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Abstract 

Integrative approaches which harness large-scale molecular datasets can help develop mechanistic 

insight into findings from genome-wide association studies (GWAS). We have performed extensive 

analyses to uncover transcriptional and epigenetic processes which may play a role in neurological 

trait variation.  

 

This was undertaken by applying Bayesian multiple-trait colocalization systematically across the 

genome to identify genetic variants responsible for influencing intermediate molecular phenotypes as 

well as neurological traits. In this analysis we leveraged high dimensional quantitative trait loci data 

derived from prefrontal cortex tissue (concerning gene expression, DNA methylation and histone 

acetylation) and GWAS findings for 5 neurological traits (Neuroticism, Schizophrenia, Educational 

Attainment, Insomnia and Alzheimer’s disease). 

 

There was evidence of colocalization for 118 associations suggesting that the same underlying 

genetic variant influenced both nearby gene expression as well as neurological trait variation. Of 

these, 73 associations provided evidence that the genetic variant also influenced proximal DNA 

methylation and/or histone acetylation. These findings support previous evidence at loci where 

epigenetic mechanisms may putatively mediate effects of genetic variants on traits, such as KLC1 

and schizophrenia. We also uncovered evidence implicating novel loci in neurological disease 

susceptibility, including genes expressed predominantly in brain tissue such as MDGA1, KIRREL3 

and SLC12A5.  

 

An inverse relationship between DNA methylation and gene expression was observed more than can 

be accounted for by chance, supporting previous findings implicating DNA methylation as a 

transcriptional repressor. Our study should prove valuable in helping future studies prioritise 

candidate genes and epigenetic mechanisms for in-depth functional follow-up analyses. 
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Background 

Genome-wide association studies (GWAS) have been integral in identifying thousands of genetic 

variants associated with complex traits and disease. The vast majority of genetic variants identified in 

these studies reside in intergenic or intronic regions of the genome and are therefore predicted to 

exert their effects on complex traits via changes in gene regulation1. Furthermore, there is evidence 

which suggests that GWAS hits are often located within regions of open chromatin and enhancers2. 

Typically, genetic variants associated with molecular phenotypes are enriched amongst SNPs that are 

linked to traits and diseases3. Such variants are known as quantitative trait loci (QTL) and can affect 

molecular phenotypes such as: gene expression (eQTL), and epigenetic mechanisms including DNA 

methylation (mQTL) and histone acetylation (haQTL). DNA methylation and histone acetylation are 

alterations that affect gene expression without altering the DNA sequence. Several genetic variants 

have been identified that occur in the same genomic region and influence both gene expression and 

DNA methylation. In these cases, it is possible that the eQTL and mQTL share a common causal 

variant (CCV)4.  

 

Several post-GWAS approaches exist to help functionally characterise non-coding variants5-7. In 

particular, there has been an emphasis on integrating eQTL and GWAS data together, which can be 

valuable in terms of identifying the underlying genes responsible for associations detected by GWAS. 

Recently, similar endeavours have extended the scope of their analysis to also evaluate additional 

molecular phenotypes (e.g. mQTL and haQTL) as well as gene expression8-11. A novel method in this 

paradigm involves calculating approximate Bayes factors12 to assess the likelihood that the genetic 

variants responsible for an association with a complex trait is also responsible for influencing 

intermediate molecular phenotypes (i.e. the likelihood they share a CCV). This multiple-trait 

colocalization (moloc) method has been shown to help characterise GWAS loci and develop 

mechanistic insight into the causal pathway from genetic variant to complex trait13. Furthermore, 

inclusion of an additional molecular trait into the analysis (e.g. complex trait, gene expression and 

DNA methylation vs. complex trait and gene expression alone) has been shown to increase power 

and assist in identifying novel disease susceptibility loci13. 

