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Summary 20 

DNA methylation dynamics is intrinsically interconnected with processes underlying the 21 

malignant properties of cancer cells. By applying network-based approaches in two series of 22 

colorectal cancers we dissected the long-range co-methylation structure finding consistent 23 

patterns of compartmentalization in both normal and tumor tissues. Large transchromosomal 24 

modules showed unique regulatory signatures and coalesced into a structured network and 25 

allowing simple patient stratification. Normal-tumor comparison revealed substantial 26 

remodeling of specific modules and migration of subsets of co-methylating sites denoted by 27 

functional aggregates, pointing out potential sources of epigenetic and phenotypic variability. 28 

We conclude that DNA methylation dynamics architecture embodies interpretable 29 

information that can be used as a proxy of the drivers and the phenotypes of malignant 30 

transformation. 31 

Significance 32 

DNA methylation is a key epigenetic mark directly involved in genome organization and 33 

regulation. DNA methylation profiles are variable and are extensively altered in most cancers. 34 

We show that DNA methylation variability follows a transchromosomal modular dynamics in 35 

both normal and colon cancer cells. The reshaping of the DNA methylation variability 36 

network in tumorigenesis exposes genomic and functional associations and points out both the 37 

mechanisms and the phenotypes of individual tumors. This information may be used for 38 

patient stratification and identification of disrupted pathways and therapeutic targets.  39 

Highlights 40 

 DNA methylation variability displays a modular architecture in normal and cancer. 41 

 Coordinated transchromosomal variations supersede regional DNA methylation 42 

dynamics. 43 

 Co-methylation network modularity evinces functional and structural features. 44 

 Epigenetic rewiring can be used as patient stratifier. 45 

Keywords  46 

DNA methylation, co-methylation, epigenetics, networks, colon, colorectal, cancer  47 
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Introduction 51 

Cancer cell functional reprogramming involves gene expression dysregulation driven by 52 

genetic and epigenetic changes. The contribution of epigenetic mechanisms to malignant 53 

phenotypes has been thoroughly studied and includes extensive DNA methylation alterations 54 

as prominent features of most cancers types (Feinberg et al., 2016; Portela and Esteller, 2010). 55 

DNA methylation mainly occurs in the cytosine of the CpG dinucleotide and is usually 56 

associated with a repressed chromatin state. Changes in DNA methylation have multiple 57 

effects in genome regulation and have been directly associated with gene overexpression and 58 

silencing, chromatin remodeling and chromosomal instability (Eden et al., 2003; Feinberg et 59 

al., 2016; Jones, 2012; Rodriguez et al., 2006; Schubeler, 2015). Direct comparison of the 60 

DNA methylation profiles in the tumor versus the paired normal tissue reveals both losses 61 

(hypomethylation) and gains (hypermethylation) of the epigenetic mark. The extent of the 62 

change may range from discrete sites and promoters to large regions (Feinberg et al., 2016; 63 

Frigola et al., 2006; Hansen et al., 2011; Jones, 2012; Portela and Esteller, 2010).  64 

Neighboring CpGs have a higher chance of being similarly methylated (Barrera and Peinado, 65 

2012; Eckhardt et al., 2006; Libertini et al., 2016; Shoemaker et al., 2010); nonetheless, the 66 

actual extent of this vicinity effect is disputed, with reports of complete to weak or very low 67 

decay of co-methylation as the genomic distance increases in different cell types and tissues 68 

(Akulenko and Helms, 2013; Fortin and Hansen, 2015; Li et al., 2010; Salhab et al., 2018). 69 

Most studies about the functional impact of DNA methylation changes have focused the 70 

analysis on local effects on neighboring genes (Jones, 2012; Schubeler, 2015). More recently, 71 

taking advantage of the availability of genome-scale DNA methylation data from large 72 

datasets, the study of DNA co-methylation profiles has been addressed from different points 73 

of view, including the analysis of long range correlations  (Akulenko and Helms, 2013; Fortin 74 

and Hansen, 2015; Zhang and Huang, 2017), gene centered analyses (Gao and Teschendorff, 75 

2017; Li et al., 2014) and modeling of DNA methylation variation (Jenkinson et al., 2017; 76 

Libertini et al., 2018; Rulands et al., 2018; Teschendorff and Relton, 2018).  77 

We hypothesize that epigenetic phenotypes exposed by DNA methylation co-variation reveal 78 

the functional organization of human cancer cell’s genome. To get insights into the structure, 79 

functional determinants and underlying mechanisms of DNA methylation dynamics, we 80 

examined the DNA methylomes of colon cancer patients by a novel network-based synthetic 81 

analysis. Recent leading studies have proposed network based elucidation of molecular 82 

determinants of disease (Creixell et al., 2015; Chen et al., 2014; Liu et al., 2016). Our 83 
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rationale is that cells subjected to complex physiopathological processes (e.g. tumor initiation 84 

and progression), albeit being highly heterogeneous, share common driver and passenger 85 

events from which biologically relevant phenotypic traits arise. Concomitantly, the linkage 86 

between the events and the emergence of relevant traits alters the epigenome. The 87 

heterogeneity of the samples, which might be classified in a wide assortment of states and 88 

transitions, challenges the final state-focused differential methylation analysis (the one 89 

resulting in regional hyper-or hypomethylations), whilst favoring more process-oriented, 90 

flexible co-variation analysis, which also unfolds variability. Here, we have scrutinized over 91 

