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Abstract 

We describe a novel method to exploit Generative Adversarial Networks to simulate an 

evolutionary arms race between the camouflage of a synthetic prey and its predator. 

Patterns evolved using our methods are shown to provide progressively more effective 

concealment and outperform two recognised camouflage techniques. The method will be 

invaluable, particularly for biologists, for rapidly developing and testing optimal camouflage 

or signalling patterns in multiple environments. 

Main 

Historically, camouflage has been considered a prominent example of a prey versus 

predator arms-race1, whereby one species gradually evolves harder-to-see colouration 

which, as a consequence, exerts evolutionary pressure on the other species for a more 

effective detection system2. Despite the expectation that camouflage will become 

progressively more effective, it has been challenging to model how the evolution of optimal 

camouflage might take place in a particular environment3. This problem has inspired 

biologists for centuries, ever since Erasmus Darwin claimed that “the colours of many 

animals seem adapted to their purposes of concealing themselves either to avoid danger, or 

to spring upon their prey”4.  
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In recent years, research has focused predominantly on testing the advantage of particular 

camouflage strategies using predefined patterns designed by the experimenter5. Although 

these studies are able to provide strong evidence that certain camouflage works better than 

others, they have limited power to explain what would be the optimum pattern for 

concealment. One of the challenges is simply the number of potential patterns in a complex 

visual environment: the parameter space for all possible colour and texture combinations is 

often gigantic.  

One solution to this problem is to employ dynamically evolving stimulus sets in detection 

experiments. Bond and Kamil presented blue jays with digital moths on computer screens in 

greyscale, with birds trained to peck on detected prey items6. The digital moths evolved on 

the basis of predetermined “genes”. While this approach was effective, improving survival, 

manually encoding genes for a specific task makes generalisability difficult: for example, 

increasing the parameter space beyond a certain complexity (using colour rather than 

greyscale, say) makes testing live subjects unrealistic because of the number of trials 

required. However, putting a credible artificial observer into the evolutionary loop would 

circumvent this problem. 

Recently, methods that stem from Artificial Intelligence have proved capable of deceiving 

human observers: deep neural networks can mimic fine art7 or create photorealistic images 

based on text descriptions8. Here, for the first time, we report an unsupervised method to 

create biologically-relevant camouflaged stimuli based on Generative Adversarial Networks 

(GANs)9. GANs employ competing agents, usually modelled as deep neural networks, to 

perform a zero-sum game. In their original example, Goodfellow and colleagues illustrated 

the underlying idea of GANs using a competition between police and a counterfeiter. The 

objective of the police (discriminative network) was to distinguish between counterfeit and 

real money, whilst the counterfeiter (generative network) aimed to produce counterfeit 

money that the discriminative network would falsely identify as real. Both agents evolved 

over time: the police became more sensitive to fake money, while the counterfeiter produced 
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more and more authentic-looking forgeries. As pointed out by Goodfellow et al, over time, 

and if such a pair of strategies exist, these two systems will become stable at a so-called 

Nash equilibrium: given the two agents, with complete knowledge of their opponent’s 

strategy, there is no possible improvement that can be made to their own. Nash Equilibria, 

form the basic building block of evolutionary game theory, the theory, proposed by Maynard 

Smith and Price10, where these Nash equilibria often correspond to evolutionary stable 

strategies. This arms race between a counterfeiter and the police mirrors antagonistic 

agents, like predator and prey, and is therefore of inherent biological interest. 

In particular, predators evolve, or learn, to locate prey by detecting them against some 

background, while prey evolve to remain undetected using protective colouration. The 

objective of the predators is to distinguish visual input that contains prey from empty scenes. 

Meanwhile, the prey aims to achieve a visual signature that makes a scene containing them 

look empty to a predator. In this example, the discriminative network can be thought of as 

the visual system of the predator that evolves over time to more effectively detect prey, and 

the generative network represents the genotype of prey, where new generations can inherit 

properties of previous survivors and exhibit better camouflage. 