 

The recent large influx of tissue specific molecular data provides an unprecedented opportunity to 

assess the functional relevance of GWAS hits. Recently, a resource has become available that 

comprises QTL data derived from the dorsolateral prefrontal cortex in up to 494 subjects14. Brain 

xQTL Serve provides a list of SNPs associated with gene expression, DNA methylation and/or histone 

modifications specific to the same brain region14. Whilst progress has been made in terms of 

identifying genetic variants influencing neurological phenotypes and diseases, not enough is known 

about the biological effects of genetic risk factors. In this study, we have jointly analysed genetic 

variants identified from GWAS of 5 neurological traits and diseases alongside the variants listed in the 

Brain xQTL Serve resource. In doing so, we aim to identify CCVs for neurological traits and gene 

expression, and where possible, DNA methylation and histone acetylation. Uncovering evidence that 
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epigenetic factors reside on the causal pathway along with gene expression can be extremely 

valuable for disease prevention due to early diagnosis. 
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Methods  

Neurological genome-wide association studies  

We obtained summary statistics from 5 independent GWAS for the following neurological traits: 

Neuroticism (n=274,108)15, Schizophrenia (cases=35,467, controls=46,839)16, Educational Attainment 

(n=293,723)17, Alzheimer’s disease (cases=17,008, controls=37,154)18 and Insomnia (n=336,965)15. 

Information on all GWAS datasets can be found in Supplementary Table 1. Linkage disequilibrium 

(LD) clumping was undertaken using PLINK v1.919 with a reference panel consisting of European 

(CEU) individuals from phase 3 (version 5) of the 1000 genomes project20. This allowed us to identify 

the top independent loci for each set of results based on the conventional GWAS threshold 

(P<5.0x10-08). 

 

Brain-tissue derived quantitative trait loci for three molecular phenotypes  

All QTL data used in this study were obtained from the Brain xQTL Serve resource14. Genotype data 

in this resource was generated from 2,093 individuals of European descent from the ROS and MAP 

study cohorts (http://www.radc.rush.edu/). Gene expression (RNA-seq; n=494), DNA methylation 

(450K Illumina array; n=468) and histone modification (H3K9Ac ChIP-seq; n=433) data were derived 

from the dorsolateral prefrontal cortex of post-mortem samples. eQTL were based on 13,484 

expressed genes, mQTL on 420,103 methylation sites and haQTL on 26,384 acetylation domains. 

eQTL and haQTL results were available for variants within 1MB of their corresponding probes, 

whereas mQTL results were restricted to a 5kb window14.  

 

Gene-centric multiple-trait colocalization  

We extracted effect estimates for all variants within 1MB of the lead SNP for each clumped region 

using results from each of the 5 GWAS. P-values for molecular QTL were then extracted for the same 

set of SNPs using the Brain xQTL resource. Loci residing within the Major Histocompatibility Complex 

(MHC) region (chr:6 25Mb -35Mb) were removed due to extensive LD within this region which may 

result in false positive findings. The moloc method was then used to assess the likelihood that the 

variant at each region responsible for variation in complex traits was also responsible for influencing 

the expression of a nearby gene (i.e within a 1MB distance of the lead GWAS SNP). As demonstrated 

previously13, we simultaneously investigated whether variants responsible for both gene expression 

and complex trait variation may also influence proximal epigenetic traits in a gene-centric manner. 

However, unlike previous work which evaluated 3 traits at a time, we have investigated up to 4 traits 

in each analysis (i.e. complex trait, gene expression, DNA methylation and histone acetylation).  

 

To achieve this, we used coordinates from Ensembl21 to map CpG sites and histone peaks to genes 

using a 50kb window upstream and downstream of each gene. We then ran moloc to assess all 

Gene-CpG-Histone combinations within each region of interest. Summed posterior probabilities were 

computed for all scenarios where GWAS trait and gene expression colocalized. The reason for this is 

because if epigenetic mechanisms are responsible for mediating the effect of genetic variants on 

complex traits then we would expect gene expression to also reside on this causal pathway. 
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Therefore, 10 scenarios were considered of interest; GE, GE,M, GE,H, GE,M,H, GEM, GEM,H, GEH, 

GEH,M, GEMH, where evidence of a shared causal variants for GWAS complex traits is defined as 

‘G, gene expression as ‘E’, DNA methylation as ‘M’ and histone acetylation as ‘H’. The ‘,’ denotes a 

scenario where there is a different causal variant for each molecular phenotype. For example, GE,M 

would represent a situation where the same causal variant is shared between the GWAS trait and 

gene expression, but a different causal variant for DNA methylation.  