300,000 individual CpGs in two colon cancer datasets to extract and characterize the highly 92 

connected co-methylation modules. The structural and functional insights of epigenomic 93 

modules are dissected providing a framework to disentangle cancer cell’s genome functional 94 

reorganization. 95 

Results and Discussion  96 

Distant CpGs co-methylate in colon cancer samples  97 

We retrieved DNA methylation data as measured by Infinium HumanMethylation450 Array   98 

values from 90 tumor and 90 adjacent normal tissues from the Colonomics cohort (Closa et 99 

al., 2014; Cordero et al., 2014; Sanz-Pamplona et al., 2015; Sole et al., 2014) to feed the co-100 

methylation analysis (Figure 1). Quality check consisted in three steps (Table S1). First, we 101 

excluded probes non uniquely mapping to a genomic location, being polymorphic or located 102 

in sex chromosomes (Price et al., 2013). Second, probes with low variability (standard 103 

deviation s  < 0.05) were filtered out to get rid of correlations led by outliers or presumably 104 

non significant. Finally, probes with missing data in any sample were eliminated (Table S1). 105 

No detectable batch effects were found (Figure S1). Next we sequentially calculated the bulk 106 

pairwise Spearman’s correlations between any possible pair of probes adjusting for multiple 107 

testing (Table S2).  108 

Co-methylations were detectable even at long distances (Figure 2A) and did not depend on 109 

local probe density (Figure S2A). Correlation coefficients   (a measure of association ranging 110 

from -1 to 1, in which 0 means full independence) were bell-shape distributed, thus indicating 111 

that the majority of correlations lied on the non-significant range, as expected (Figure 2), 112 

independently of the CpG location in open or closed chromatin compartments (Figure S3). 113 

The   distribution was not centered to 0 but shifted towards positive values, thus indicating a 114 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted September 27, 2018. ; https://doi.org/10.1101/428730doi: bioRxiv preprint 

https://doi.org/10.1101/428730


Mallona et al. 6 

 

trend towards co-methylation changes. That is, the detected changes in DNA methylation 115 

correspond to either the increase or decrease of the scrutinized CpGs altogether, and not in 116 

opposite directions (e.g. inverse associations). The trend to co-methylate was noticeably 117 

increased in cis, being close CpGs’ distribution negatively skewed: co-methylations were 118 

enriched at short distances, whereas anti-methylations (negative correlations) were not (Figure 119 

2A).  120 

To underpin the biological relevance of the findings and rule out the co-methylation structure 121 

arising due to technical noise, we evaluated five possible sources of artifacts: multiple testing, 122 

batch effects, leading outliers, tumor purity and chip design (see Supplemental Methods) and 123 

none of them appeared to have a significant effect on the results.  124 

To account for the iterative nature of the analysis, consisting in exhaustively computing any 125 

pairwise correlation between the Infinium probes with variable DNA methylation, we set an 126 

astringent effect size cut-off of the Spearman’s correlation coefficient   ≥ 0.8, which is close 127 

to the conservative Bonferroni p-adjustment for the datasets used (optimization against the 128 

asymptotic p-values as calculated by the Fisher Z transform, Table S2) (Fisher, 1915; 129 

Shakhbazov et al., 2016). The absence of notorious clustering of DNA methylation values 130 

(Figure S1) indicates that batch effects are unlikely drivers of co-methylation (Leek et al., 131 

2010). To attenuate the leading effect of DNA methylation outliers we filtered in probes with 132 

sufficient variation in DNA methylation (setting a standard deviation threshold). To reinforce 133 

this, nonparametric Spearman correlations were run, which rely on DNA methylation ranks 134 

rather than values and are therefore more resistant to outliers (Croux and Dehon, 2010). As 135 

for the Infinium array design, neither the probes GC content (Figure S4) nor the dye channel 136 

(Figure S5) drove the correlations structure; probes mapping to multiple locations or 137 

overlapping to SNPs were filtered out (Price et al., 2013).  138 

Anatomy of the co-methylating network in colorectal cancers   139 

We selected the top-scoring correlations (  ≥ 0.8) and assembled a network in which loci and 140 

correlations are represented by nodes (vertex) and links (edges) (Figure 1B). For the sake of 141 

simplicity, we only considered edges with positive correlations. The Colonomics tumor series 142 

network resulted in 63,130 nodes and 26 million connections (Table S3). The distribution of 143 

each CpG degree (amount of connectivity, number of co-methylating neighbors) showed a 144 

heavy-tail shape with the vast majority of nodes being linked to few counterparts, whereas a 145 

few nodes displayed a fairly abundant connectivity (Figure S6). The degree distribution did 146 
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not resemble power-law, lognormal nor exponential (goodness of fit, Kolmogorov Smirnov 147 

tests,   ≥ 0.05; Figure S7), as there was not linear dependency between the cumulative 148 

frequencies and the connectivities, as in other biological quantities spanning several orders of 149 

magnitude and heavily skewed to the right (Newman, 2005). This structure was unaffected by 150 

loci features such as chromatin state (Figure S8) and genomic category (Figure S9); but lost 151 

when filtering out trans interactions, as probes placed at any distance in cis showed power-law 152 

compatible distributions (Figure S10). Interestingly, the 99th percentile of the most connected 153 

trans-comethylators presented homogeneous intermediate DNA methylation levels in normal 154 

samples (Figures S11 and S12), with an important enrichment of imprinted loci (n=53, 11%). 155 