To model the evolution of camouflage and produce increasingly difficult-to-see patterns, we 

implemented GANs to conceal triangular targets presented against images of ash tree 

(Fraxinus excelsior) bark, a complex texture (Fig. 1). Targets were extracted from each 

network after a set number of iterations and contrasted with two control patterns: the 

average colour of backgrounds, and a pattern developed through Fourier analysis (Fig. 2). 

Averaging the background is considered to offer “good” concealment11 and, as in our study, 

is often used in camouflage research as a baseline control12. The Fourier approach has 

previously been shown to be highly effective13, as has the related technique of log-Gabor 

wavelets when used to assess camouflage in targets such as ours14. To quantify difficulty, 

we measured the reaction time for human participants to detect the targets when displayed 

on a computer screen. 
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Figure 1. Examples of experimental stimuli. All examples feature targets evolved after 

10,000 GAN iterations. See Figure S1 in the Electronic Supplementary Material (ESM) for 

revealed target locations. 
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Figure 2. Example targets used in experiments. Columns 1-5 show targets evolved by 

GANs after 500, 2500, 5000, 7500 and 10000 iterations, respectively. Each row shows 

examples of targets from a different GAN. Columns 6 and 7 show examples of control 

targets: Average and Fourier, respectively.  

It is important to note that contrary to other GAN implementations15, where the generative 

network modifies a whole image, in our implementation only the target was evolved by the 

generative network, leaving the background unmodified. Using this approach, we 

demonstrate that a purely artificial system can demonstrate the gradual evolution of 

camouflage. 

We found that targets produced by GANs after more iterations were increasingly harder to 

find. In the first analysis, the effect of increasing training steps on reaction time was 

examined. General linear mixed models (GLMMs) were used to show that targets became 

significantly harder to find as the number of iterations increased. The effect of iterations on 
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log-transformed reaction times were analysed by fitting general linear mixed models. Fitting 

the simplest model gave an estimate for the effect of training steps on reaction time of 2.077 

x 10-5 (SEM = 1.006 x 10-6) and this was highly significantly different from zero (Δdeviance = 

418.42, d.f. = 1, p < 0.0001). This result demonstrates that our method can successfully 

illustrate an evolutionary arms-race, producing camouflage that is increasingly difficult to 

identify. From visual inspection it is clear that the largest changes occur at earlier stages of 

pattern evolution with the rate of change in patterns beginning to decrease beyond 5,000 

iterations (Fig. 2). Accordingly, increments in detection times also started to diminish (Fig. 3). 

Furthermore, targets evolved by GANs were more effective than controls (Fig. 3). Treatment 

means were significantly different (Δdeviance = 1089.7, d.f. = 6, p < 0.0001). Based on 

Tukey post hoc tests all GAN-derived stimuli greater than 500 steps had significantly higher 

mean reaction times than Average targets. Fourier targets were significantly harder to detect 

than Average (p < 0.001) but GAN-derived stimuli with 5,000+ training step were significantly 

harder to detect than Fourier (p < 0.001). For details on the Tukey post hoc tests see Table 

S1 in the ESM. 

We also found that some GANs produced more effective camouflage than others. Reaction 

times to GAN-derived stimuli of 10,000 training steps were selected and grouped by the 

network of origin. A random effects model with a common slope but different intercepts was 

chosen as the initial model. The effect of networks on reaction time was significantly different 

from zero (Δdeviance = 29.144, d.f. = 9, p < 0.0001). Mean reaction times ranged between 

1.57 (SEM = 0.09) and 1.25 (SEM = 0.04) seconds (see Figure S2 in the ESM). In this study, 

both generator and discriminator networks were initialised with white noise, which is the 

reason why patterns at low iterations have a high inter-network variability (see first column in 

Fig. 2). We used this setup to demonstrate convergent evolution: the visual variance 

between the chosen backgrounds of tree bark was low and hence we expected that 

networks would come up with similar (and similarly effective) solutions after a higher number 

of training iterations. Nevertheless, certain networks were found to produce significantly 
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harder to see patterns than others, which suggests that our method has the potential for 

modelling polymorphic scenarios, commonly found in nature16. The method can also clearly 

be adapted to use fixed initialisations, for example one could initialise the discriminator with 

pre-trained networks capable of better target detection17. 

