funda-
mental current generated by swimming micro-organisms
[33]; e.g. also bacteria produce dipole flows [34].

E. Many-organism simulations

Building on this understanding, we continue to model
multi-organism interactions by simulating large colonies
of number density n ∈ [0, 5] mm−2. We consider an en-
semble of N = nπR2

e cells with length L0 = 1mm, dis-
tributed over a circle of radius Re = 20mm, with random
orientations and positions. The first organism is set at
the origin (0, 0) and starts contracting at t = 0. At each
time step, for each non-triggered organism,

1. we sum the flows of the 6 nearest neighbours, if
triggered at the previous time step. Further neigh-
bour flows are not included to model the high fluid
dissipation at high organism densities, a hydrody-
namic screening effect [35, 36]. In other words, it
would be unphysical for flows from further cells to
travel through nearer cells.

2. From this flow we evaluate the maximum strain
rate on points everywhere on the body, as for the
pairwise-interactions.

3. If γ̇B > γ̇c, the receiving cells B are triggered.
The duration between each time step is set by the
perception time, which we model by the measured
value ∆t = 〈τe〉 = 2.5ms.

We terminate the simulation if no more organisms are
triggered, or if the signal reaches the colony edge, defined
as radius Re − L0. If the latter happens, the ensemble
reached percolation. The percolating path, the first con-
nection from the origin to the edge, is shown as a coloured
line in Figs. 4F-H. For each organism density n we repeat
this simulation for Ne = 100 ensembles, and compute the
percolation probability P (n) as the fraction of percolat-
ing ensembles. We then also compute the mean wave
speed 〈vw〉 = 〈ρe〉/∆t. Both quantities are plotted in
Fig. 4B. The percolation threshold, where P (n) transi-
tions from zero to unity, is found at nsim

c = 1.97mm−2.

F. Percolation theory

A theoretical estimate of the critical number density,
nc, above which the hydrodynamic trigger waves can be
sustained, is derived from percolation theory [37, 38].
This theory developed into the key framework for un-
derstanding conduction, signal transduction and long-
ranged connectivity [39, 40], with many applications in
biological systems [41], possibly including the dog alert
in the Disney cartoon ‘101 Dalmatians’.

Because the organisms are distributed randomly in
space, we consider continuum rather than lattice perco-
lation. The classical continuum model is the formation
of clusters by overlapping circles in 2D. The clusters get
larger as the number of circles increases, or specifically as
the fractional area that they cover p ∈ [0, 1] grows. Then,
at a critical value pc ≈ 0.676 a ‘spanning cluster’ emerges
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that is as large as the system size. For this problem, an
exact series expansion solution was found [42].

Because we are interested in the non-circular structure
of the Spirostomum signals, we continue by considering
ellipses. An analytical approximation for overlapping el-
lipses was published by Yi et al. [43], and an interpo-
lation formula was found by Xia et al. [44], giving the
critical area fraction

pc = 1− 1 + 4y

19 + 4y
, y =

a

b
+
b

a
, (56)

in terms of the major and minor semiaxes, a > b. Given
the area of an ellipse, A = abπ, the relationship [44]
between the non-dimensional area fraction p and the di-
mensional number density n is

p = 1− e−abπn, n =
1

abπ
log

(
1

1− p

)
. (57)

Instead of the organisms themselves overlapping, we
consider the region of influence of the transmitting or-
ganisms’ flows (see § V C) crossing the bodies of the re-
ceiving organisms. Therefore, we use the mapping

a =
aorg + aroi

2
, b =

borg + broi

2
, (58)

where aorg = 10borg = 0.5mm and we obtain (aroi, broi) ≈
(0.863, 0.302)mm from fitting an ellipse to the region of
influence [Fig. 4C, dashed red line]. Inserting (58) into
(56, 57) then gives an estimate for critical organism den-
sity, nth

c ≈ 1.876mm−2.
A further analytical estimation without any fitting pa-

rameters can be obtained by approximating the region
of influence using the dipole approximation (54) for the
strain rate. Solving γ̇D(r, θ) = γ̇c for the radius r at
θ = (0, π/2) gives

(aroi, broi) =
3

√
κ
√

3
√

6 cos(2θ) + 3 cos(4θ) + 7

2γ̇c
, (59)

where the dipole moment κ = fmaxL0/8πµ ≈ 5.98mm3/s
and γ̇c = 100/s. Inserting these values gives (aroi, broi) ≈
(0.592, 0.470)mm, leading to the critical organism den-
sity, na

c ≈ 2.137mm−2. This expression can be applied
directly to other organisms for which the flow (or dipole
moment) and critical strain rate are known.