Interestingly, partially methylated domains (PMDs) have been reported as loci with 156 

intermediate DNA methylation values and high variability (Lister et al., 2009), which is 157 

consistent to the top connected co-methylated probes; however, we did not find an enrichment 158 

in them: 27% (132 CpGs) of the rich probes overlapped PMDs, similarly to the 33% (21,065 159 

CpGs) of the probes with at least a significant co-methylation and what is expected from the 160 

background of the whole set of Infinium probes, with an overlap of the 31% (147,257 CpGs).  161 

To test the reproducibility of  the network, the analysis was repeated using an independent 162 

dataset, the COAD cohort from TCGA, consisting of 256 primary colon adenocarcinomas. In 163 

TCGA dataset, the DNA methylation   value calling procedure differs from Colonomics’, and 164 

therefore reduces the chance of covariation artifacts arising due to the data processing bias. 165 

No batch effects were detected (Figure S1).  166 

Near a quarter million probes fulfilled the variability criteria in TCGA colon tumors (Tables 167 

S6 and S7). The overall correlations distribution and the co-methylation decay with distance 168 

matched that of Colonomics’ (Figure 2A and Figure S2B). Next we evaluated whether the 169 

correlation value for each pair of probes was conserved, including the non-significant pairs. 170 

To do so, we computed exhaustive pairwise correlations of CpGs located at the chromosome 171 

10 against itself and plotted the Colonomics’   values of each CpG pair against TCGA’s. The 172 

linearity of both landscapes (Figure 2B) indicated a high concordance of the overall co-173 

methylation levels.  174 

In a similar vein and to compare the structure of both networks, we checked whether the 175 

correlating nodes present in both cohorts displayed the same connectivity to other nodes. The 176 

influence score of each node (e.g. based in the number of links arising from it) was estimated 177 

using the PageRank score (Page et al., 1999) in both datasets. Both Colonomics and TCGA 178 
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tumor co-methylation datasets showed a reproducible distribution of nodes’ PageRanks 179 

mostly composed by lowly influential CpGs (Figure S13).  180 

Next, we modeled the results as a network keeping the ρ cut-off at 0.8 even though the 181 

multiple testing adjusted significance cut-off at TCGA cohort admitted lowering it due to the 182 

larger sample size (Table S2). The network comprised 37 thousand nodes and around eight 183 

million edges (Table S3). As in the Colonomics cohort, the TCGA network degree 184 

distribution showed a long tail, indicating vast differences in connectedness (Figures S6 and 185 

S7). 186 

Coalescent embedding of normal co-methylation networks in the tumor 187 

networks  188 

We wondered whether some of the co-methylations found in cancers were already detectable 189 

in adjacent normal colonic mucosa, and to which extent the co-methylome structure differed 190 

from the tumor’s one. The normal colon co-methylome network was built using 90 non-tumor 191 

tissues from the Colonomics cohort. Given the equivalent sample sizes, we maintained the ρ 192 

cutoff unaltered (Table S2). We found that both the number of probes fulfilling the variance 193 

prerequisite (n=99,346) and the number of total correlations (7,430,741) decreased to 39% 194 

and 22% of the tumor’s ones, respectively. This result was consistent with the higher DNA 195 

methylation variability in tumors. As expected, a predominance of positive correlations was 196 

observed, being more intense for close probes (Figure 2A). Strikingly, negative correlations 197 

(cut-off   < −0.8) showed a >1,000-fold reduction and dropped from 7.6 million in tumor to 198 

less than 7 thousands in normal tissue (Table S7). In agreement with the associations found in 199 

tumors, co-methylations were underrepresented in active promoters (Table S8, Figure S14) 200 

and the co-methylation network’ connectivities were not power-law distributed (Figures S6 201 

and S7). Probes pairs correlation values showed partial agreement between the normal and 202 

tumor datasets (Figure 2B), with differences being more conspicuous at the node influence 203 

level, pointing to changes in network connectivity (Figure S13).  204 

We repeated the analysis with TCGA normal colon samples. It should be noted that this 205 

dataset only includes 38 normal samples (Table S2), and as the correlation significance 206 

depends on the sample size (Fisher, 1915), keeping the same cut-offs is likely to boost the 207 

number of false positives. On the other hand, increasing the ρ cut-off to an equivalent 208 

detection threshold (ρ = 0.96, Table S2) produced a very small network whose properties 209 

might be out of scale with the previous analysis. With this cautionary note in mind, keeping 210 
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the ρ = 0.8 cut-off the network confirmed the distinctive distribution of pairwise correlations 211 

(Figure S4 and Table S9), whose differences are especially conspicuous at short ranges 212 

(Figure 2A) and, importantly, in nodes connectivity.  213 

Co-methylating networks display a modular structure in normal and tumor 214 

tissue   215 

Colonomics tumor network had two noticeable giant components (Figure 3), that were not 216 

present in the normal tissue, indicating a major restructuration of co-methylation architecture 217 

associated with malignant transformation, as we will discuss below. TCGA tumor and normal 218 

co-methylation networks replicated Colonomics overall networks structure (Figure 3). 219 