 

As recommended by the authors of moloc13, a summed posterior probability of association (PPA) >= 

80% for these 10 scenarios was considered strong evidence that a genetic variant was responsible 

for changes in both molecular phenotype(s) and neurological trait variation. Therefore, a GEMH 

scenario with a posterior probability >=80% would represent a case where there is evidence that 

GWAS trait, gene expression, DNA methylation and histone acetylation colocalize and share a causal 

variant. When a Gene-Trait combination provided evidence of colocalization with multiple CpG sites 

or histone peaks, we only reported the association for the combination with the highest PPA. This was 

to reduce the number of findings detected due to co-methylation/probes within the same histone peak 

that were measuring the same epigenetic signatures. 

 

Regions with fewer than 50 common SNPs (MAF <=5%) were not considered in the moloc analysis in 

order to reduce the number of spurious findings. Prior probabilities of 1x10-04, 1x10-06, 1x10-07 and 

1x10-08 were used in all analyses which was also recommended by the authors of moloc. 

Furthermore, we used the option to adjust Bayes factors for overlapping samples as this was the case 

for the xQTL datasets. Manhattan plots to illustrate findings were subsequently generated using code 

adapted from the ‘qqman’ package22.  

 

Identifying potentially novel loci in disease susceptibility 

We also applied our analytical pipeline as described above to independent GWAS loci with p-values 

between the conventional threshold (P<5.0x10-08) and P≤1.0x10-06. All parameters were the same as 

in the previous analysis. We hypothesised that incorporating additional evidence on molecular 

phenotypes could help to elucidate potentially novel loci which are likely to be identified as sample 

sizes of future GWAS increase. Although the observed effects of these loci on traits alone do not 

meet the conventional GWAS threshold, we took evidence of colocalization (again defined as a 

combined PPA >= 80%) at these loci as novel evidence implicating them in disease which can be 

used to prioritise them for future evaluation.  

 

Functional informatics 

Pathway analysis: 

For all scenarios where GWAS trait and gene expression colocalize based on a combined PPA of >= 

80%, we compiled a list of associated genes for each trait. Where multiple genes at a region provided 

a PPA >= 80% for the same GWAS SNP, we took forward the gene with the highest PPA. Pathway 

analysis was then undertaken with a gene list for each neurological trait using ConsensusPathDB23. 
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This was to investigate whether multiple associated genes in our analysis reside along established 

biological pathways more than we would expect by chance. 

 

Tissue-specific analysis: 

We also investigated whether any genes detected in our analysis were predominantly expressed in 

brain tissue using 3 RNA-seq datasets; the Human Protein Atlas (HPA)24, the Genotype-Tissue 

Expression project (GTEx)25 and the Mouse ENCODE project26. We used the ‘TissueEnrich’ R 

Package to identify evidence of enrichment based on 3 definitions24:  

• Tissue Enriched: Genes with an expression level greater than 1 (TPM or FPKM) plus at 

least 5-fold higher expression levels in a particular tissue when compared to all other tissues. 

• Group Enriched: Genes with an expression level greater than 1 (TPM or FPKM) plus at least 

5-fold higher expression levels in a group of 2-7 tissues when compared to other tissues not 

considered to be ‘Tissue Enriched’. 

• Tissue Enhanced: Genes with an expression level greater than 1 (TPM or FPKM) plus at 

least 5-fold higher expression levels in a particular tissue compared to the average levels in 

all other tissues, not considered to be either ‘Tissue Enriched’ or ‘Group Enriched’. 

For each dataset we were only interested in genes predominantly expressed in brain tissue i.e. 

‘Cerebral Cortex’ in HPA, ‘Brain’ in GTEx and ‘Cerebellum’,’Cortex’ or ‘E14.5 Brain’ in the Mouse 

ENCODE project. Heatmaps to illustrate enrichment across all possible tissues from these datasets 

were generated using the ‘ggplot’ R package’27. 