The presented percolation theory can be extended
straightforwardly to more natural 3D organism colonies
using overlapping ellipsoids of revolution [45]. On a more
fundamental level, we expect the hydrodynamic signals
to be part of the directed percolation universality class
[46–48]. Here the directionality can be interpreted as a
temporal degree of freedom [40], like following ‘one-way
streets’ in a maze. Analogously, the organism signals also
have uni-directional paths for certain relative configura-
tions (ρ, θ, φ), where a cell can trigger a neighbour but
that neighbour cannot trigger the former. An example is
(ρ, π2 ,

π
2 ) versus (ρ, 0, π2 ) [Fig. 4E]. Therefore, the physical

properties of the phase transition (the critical exponents)
might be different from the overlapping shapes, a mem-
ber of the ‘ordinary percolation’ universality class. This
could be an exciting new avenue for future research in
hydrodynamic communication.

VI. LIST OF SUPPLEMENTARY MOVIES

• Movie S1.mov – Close-up of metachronal waves,
antisymplectic on top. Images are recorded at
40x magnification and 500fps (playback 10x slowed
down). The organism swims between glass slides
separated 100 microns. Added are D = 0.75 mi-
cron tracer particles to visualise the local flows gen-
erated by the swimming strokes.

• Movie S2.mov – Montage of global flows generated
by swimming. Images are recorded at 4x magnifica-
tion and 500fps (playback 10x slowed down). The
organism swims in a glass channel of height 100 mi-
crons, filled with D = 0.75 micron tracer particles.
The FlowTrace algorithm [14] was used to convolve
a superposition of 100 frames for each image.

• Movie S3.mov – High-speed recording of body dy-
namics during contraction. Images are recorded
at 20x magnification and 2,800fps (playback 50x
slowed down). The contraction occurred ‘sponta-
neously’, so was not triggered electrically.

• Movie S4.mov – High-speed recording of inertial
flows generated during a contraction. Images are
recorded at 10x magnification and 10,000fps (play-
back 200x slowed down). The organism swims in
an air-liquid-air film of 500 microns height, and
was triggered by an electric pulse (|E| = 1.5kV/m,
τE = 100ms) in the middle of the film. The Flow-
Trace algorithm [14] was used to show streamlines
by superimposing 200 frames for each image. Note
the spreading of the 4 vortex centers into the liquid
over time, cf. Movie S5.

• Movie S5.mov – Linearised Navier-Stokes solution
of inertial flows generated during a contraction.
The flow solution (Eq. 20) is evaluated in a 2x2mm
domain during a 100ms period. The method of im-
ages was used to satisfy the boundary conditions of
an air-liquid-air film of 500 microns height. Yellow
arrows are streamlines and background colours de-
note the flow magnitude. Note the spreading of 4
vortices into the liquid over time, cf. Movie S4.

• Movie S6.mov – Rheosensitivity measured in a mi-
crofluidic device. Images are recorded at 1.5x mag-
nification and 1,000fps (playback 50x slowed down).
As organisms are drawn towards the central flow
outlet (red), the strain rate increases with decreas-
ing radial position, γ̇ = M/ρ2, where M is the
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flow rate. When the organism reaches the thresh-
old (orange, 〈ρc〉 = 3.22mm) its mechanosensitive
channels open and the cell contracts. This high-
throughput experiment is repeated for N > 100
cells to compute the average critical strain rate.

• Movie S7.mov – Spontaneous clustering behaviour.
Images are recorded at 1x magnification and 4fps
(playback 10x speed up). The organisms swim to-
wards one another after manual fluid mixing. A
double group contraction is observed at cell high
densities, at time point 5:30.

• Movie S8.mov – Collective hydrodynamic signal-
ing. Images are recorded at 4x magnification and
15,000fps (playback 150x slowed down). Contract-
ing cells generate a flow that trigger other organ-
isms. Superimposed on the experimental video is
the evolution of the connectivity graph, showing
which organism triggered which, where colours de-
note the contraction time.

• Movie S9.mov – Percolation simulations of collec-
tive hydrodynamic signaling. A large number N =
nπR2 ∼ 15, 000 of organisms (black lines) are dis-
tributed randomly over a circular cluster of radius

R = 50mm. One central organism is triggered,
and subsequent contraction dynamics are simulated
over time (denoted by colours) until no more or-
ganisms move. (a) Just below the critical point,

at density n = 1.75 [cells/mm
2
], the trigger wave

decays very rapidly. (b) Near the critical point, at
n = 2, many branches of the connectivity graph die
out but one path reaches the cluster edge. (c) Just
above the critical point, at n = 2.25, almost all
organisms are triggered, readily establishing perco-
lation. In summary, a 25% difference in density has
a much larger effect on communication.

• Movie S10.mov – Simplified demonstration of wave
speed dependence on organism density. Cells are
arranged along the x axis with parallel (a) and per-
pendicular (b) orientations, separated a distance
just small enough for signal transduction. At lower
cell densities (a) the wave moves faster than higher
densities (b), but at the cost of losing percolation
by small orientation fluctuations. In this simplified
case the cells can only trigger the nearest neigh-
bours. In more complex configurations the hydro-
dynamic screening at high cell densities has a sim-
ilar effect.
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