In order to dig into the network preferential attachment, we explored whether the network had 220 

highly connected subnetworks (also known as modules or communities). Modules consist of 221 

clusters of nodes heavily interconnected as compared to the rest of the network (Fortunato, 222 

2010; Newman and Girvan, 2004). Modularity is quantified as the fraction of edges 223 

connecting nodes of the same type minus what it is expected in a randomly wired network. 224 

Scores of 0 indicate no modularity and networks with modular structure typically range from 225 

0.3 to 0.7 (Newman and Girvan, 2004). The tumor co-methylation network was found to be 226 

modular (modularity = 0.47) (Table S3), and using the Clauset’s fast greedy method  (Clauset 227 

et al., 2004) we partitioned it into 3,270 modules ranging from two to 18,727 nodes. 228 

Interestingly, the normal tissue network exhibited a higher co-methylome modularity (0.62) 229 

(Table S3) and network segmentation resulted in 1,265 modules ranging from two to 17,758 230 

nodes. The co-methylation modules retained tight correlation structure after subtracting purity 231 

effects (Zheng et al., 2017) (Figure S16). 232 

The vast majority of the small modules were, in fact, composed by sets of probes located at 233 

close distance from each other (e.g. at CpG islands), so we discarded them and focused in 234 

transchromosomal modules, with at least 10 members and located at least 1 Mbp apart or 235 

placed in different chromosomes. The number of transchromosomal modules was 32 (1%) in 236 

the tumor cohort and 18 (1.4%) in the normal cohort (Tables S4 and S5). 237 

In agreement with Colonomics’s results, TCGA tumor co-methylation network was also 238 

modular (modularity score 0.41) (Table S3) and segmentation produced 3,421 modules 239 

ranging from two to 8,981 nodes. The application of size and co-location filters reduced the 240 

number of transchromosomal modules to 35.  241 
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Next, we evaluated the degree of conservation of the whole network partitioning into modules 242 

across the four datasets using the adjusted Rand statistic. In this test, the distance measure can 243 

be interpreted as a probability, being zero when the congruence is expected by chance and one 244 

when the matching is perfect. It should be noted that the Rand statistic renders negative values 245 

when finding anti-associations (Hubert and Arabie, 1985). Networks clustering on adjusted 246 

Rand’s distance indicates that modules memberships separate tumor’s from normal’s 247 

networks in both datasets (Figure S15A), in line with the similarities in nodes population 248 

(Figure S15B), and their spatial co-methylation patterns (Figure S2B). Overall conservation 249 

of co-methylomes structure and connectivity as well as the differences between normal and 250 

tumor samples was noticeable by visual inspection (Figures 3, S17 and S18). It is worth 251 

noting that the use of a correlation threshold (i.e. effect size   ≥ 0.8) may underestimate 252 

module co-methylation maintenance when the correlations distribution gets displaced towards 253 

values below, but close to, the statistical significance cut-off (Appendix 1, Figure S18). 254 

Module preservation across tissue types and cohorts was also evaluated by cross-tabulation of 255 

the number of shared CpGs (Table S10). Twelve Colonomics tumor modules had one or more 256 

counterparts in the normal tissue network, and a similar number in TCGA tumor cohort 257 

(Fisher’s exact test, p<0.0001) (Tables S10, S11). Strikingly, the five-top sized Colonomics 258 

tumor modules partially matched to multiple TCGA’s modules (Table S11). This result is in 259 

concordance with the resolution limit of modularity-optimizing module detecting algorithms, 260 

which tend to aggregate modules into few giant components, disregarding their inner 261 

complexity (Fortunato and Barthelemy, 2007).  262 

Co-methylating module membership evinces functional signatures  263 

To test the hypothesis that co-methylation structures are directly related with functional 264 

properties we investigated genomic and functional features of co-methylated CpGs. It should 265 

be noted that a large subset of HumanMethylation450k probes are located in promoters and 266 

promoter-related features. Thus, the specific design of the HumanMethylation450k array may 267 

introduce biases as it oversamples TSS-related features, in which clusters of probes are 268 

located, and disregards other genomic compartments (Bibikova et al., 2011; Sandoval et al., 269 

2011; Silva-Martinez et al., 2017). Moreover, coordinated co-methylation is expected among 270 

neighboring CpGs within each one of these genomic elements (Barrera and Peinado, 2012; 271 

Gaidatzis et al., 2014; Kim et al., 2008; Libertini et al., 2016; MacDonald et al., 2015; Wang 272 
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et al., 2016). Therefore, enrichment analysis for genomic features and compartments were 273 

corrected according to the HumanMethylation450k array background.  274 

The tumor modules displayed important differences in feature enrichment, including 275 

chromatin states, genomic categories, CpG islands and association with known motifs (Figure 276 

S19 and Appendix 1). In line with the weighted gene co-expression network analysis, in 277 

which functional signatures can be told apart by mining gene co-expression (Horvath et al., 278 

2012), the module-specific co-regulation patterns denoted by distinctive abundance of 279 

genomic and functional states (Figure S19; Appendix 1) of co-methylation modules pointed 280 

out the existence of a latent structure. Among the multiple features analyzed, a striking global 281 

enrichment of inactive promoters was observed in a large number of modules (Figure S20), 282 

pointing out potential clusters of co-regulated genes.  283 

Next, we explored the overlapping of the co-methylation modules with regions of DNA 284 

methylation variability previously reported in colon cancer (Hansen et al., 2011). 285 