 

Orienting directions of effect between molecular traits and regulatory region annotation: 

We oriented the direction of effect between transcriptional and epigenetic traits for detected 

associations; firstly between gene expression and DNA methylation and then between gene 

expression and histone acetylation. For associations with evidence of colocalization between the two 

traits being assessed, we evaluated whether the lead SNP was correlated with molecular traits in the 

same direction using coefficients from the xQTL resource. We applied the hypergeometric test to 

investigate whether there was an enrichment of a particular direction of effect between molecular 

traits more than we would expect by chance. Background expectations were calibrated using 

randomly selected lead SNPs across the genome that were associated with both proximal gene 

expression and DNA methylation (P < 1.0 x 10-04). Permutation testing was applied for 10,000 

iterations by sampling the same number of SNPs being evaluated.  

 

Lastly, we obtained regulatory data from the Roadmap Epigenetics Project28 from 10 different types of 

brain tissue. We used BEDtools29 to evaluate whether lead SNPs, CpG sites and histone peaks with 

evidence of colocalization from our study reside within promoters, enhancers and histone marks using 

these datasets. All analyses in this study were undertaken using R (version 3.31). 

 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 2, 2018. ; https://doi.org/10.1101/429134doi: bioRxiv preprint 

https://doi.org/10.1101/429134
http://creativecommons.org/licenses/by/4.0/


Results  

Colocalization between gene expression, DNA methylation and histone acetylation at risk loci 

for 5 neurological traits and diseases  

We applied the moloc method at loci with a trait-associated SNP (P < 5.0 x 10-08) using findings from 

5 large-scale GWAS15-18 and molecular datasets (eQTL, mQTL and haQTL) derived from brain 

tissue14. Across the 5 neurological traits we identified a total of 66 colocalization associations with 

GWAS loci and gene expression (Supplementary Tables 2-6). Of these, 40 provided evidence of 

colocalization with an epigenetic trait also. Altogether, 4 genetic loci colocalized with a complex trait 

and all three of the molecular phenotypes (gene expression, DNA methylation and histone 

acetylation). Figure 1 illustrates these associations for neuroticism and insomnia, whereas plots for 

the remaining traits can be located in Supplementary Figure 1. 

 

We identified evidence of colocalization between neurological and molecular traits at loci previously 

reported as well as novel findings. For example, we were able to replicate findings reporting that the 

expression of KLC1 colocalises with schizophrenia risk and DNA methylation13 (combined 

PPA=97.9%). There were several other loci associated with schizophrenia that have been previously 

reported to colocalize with molecular traits (such as CNNM2 and PRMT713), as well as a several other 

genes where epigenetic mechanisms have not been previously detected to play a role in 

schizophrenia risk (such as TSNARE1 and ADOPT1) (Supplementary Table 3). 

 

There were also novel associations with molecular phenotypes amongst the other neurological traits. 

For instance, we uncovered evidence suggesting that neuroticism, gene expression and DNA 

methylation shared a CCV at the PAFAH1B1 locus (combined PPA=89.9%). Figure 2A illustrates the 

overlapping distributions of effects on each of these traits for variants at this region. We also observed 

evidence of colocalization for several genes at the APOE locus that were associated with Alzheimer’s 

disease. This included TOMM40, where results suggested there was also evidence of colocalization 

with DNA methylation (combined PPA=99.3%). However, given the extensive linkage disequilibrium 

at this region, findings should be interpreted with caution30. 

 

Elucidating novel genes that may influence neurological traits  

We also applied our analytical pipeline to uncover potentially novel loci using a less stringent 

threshold (P≤1.0x10-06). In this analysis we identified 52 loci where neurological traits and gene 

expression share a CCV, of which 33 provided evidence that these variants may also influence 

epigenetic traits (Figure 1; Supplementary Figure 1). Our incentive for undertaking this analysis was 

that GWAS analyses may not identify evidence of association using observed effects on neurological 

traits alone. However, by integrating evidence that SNPs at these loci also influence molecular traits 

derived from a relevant tissue type we aimed to uncover novel loci in disease/trait variation. Table 1 

provides an overview of the number of associations detected in our analysis. 