 

Figure 3. Mean reaction times for experimental stimuli. Error bars represent standard 

errors derived from a GLMM with participant as a random effect. 

Our implementation follows a design that was deliberately simple, and we acknowledge that 

many alternative and more complex GAN architectures could be employed18. However, we 

believe that maintaining a simple architecture aids understanding and allows easier 

implementation for early adopters. 

One promising development that could be beneficial in modelling biological systems is 

introducing multiple discriminator networks, standing for multiple observers influencing the 

target (generator network). For example, one of the discriminators could be limited to 

dichromatic representations of the target, simulating a typical mammalian predator19, or with 
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altered visual acuity or viewing distance. It is also possible to introduce restrictions and 

limitations to the generator, other than the size and shape of the target; for example, bilateral 

symmetry. 

We have demonstrated that GANs outperform other well-established methods for generating 

effective camouflage. This novel technique allows the exploration of high-dimensional 

feature and colour spaces in a way impossible using human, or non-human, observers. This 

obviously has applications for the development of military and civilian camouflage, but will 

also allow biologists to assess the trade-offs, beyond a pure concealment function, in natural 

camouflage patterns20. More widely, by reversing the reward function for the generative 

and/or discriminative networks, one can determine the optimal conspicuous signal and or 

sensory tuning for a given environment. 
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Methods 

Participants. 45 participants (4 male, 41 female) were recruited from the student population 

at the University of Bristol. The number 45 arises as a multiple of the number of generated 

‘strains’ of GAN targets (see below). All participants had normal or corrected to normal 

vision. Informed consent was obtained from all participants as stated in the Declaration of 

Helsinki. All experiments were approved by the Ethics Committee of the University of 

Bristol's Faculty of Science (application 60061) and were performed in accordance with 

relevant guidelines and regulations. 

Stimulus construction. We took 100 photographs of ash tree (Fraxinus excelsior) barks in 

October 2017 at Ashton Court Estate, Bristol, UK (2º64.8’ W, 51º44.6’ N). Images were 

taken from a distance of 1 m and a focal length of 18 mm using a Nikon D90 DSLR camera. 

Photographs contained an X-Rite ColorChecker Passport (X-Rite Inc., Grand Rapids, MI, 

USA), which was used to calibrate images using a cubic function implemented in Matlab 

2016a (MathWorks 2016). Images were cropped so they only contained tree bark and 

resized to 1 pixel equalling 1.5 mm, using cubic interpolation. 

Image size for the networks was selected to be 256 by 256 pixels, while the target triangle 

size was 32 by 64 pixels. Networks were trained on a custom-built PC with two graphical 

processing units (1x Nvidia Titan X and 1x Nvidia Geforce GTX 1080 Ti) using Keras 

(Chollet et al., 2015). The size of the training set was 3200 images, which comprised 32 

randomly selected crops from each of the 100 images of ash bark. 
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The discriminative network was set to distinguish between empty scenes of tree bark and 

scenes with a target triangle present in the middle. To create effective camouflage, the task 

of the generative network was to modify the colour and texture of target triangles over 

randomly selected backgrounds so that the discriminative network would identify them as 

empty images. 

Networks were trained for 10000 steps with a batch size of 32. The RMSprop optimiser was 

used for both the discriminative and generative networks, with learning rates of 2 x 10-4 and 

1 x 10-4, and decays of 6 x 10-8 and 3 x 10-8, respectively. Binary cross-entropy was used as 

the loss function. The architecture of the discriminative network was: Conv2D(64), 

MaxPooling2d(2,2), Conv2D(128), MaxPooling2d(2,2), Conv2D(256), Conv2D(512), Flatten, 

Dense(1) and a sigmoid activation function to obtain predictions. All Conv2D layers had 

leakyReLU activations with alpha = 0.2 and ‘same’ padding. Dropouts were set to 0.5 for all 