Interestingly, seven out of 32 Colonomics tumor modules significantly overlie tumor 286 

hypermethylated blocks (Figures S21 and S22 and Table S12). Regarding other types of DNA 287 

methylation variability reported by Hansen, modules showed distinctive profiles, with 288 

frequent enrichment in boundary shifts as well in loss of regulation; novel hypomethylation 289 

blocks were enriched in three modules only. This complexity reinforces the individuality of 290 

co-methylation modules, suggesting that they might reflect different mechanisms.  291 

A comprehensive summary of structural and functional feature enrichment for each co-292 

methylation module is shown in Appendix 1 with the top associations listed in Table S13). To 293 

name a few examples, multiple co-methylation modules were significantly enriched for 294 

Polycomb-related marks (i.e. H3K27ME3, or SUZ12, EED and PRC2 targets; e.g. tumor 295 

modules 1, 3, 5 and 598); for frequently mutated at COSMIC molecular signatures (i.e. tumor 296 

modules 2, 4 and 8); and for gene expression (i.e. tumor module 8). Finally, we could also 297 

confirm that co-methylation network associated features found in TCGA matched 298 

Colonomics enrichment signatures, e.g., the underepresentation of co-methylations within 299 

active promoters (Figure S14).  300 

To shed light into causal factors driving dynamic methylome modularity we searched for 301 

enriched motifs (i.e. transcription factor binding sites) at the co-methylating loci 302 

(Supplementary methods). We found that six out of the 32 Colonomics tumor modules 303 

presented one or more significantly enriched motifs (Table S14). Enriched motifs included 304 
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ETS and RUNX families (modules 1, 3, 327), FOS family members (Fra1, Atf3, BATF, 305 

Fosl2, AP-1, Jun-AP1; modules 2 and 4), FOXA1-related (FOXA1, HNF4a, FOXMA; 306 

module 2), GC box (KLF5 and KLF4; module 2), C/EBP (module 3), PAX7 and MYF5 307 

(module 5), homeobox (modules 5, 83), MADS (module 152), ASCL1 (module 598) 308 

(Appendix 1).   309 

In summary, the functional signatures of DNA co-methylation modular architecture evince 310 

the putative mediators of epigenetic remodeling and signaling reprogramming in colorectal 311 

cancer. We postulate that coordinated DNA methylation changes at interspersed sites (here 312 

identified as belonging to the same module) regulate signaling pathways and biological 313 

functions. This hypothesis is supported by recent studies demonstrating the DNA methylation 314 

mediated binding of transcription factors to specific sites with a direct impact in gene 315 

regulation (Kribelbauer et al., 2017; Yin et al., 2017). 316 

Modeling of module’s DNA methylation variation allows categorization and 317 

study of feature associations in new samples  318 

As shown above, modules depict shared patterns of co-methylations (network edges) which 319 

emerge from structured DNA methylation levels among loci (network nodes). To dissect the 320 

latter, we applied a samples stratification procedure based on the DNA methylation status of 321 

their CpGs (Supplemental methods) that results in the partition of each module into two to 322 

three DNA methylation profiles (Figure S23). The putative effects of tumor purity to DNA 323 

methylation levels were identified and subtracted (Figure S24).  324 

This methodology provides with a powerful tool to explore potential correlates of DNA 325 

methylation profiles with molecular and biological features, including clinical data, and 326 

importantly, enabling the model to classify new samples and to make predictions without 327 

computing new correlations. An in-depth exploitation of this approach is beyond the scope of 328 

this paper, but as a proof of concept, we evaluated whether module cluster membership 329 

conveyed gene expression signatures to tumor samples. The pairwise differential expression 330 

between samples belonging to different module clusters was computed (adjusted   < 0.1 cut-331 

off, Figure S25) in both cohorts of colon tumors. TCGA cohort consistently exhibited a higher 332 

number of differentially expressed genes. This result may be explained by the larger size of 333 

this series and the use of RNA-Seq, that has more sensitivity than the microarrays (Zhao et 334 

al., 2014) applied in the Colonomics. Nevertheless, the overall gene over- and down-335 

expression trends were maintained across cohorts (Figure S26). The top 50 significant 336 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted September 27, 2018. ; https://doi.org/10.1101/428730doi: bioRxiv preprint 

https://doi.org/10.1101/428730


Mallona et al. 13 

 

differentially expressed genes in both cohorts are listed in Appendix 2 for each one of the 32 337 

Colonomics tumor modules.  338 

Dynamics of co-methylation modules reveals epigenetic rewiring of defined 339 

genomic compartments in cancer  340 

As noted above, the tumor co-methylation network displayed a striking disjoint structure 341 

visualized as two giant compartments (Figure 3). The emerging large compartment, not 342 

present in normal tissue, spanned multiple modules (Figure 3 and Figure S27) and was 343 

funneled by DNA methylation negative correlations between modules (Figure 4A). The 344 

coordinated inversion of DNA methylation variation affected hundreds or even thousands of 345 

sites throughout the whole genome (Figure 4B). The pervasive nature of anticorrelations 346 

overcame age, gender, tumor stage and anatomical site potential effects on modules’ DNA 347 

methylation variation (Figure S28A). Loci with copy number alterations also conveyed the 348 

module-specific DNA methylation ranks mimicking the profiles along balanced regions 349 