.
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Table 1 | Number of associations with evidence of colocalization between molecular and neurological and molecular traits  

 
Complex trait Gene expression Gene expression & 

DNAm  

Gene expression & 

histone acetylation 

Gene expression, DNAm 

& histone acetylation 

Loci meeting GWAS threshold 

Neuroticism 5 5 2 0 

Schizophrenia 2 7 0 1 

Education Attainment 9 7 1 1 

Alzheimer’s Disease 6 3 1 0 

Insomnia 4 9 1 2 

Loci not meeting GWAS threshold 

Neuroticism 5 2 2 1 

Schizophrenia 9 6 4 0 

Education Attainment 3 3 3 0 

Alzheimer’s Disease 1 0 0 0 

Insomnia 1 10 1 1 

The total number of associations detected in our analysis with evidence of colocalization as assessed by a posterior probability of association ≥ 80% using multiple-trait 
colocalization. Results are stratified based on the combination of molecular traits which provided the strongest evidence that they share a causal variant with the associated 
neurological trait. DNAm = DNA methylation 
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As an example of this, there was evidence that insomnia risk and molecular traits share a CCV at the 

MDGA1 locus (combined PPA=85.8%). However, the p-value for the lead SNP at this region did not 

reach conventional GWAS thresholds (P = 7.7 x 10-07), suggesting that it would have been potentially 

overlooked based on GWAS evidence alone. As a validation of this finding, we found that a recent 

GWAS of insomnia with a larger sample size has found strong evidence of association at the MDGA1 

locus which survives conventional corrections (P=4.0x10-12)31. Figure 2B illustrates the overlapping 

distribution of effects for genetic variants at MDGA1 on insomnia, gene expression and DNA 

methylation. 

 

We identified several other instances from our analysis of loci with evidence of colocalization that 

have recently been detected by GWAS, suggesting that our analytical pipeline is valuable in terms of 

detecting novel findings. For example, we found that expression of the CD40 and SLC12A5 genes 

colocalize with risk of neuroticism. Both genes have subsequently been identified as associated with 

neuroticism at genome-wide significance in a GWAS meta-analysis32. Additionally, a recent large 

GWAS of educational attainment identified several genetic variants not previously found to reach 

genome-wide significance that we found to colocalize with molecular traits for the following genes: 

DNAJB4, RERE, Corf73, DHX30, CD164 and GLCC1133.  

 

Pathway and tissue-specific enrichment analysis  

Pathway analysis was conducted using ConsensusPathDB23 to investigate whether any sets of genes 

for each neurological trait and disease reside along the same biological pathway (Supplementary 

Table 12). Amongst findings there was evidence that genes associated with neuroticism in our 

analysis (SLC12A5, GNAI2 and GNG12) reside on the GABAergic synapse pathway (enrichment 

P=2.34x10-4).  

 

Our tissue-specific analysis indicated that various genes with evidence of colocalization are 

predominantly expressed in the brain. SLC12A5, KLC1 and KIRREL3 are expressed specifically in 

the cerebral cortex using data from the Human Protein Atlas24, whereas MDGA1 was strongly 

expressed within brain tissue using data from the GTEx25 project. RAP1GAP2 was predominantly 

expressed within cortex tissue using findings from the Mouse ENCODE project, amongst other loci 

are enriched in brain tissue based on this dataset (Supplementary Table 13, Supplementary Figure 

2). 

 

We observed enrichment of an inverse relationship between DNA methylation and gene expression 

across loci which provided evidence of colocalization for these molecular traits (P = 1.98 x 10-03), 

supporting previous evidence implicating DNA methylation as a transcriptional repressor34 

(Supplementary Table 14). This effect appeared to be driven by CpG sites located near the 

transcription start site of genes, as 11 of the 13 sites located at these regions were inversely 

correlated with gene expression (84.6%). Performing the same analysis except with gene expression 

and histone acetylation suggested there was weak evidence of enrichment for a directional 
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relationship (P=0.37). The regulatory annotations within brain tissue datasets for lead SNPs, CpG 

sites can be found in Supplementary Tables 15-17.  
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Discussion 

In this study we have conducted an integrative analysis of GWAS and molecular QTL data to uncover 

mechanistic insight into the biological pathways underlying complex neurological traits. We identified 

118 colocalization associations between neurological traits and gene expression, with 73 of these 

associations additionally colocalizing with proximal DNA methylation and/or histone acetylation in 

brain tissue. Out of the 118 associations, 52 were potentially novel loci which did not meet genome-

wide significance corrections but colocalized with molecular traits. Notably, several of these potentially 

novel loci have recently been validated by larger GWAS31-33, suggesting that other findings in our 

study are likely to be identified by GWAS as study sizes increase. Our findings should help future 

studies prioritise candidate genes and putative epigenetic mechanisms for functional follow-up 

analyses.  