Conv2D layers. The architecture of the generative network was: Architecture: Dense(8192, 

with dropout of 0.6), BatchNormalization, Dense(4096), BatchNormalization, 

Reshape(64,32,2), Conv2DTranspose(4,3), BatchNormalization, Conv2DTranspose(3,3) 

and a sigmoid activation function to normalise pixel values between 0 and 1. All batch 

normalisation had momentum of 0.9 and Conv2DTranspose layers had padding set to 

“same”. Ten networks were trained in total, with 15 evolved targets (strains) extracted after 

500, 2500, 5000, 7500 and 10000 training steps from each network (Fig. 2), resulting in a 

total of 1050 GAN-derived targets. 

In addition to the GAN targets, we included two control treatments: “Fourier” and “Average”. 

These were constructed using the following methods. Initially, 32 randomly positioned 

squares (sized 256 by 256 pixels) were cropped from each of the 100 images of tree bark. 

“Fourier” targets were constructed by decomposing the 3200 crops into energy and phase 

using 2-dimensional Fourier transformation, followed by taking pixel-wise average energy 

across the images. 15 targets were created by randomising the phase for each, and after an 

inverse Fourier transformation, the resulting images were indexed with 32 quantised colours 
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obtained via minimum variance quantization and dithering of the original crops13. “Average” 

targets were created by taking the average colour of the same 3200 crops. Targets were 

created by cropping a 32 pixel high by 64 pixel wide triangle from the images. Both 

processes were repeated ten times and the resulting targets were grouped together with the 

GAN-derived targets, totalling seven treatment groups. 

Experimental procedure. A bespoke program, written using the Psychtoolbox-3 

extensions21,22,23 for Matlab 2015b (The MathWorks, Inc., Natick, MA, USA) was used to 

construct and present the stimuli, and to collect experimental data. Each experimental trial 

consisted of a single target presented at a random position on randomly selected images of 

(ash) tree bark on a gamma-corrected computer display (Iiyama, Tokyo, Japan). The 

background images were 512 by 1024 pixels and subtended a visual angle of 26.5° by 53°. 

Targets had a size of 64 by 32 pixels, accounting for a visual angle of 5.5° by 2.75°. A 

central fixation cross on mid-grey background was displayed for 2 seconds prior to stimulus 

onset. To avoid spotting the target too early due a location close to the fixation cross, each 

target was placed at least 64 pixels away from the centre of the screen.  

Participants were required to click on the detected target as quickly and accurately as 

possible, using a computer mouse. Their reaction times and whether they hit the target were 

recorded. Each trial had a 10 s time-out. Trials with timeouts and missed targets were 

removed from results. 

Each participant was randomly assigned to a single strain of targets containing the seven 

treatment groups from all ten GANs, repeated five times in a random order, totalling 350 

trials. Each of the 15 strains were exclusively presented to three participants only. In addition 

to the experimental trials, 10 practice trials using targets with a single random colour were 

presented to the participants at the beginning of the experiment to familiarise them with the 

task.  
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Statistical analyses. GLMM analyses were initiated with the most complex model and were 

gradually simplified and assessed for significantly improved fits. Likelihood ratio tests were 

used to obtain p-values for the full model and the effect against a model without the effect. 

Nested models were compared using the change in deviance on removal of a term and by 

the Akaike Information Criterion. Analyses were carried out using the lme4 package24 in R25. 

References for Methods 

21. Brainard, D. H. Spat. Vis. 10, 433-436 (1997). 

22. Pelli, D. G. Spat. Vis. 10, 437-442 (1997). 

23. Kleiner, M., Brainard, D., Pelli, D. Perception 36 (2007). 

24. Bates, D., Machler, M., Bolker, B. & Walker, S. J. Stat. Softw. 67, 1-48 (2015). 

25. R Core Team. R: A language and environment for statistical computing. R Foundation for 

Statistical Computing, Vienna, Austria (2017). 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted October 1, 2018. ; https://doi.org/10.1101/429092doi: bioRxiv preprint 

https://doi.org/10.1101/429092
http://creativecommons.org/licenses/by-nc-nd/4.0/