(Figure S28B). 350 

To further dissect the co-methylation dynamics we analyzed the modules preservation 351 

between normal and tumor. Significant equivalences were found for most modules (Figure 352 

S29): normal modules N2 and N3 largely overlapped with tumor modules T1 and T2 353 

respectively (Figure S29), which suggests the preservation of module’s structure and co-354 

methylation links. A large overlap of associated genes among modules was also observed 355 

(Figure S29C). At the functional level, the preserved modules showed specific enrichments. 356 

For instance, normal module N2 intersection with tumor module T1 (N2∩T1) showed 357 

enrichment for RNA transcription and metabolic processes and DNA binding functions 358 

(Figure S30) and a high proportion of probes were located in CpG islands (77%) with a clear 359 

trend towards tumor hypermethylation (Figure 5B, Figure S31). 360 

Next we analyzed the dynamics of CpG sites between normal and tumor modules. For the 361 

sake of simplicity only probes in the four largest modules in the Colonomics normal and 362 

tumor series were considered for differential module membership. A particular case was the 363 

scattering of normal module N1 probes into different tumor modules (Figure 5A), including 364 

the hijacking of several hundreds of sites by modules with inverse correlations, e.g.: tumor 365 

modules T1 and T2 (Figure S27). The subsets of probes flowing from the normal module N1 366 

to each one of the tumor modules (intersections between normal module N1 and the tumor 367 

modules T1 to T4) were associated to subsets of genes with limited overlap (Figure 5C) and 368 
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displayed distinctive genomic features in regard to gene regulation: N1∩T1 members were 369 

enriched in CpG islands, while N1∩T2 were depleted and N1∩T3 were frequently near the 370 

TSS (Figure 5D). The tumor-normal DNA methylation signatures were in concordance with 371 

the preferential genomic location of probes: members of the intersection N1∩T1 were 372 

characterized by the prevalence of hypermethylations in the tumor, while the rest showed a 373 

clear trend towards hypomethylation (Figure 5E and Figure S31).  374 

As a whole, our analysis points out an overall preservation of co-methylation modules in the 375 

normal-tumor transformation concomitantly with an important dispersal of subsets of sites 376 

with distinctive features into tumor modules. The tumor redefined modular landscape appears 377 

to have biological insights: the subsets of sites flowing from one module to another (denoted 378 

here as normal-tumor module intersections) display differential enrichments in functional and 379 

biological processes involved in cancer transformation (Figure 5E and Appendix 2). Some of 380 

the affected signaling pathways, including polycomb regulation, chromatin binding and genes 381 

defining epithelial-mesenchymal transition appear as the usual suspects contributing to the 382 

epigenetic reshaping of genomic compartments and the functional reprogramming of cancer 383 

cells (Appendix 2). 384 

Surfing the co-methylating networks pinpoints functional sites  385 

Beyond the remarkable functional and structural features of co-methylation modules revealed 386 

by this analysis, it has not escaped our attention that the stored data provide an excellent 387 

resource to carry out an insightful tracing of individual correlations. A detailed analysis of the 388 

data at this level is beyond the scope of this paper, but as a simple shortcut to navigate the co-389 

methylating network and their associated functional features we developed a web tool “corre” 390 

(available at http://maplab.cat/corre). To illustrate the discovery potential of this tool we 391 

queried the INHBB gene encoding activin B, a member of the TGF-beta family, with different 392 

biological activities, including a role in cell proliferation and inflammation. Epigenetic 393 

silencing of INHBB is frequent in colorectal cancer (Frigola et al., 2006) and has been 394 

proposed as indicator of poor outcome (Mayor et al., 2009). The co-methylation landscape of 395 

INHBB exposed by the Corre tool showed a large number of positive correlations 20kb 396 

upstream and downstream of the gene in both normal and tumor samples (Figure 6). Negative 397 

correlations were only present in tumors and were enriched in poised promoters, indicating 398 

the potential remodeling of bivalent states and hypermethylation (McGarvey et al., 2008; 399 

Ohm et al., 2007; Rodriguez et al., 2008). Compared with the normal samples, the tumors 400 
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displayed an increase in the number of links for most sites, although some chromosomes, 401 

especially 8 (Figure 6E), but also 13, 14, 17 and 21, showed an opposite trend with a 402 

depletion of co-methylations in the tumors as compared with the normal samples (Figure 403 

S32). Another interesting result was in regard to cg03699182 probe (Figure 6D, arrowhead) 404 

located in the CpG island of the INHBB promoter presented 42 co-methylations (  >0.8) in 405 

the normal samples against only three in the tumors. Most of the cg03699182 co-methylations 406 

affected were located in poised promoters of polycomb regulated genes (Figure S32).  The 407 

dynamics of the connections and the properties of the affected sites are consistent with the 408 

participation of instructive mechanisms resulting in the DNA hypermethylation and long 409 

range epigenetic silencing of multiple genes in colorectal cancer (Frigola et al., 2006; Keshet 410 

et al., 2006; Michieletto et al., 2018).  411 

Final considerations  412 

Dissection of DNA methylation encoded information offers a far-reaching gamut of insights 413 

into genome biology (Jones, 2012; Schubeler, 2015 ), including the inference of genome 414 

architecture as demonstrated by recent studies (Fortin and Hansen, 2015; Jenkinson et al., 415 