 

Applying our analysis pipeline to GWAS loci associated with neurological traits and disease (i.e. 

P<5x10-08) replicated previous findings reported by functional studies. For instance, our findings are 

consistent with an in-depth evaluation of the KLC1 locus3. Variation at KLC1 provided strong evidence 

of colocalization in our study (combined PPA=97.9%), where the highest individual posterior 

probability suggested both gene expression and DNA methylation may be involved along the causal 

pathway to schizophrenia risk. This result also supports findings from an epigenome-wide association 

study implicating DNA methylation as potentially playing a role in schizophrenia risk at this locus35. 

Furthermore, Hi-C interactions have been identified at the promoter region of KLC1 within brain tissue 

which further helps validate the putative regulatory mechanism implicated by our results36. 

 

Amongst other established GWAS loci, there was evidence suggesting that expression of the 

TOMM40 gene and DNA methylation may play a role in Alzheimer’s disease. An exploratory analysis 

has found that regulatory element methylation levels in the TOMM40-APOE-APOC2 gene region 

correlate with Alzheimer’s disease37. However, there is also evidence that, although SNPs at this 

region are known to influence Alzheimer’s disease, gene expression and DNA methylation, they may 

be attributed to different causal variants38. Moreover, there is a complex linkage disequilibrium 

structure at this region30, suggesting that further analysis is required to fully understand the 

mechanisms underlying this association. 

 

We were also able to identify evidence of colocalization at GWAS loci that have not been linked 

previously by functional analyses or integrative studies harnessing molecular traits. For instance, the 

underlying biology explaining a GWAS association with neuroticism on chromosome 17 (lead SNP = 

rs12938775) has yet to be thoroughly evaluated. Our findings suggest that PAFAH1B1 may be the 

likely causal gene at this locus, as well as implicating the involvement of DNA methylation along the 

causal pathway to neuroticism susceptibility as well (combined PPA=90.0%). PAFAH1B1 (also known 

as LIS1) is involved in neuronal migration, the process by which different classes of neurons are 

brought together so that they can interact appropriately39. Functional evaluations of how changes in 

DNA methylation may influence neurological function at loci such as this may prove valuable in 
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understanding epigenetic contributions to disease susceptibility. Moreover, doing so will help improve 

the accuracy of early disease prognosis. 

 

As well as helping characterize associations detected by GWAS studies, we have also uncovered 

evidence for many novel genes which may influence neurological trait variation and therefore 

represent promising candidates for future endeavours. The association with insomnia risk at the 

MDGA1 locus is an example of this, particularly given that it has recently been validated by a large-

scale GWAS31. Furthermore, our results may provide functional insight into this association, by 

suggesting that MDGA1 may be the responsible causal gene and that DNA methylation may also play 

a role in disease risk at this locus (combined PPA=85.8%). Similar to PAFAH1B1, MDGA1 has also 

been report to play a role in neuronal migration40 and based on our tissue-specific analysis is 

predominantly expressed in brain tissue. 

 

SLC12A5, associated with neuroticism in our analysis (combined PPA=99.0%), was amongst other 

promising candidates which has yet to be discovered by GWAS. This gene encodes the neuronal 

KCC2 channel which plays a crucial role in fast synaptic inhibition41. SLC12A5 was also amongst the 

genes associated with neuroticism in our analysis that resides along the GABAergic synapse pathway 

(along with GNAI2 and GNG12). A recent study has suggested that GABAegic neurons are causally 

associated with risk of bipolar disorder42, a condition previously linked with higher global measures of 

neuroticism43.The association between KIRREL3 and neuroticism (combined PPA=92.2%) is another 

finding that has yet to be identified by GWAS which warrants in-depth functional evaluation. KIRREL3 

regulates target-specific synapse formation and has been previously linked with neurodevelopmental 

disorders44.  Our tissue-specific analysis suggests that both SLC12A5 and KIRREL3 are 

predominantly expressed in brain tissue.  