2017; Jorda et al., 2017; Raineri et al., 2018; Zhang et al., 2017). As a new inquiry, here we 416 

report a novel and robust analysis of coordinated DNA methylation dynamics in non-417 

contiguous CpGs in two cohorts of colon normal and cancer tissues. This application provides 418 

a reproducible and synthetic network representation of cell’s epigenome meta-structure and 419 

unveils modules or genomic territories of highly connected loci. The co-methylation modules 420 

comprise regions displaying common structural and functional features pointing out putative 421 

drivers of variability. Despite wide overlapping between normal and tumor tissue networks, 422 

striking differences in connectivity reveal specific patterns of functional rewiring and convey 423 

gene expression signatures with a potential impact on cancer cell biology.  424 

Our data present a remodeled epigenetic landscape of colon cancer cells outlined by 425 

coordinated DNA methylation variations superseding the stochastic nature of DNA 426 

methylation dynamics (Jenkinson et al., 2017; Landan et al., 2012; Pujadas and Feinberg, 427 

2012). The model can be visualized by a scrambled Rubik’s cube resulting from just of a few 428 

flips (Figure S33A). In our case, cube’s pieces correspond to the set of loci with coordinated 429 

methylation, and the axes would be the mechanisms flipping one or more modules (Figure 430 

S33B). This metaphor has two important corollaries with the corresponding epigenetic 431 

representations:  432 
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 Pieces linked by connectors move together, which implies that any specific scrambled 433 

conformation is the result of specific flips. Moreover, not all the arrangements are 434 

possible unless the cube is disassembled and reassembled. Similarly, cancer cell 435 

methylome dynamics is determined by sequential activation/inactivation of a limited 436 

number of mechanisms affecting genomic regulation. Interestingly, chromosomal 437 

rearrangements would provide an additional level of reshuffling that would be 438 

equivalent to reassembling Rubik’s cube.  439 

 The scrambled cube may be solved by predictable flips that do not imply the reversal 440 

of the flips that generated it. Currently we can only speculate, but this means that 441 

knowing the mechanisms governing epigenetic programs, it would be possible to 442 

design a strategy to reconstruct a “normal” epigenome by just turning on/off the 443 

appropriate switches and in the right sequence. 444 

Summing up, our approach aims to offer a contextual view of the cancer epigenetic landscape 445 

to better define their nature and their eventual impact on the disease. The use of DNA co-446 

methylation architecture to portrait the complex genome regulation scenario aims to provide a 447 

feasible surrogate marker that can be easily assessed in prospective clinical settings (e.g. 448 

response to treatment).  449 

Materials and methods  450 

Two colon cancer datasets were used. Colonomics (http://www.colonomics.org) series 451 

included 90 paired primary tumors (stage IIA and IIB) and their adjacent normal tissue. Of the 452 

90 patients, 67 were males and 23 females, aged 43-86 years (mean: 70.37), and 20 developed 453 

metastasis. All tumors were microsatellite-stable. Samples were evaluated for DNA 454 

methylation (Illumina Infinium HumanMethylation450 BeadChip Array), gene expression 455 

(Affymetrix Human Genome U219), and somatic mutations (exome sequencing) (Closa et al., 456 

2014; Cordero et al., 2014; Sanz-Pamplona et al., 2015; Sole et al., 2014).  457 

The Cancer Genome Atlas (TCGA) series was composed by 256 primary tumor and 38 458 

adjacent non-tumor samples from the colon adenocarcinoma (COAD) cohort (Zhu et al., 459 

2014). Patients were aged 31 to 90 years at diagnosis (mean 65.61), and included 141 males, 460 

144 females and one unassigned. Pathologic stages included Stage I (40), Stage II (97), Stage 461 

III (75), Stage IV (32); 11 were not available or discrepant. Regarding microsatellite 462 

instability, 10 were positive, 65 negative and 181 were either not tested or had an unknown 463 
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status. Samples readouts included DNA methylation by Illumina Infinium Array, gene 464 

expression by RNA-Seq counts and somatic mutations by exome sequencing.  465 

A scheme summarizing data processing and workflow is depicted in figure 1. Briefly, DNA 466 

methylation beta values were subjected to serial pairwise correlation analysis for the 467 

Colonomics tumor (primary dataset) and normal adjacent tissue, as well and both the TCGA 468 

normal samples and tumors (external datasets). Strong associations (effect size Spearman’s   469 

≥ 0.8) were stored. Co-methylation networks were built upon the correlations data using 470 

previously described approaches  (Clauset et al., 2009; Csardi and Nepusz, 2006; Cullen and 471 

Frey, 1999; Delignette-Muller and Dutang, 2015; Gillespie, 2014; Saha et al., 2017; Zhang 472 

and Horvath, 2005), from which highly connected modules according to the fast greedy 473 

community detection algorithm were isolated (Clauset et al., 2004; Csardi and Nepusz, 2006). 474 

Module members were further classified into major DNA methylation clusters using kNN 475 

(Venables and Ripley, 2002) taking into account not only the co-methylation but the purity-476 

corrected DNA methylation status (Aran et al., 2015; Zheng et al., 2017) of their members 477 

(i.e. consistently lowly or highly methylated) (Chang et al., 2010; Wang et al., 2007). Next, 478 

modules and/or profiles were functionally annotated according to public datasets (Aryee et al., 479 

2014; Fortin and Hansen, 2015; Hansen et al., 2011; Lister et al., 2009), molecular features 480 

databases (Heinz et al., 2010; Liberzon et al., 2011) and expression signatures (Gel et al., 481 

2016; Love et al., 2014; Quinlan and Hall, 2010; Smyth, 2005). Modules characterization, 482 

including reproducibility assessment, consisted in mutual profiles comparison and differential 483 

expression analysis among different cohorts (Akdemir and Chin, 2015; Hubert and Arabie, 484 

1985; Krzywinski et al., 2009; Langfelder et al., 2011; Shannon et al., 2003).  485 

A Web application “Corre” has been implemented to facilitate browsing the DNA co-486 

methylation events of investigator’s favorite locus or gene in the both the Colonomics and 487 

TCGA COAD datasets. The tool allows candidate queries either by gene symbol or Illumina 488 

Infinium probename, providing the annotated co-methylations full list. Apart of downloadable 489 

spreadsheets, Corre renders interactive plots to evaluate zonal (chromosome) and functional 490 

(chromatin color) enrichments (Conway et al., 2016; Ernst et al., 2011; Gesmann and de 491 

Castillo, 2011; Zhang et al., 2013). Source code is available at 492 

https://bitbucket.org/imallona/corre under the GPL terms. Corre can be accessed freely and 493 

without registration at http://www.maplab.cat/corre.  494 

Extended methods are available in supplementary material.  495 
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Figure Legends 528 

Figure 1. Co-methylation analysis framework. A, CpGs co-methylation occurs at close (cis) 529 

and long distances (trans). B, DNA co-methylation networks display a modular structure in 530 

normal and tumor samples. C, Co-methylation modules display differential genomic and 531 

functional signatures. D, Analysis of normal-tumor co-methylation dynamics points out 532 

cancer pathways and mechanisms. 533 

Figure 2. A, Correlation distribution in normal and tumor samples among probes located in 534 

chromosome 10. The bell-shaped distribution and shifted towards positive values at the tumor 535 

cohort (whole chromosome 10); the trend to co-methylate is noticeably increased in cis (chr10 536 

probes located at less than 10 kbp). Red: negative correlations (  < −0.5); green: positive 537 

correlations (  ≥ 0.5). B, Correlations replication across cohorts. For each cohort, a pairwise 538 

correlation analysis was conducted for any probe with    ≥ 0.05. The correlation coefficient 539 

rho (X and Y axes) for each probe pair was plotted to check whether the co-methylation 540 

landscape was reproduced. Analysis was restricted to chromosome 10 Infinium450K probes.  541 

Figure 3. Modular structure of colorectal tumor and normal tissue co-methylation networks. 542 

The networks were built independently for each dataset, but the nodes (CpGs) are colored 543 

using the Colonomics Tumor module membership. Nodes with no cross-representation are 544 

shown in black. Graphs are limited to a random sample of 5,000 nodes and solitary nodes are 545 

not plotted; network layout was calculated by 1 −   (edges) weighted springs.  546 

Figure 4. The two largest tumor modules show opposed DNA methylation dynamics. A, 547 

Correlation of three randomly picked CpGs from modules 1 and 2 in 92 Colonomics tumor 548 

samples. B,  DNA methylation ranks of modules 1 and 2 in four Colonomics tumor samples. 549 

Patients labeled with color codes as depicted in panel A. 550 

Figure 5. A, Sankey diagram depicting balanced probes overlap between normal and tumor 551 

modules in the Colonomics datasets. Only intersections with >300 probes are annotated, and 552 

the number of associated genes is indicated. B, Distribution of probes according to the mean 553 

DNA methylation values in normal tissue (Y-axis) against the tumor-normal delta value (X-554 

axis). Only probes overlapping in normal and tumor modules (intersections) are represented. 555 

A decomposed version of this figure is shown in Figure S31. C, Circos representation of 556 

modules associated genes overlap (purple connectors) and enriched terms sharing (blue 557 

connectors). D, Genomic context enrichment of normal module 1 intersections with tumor 558 
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modules. E, Gene set functional enrichment of normal module 1 intersections with the four 559 

largest tumor modules. 560 

Figure 6: Illustrative example of the Corre web tool usage. This application queries a user 561 

selected Infinium array probe (i.e.: cg25924274) or a set of gene associated probes (i.e.: 562 

INHBB) and renders graphs displaying the feature distribution of the anchor (preselected site) 563 

and correlating CpGs, including DNA methylation levels, genomic element category, HMM 564 

chromatin states, etc. In addition, tables containing genetic and functional information on the 565 

correlating sites may be downloaded for further analysis. A, UCSC genome browser 566 

representation of the region encompassing the preselected INHBB gene. B, The tool renders 567 

graphs showing relevant features (see legends) for each one of the gene associated probes 568 

(anchor CpGs). C, Distribution of DNA methylation levels in anchor CpGs and the 569 

correlating sites. D, Sum of correlating sites in normal and tumor tissues for each anchor CpG 570 

represented by chromatin state frequency. Positive (+) and negative (-) correlating sites show 571 

distinct chromatin state profiles in the tumors. E, Genomic distribution of cg11513884 co-572 

methylating CpGs located in chromosomes 2 (red), 7 and 8 (blue). 573 

 574 

  575 
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