 

In cases where gene expression was found to colocalize with DNA methylation, we observed 

evidence of enrichment for an inverse relationship between these molecular phenotypes. Such 

inverse correlations support established biology that DNA methylation plays a role in silencing gene 

transcription45. However, recently there has been conflicting reports concerning whether DNA 

methylation on its own is sufficient to lead to transcriptional repression of promoters34, 46. Further 

analysis investigating the epigenetic mechanisms identified by our study should prove valuable in fully 

understanding the role of DNA methylation in gene regulation.   

 

In terms of limitations of this study, we recognise that integration of GWAS results with QTL data is 

limited by the sample sizes used to derive summary statistics, which is particularly noteworthy for QTL 

data available in brain. Analyses such as ours are often limited in this manner, particularly when 

analysing brain-related phenotypes with sample sizes typically in the order of hundreds47. It may be 

the case that replication in blood can provide greater power due to the larger sample sizes available. 

It has been shown that top cis-eQTL and mQTL are highly correlated between blood and brain 
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tissues47. Future work could take advantage of this correlation and the higher power in these blood 

datasets.  

 

There is also evidence that the expression of certain genes is both highly tissue and disease-

specific42. Recently, it has been shown that both tissue-specific and tissue-shared eQTL provide a 

substantial polygenic contribution to various complex traits26. Further investigation into the tissue-

specificity of our results could be interesting since the ROSMAP/Brain xQTL14 dataset comes 

specifically from the dorsolateral prefrontal cortex region of the brain. Analysis of effects in other 

regions of the brain may be interesting to potentially identify disease relevant regions. We were also 

limited as the mQTL data was confined to 5kb windows affecting the coverage we could get within a 

genomic region. Whilst the nature of this mQTL dataset means we may have missed some true 

effects, it also means we are unlikely to have identified false positives. It is also worth noting that as 

the number of molecular studies increases, so too does the likelihood of detecting incidental QTL-

GWAS overlaps3. Hence, developments concerning robust methods in colocalization should prove to 

be extremely valuable and important for future research. 

 

By integrating GWAS findings with data concerning brain cortex-derived molecular phenotypes, we 

have helped uncover putative epigenetic and transcriptomic drivers of neurological function and 

disease. Our work has focused on the prioritisation of GWAS hits and uncovering potentially novel loci 

which are likely to influence various complex neurological traits. The analytical framework applied in 

our study can be harnessed to help to characterise biological mechanisms for a wide variety of 

different traits and disease. 
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Figure 1 | Manhattan plots for (A) 
Neuroticism and (B) Insomnia. 
Shared causal variants with traits 
are represented for the following 
scenarios; Gene expression 
(blue), Gene expression & DNA 
methylation (red), Gene 
expression & histone acetylation 
(green) and Gene expression, 
DNA methylation and histone 
acetylation (yellow). The genome-
wide significance threshold (P < 5 
x 10-08) is illustrated in red.  

.
C

C
-B

Y
 4.0 International license

a
certified by peer review

) is the author/funder, w
ho has granted bioR

xiv a license to display the preprint in perpetuity. It is m
ade available under 

T
he copyright holder for this preprint (w

hich w
as not

this version posted O
ctober 2, 2018. 

; 
https://doi.org/10.1101/429134

doi: 
bioR

xiv preprint 

https://doi.org/10.1101/429134
http://creativecommons.org/licenses/by/4.0/


 

A 

B 

Figure 2 | Regional association plots 
illustrating colocalizations for the 
PAFAH1B1 gene (A) and MDGA1 gene 
(B) with neuroticism and insomnia 
respectively. Effects for genetic variants 
on complex traits and gene expression 
were available within a 1Mb distance of 
the lead variant at each locus, whereas 
effects on DNA methylation levels were 
confined to a 5kb distance. 
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