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Abstract 72 

Arthropods play a dominant role in natural and human-modified terrestrial ecosystem dynamics. 73 

Spatially-explicit population time-series are crucial for statistical or mathematical models of 74 

these dynamics and assessment of their veterinary, medical, agricultural, and ecological impacts. 75 

Arthropod data have been collected world-wide for over a century, but remain scattered and 76 

largely inaccessible. With the ever-present and growing threat of arthropod vectors of infectious 77 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 17, 2018. ; https://doi.org/10.1101/429142doi: bioRxiv preprint 

https://doi.org/10.1101/429142


3 
 
 
 

diseases and pest species, there are enormous amounts of historical and ongoing surveillance. 78 

These data are currently reported in a wide variety of formats, typically lacking sufficient 79 

metadata to make reuse and re-analysis possible. We present the first minimum information 80 

standard for arthropod abundance. Developed with broad stakeholder collaboration, it balances 81 

sufficiency for reuse with the practicality of preparing the data for submission. It is designed to 82 

optimize data (re-)usability from the “FAIR,” (Findable, Accessible, Interoperable, and 83 

Reusable) principles of public data archiving (PDA). This standard will facilitate data unification 84 

across research initiatives and communities dedicated to surveillance for detection and control of 85 

vector-borne diseases and pests. 86 

Introduction 87 

Arthropods play a dominant role in the dynamics of practically all natural and human-modified 88 

terrestrial ecosystems1–3, and have significant economic and health effects. For example, certain 89 

insects provide significant economic benefits (e.g. pollination) exceeding $57 billion a year to 90 

the United States alone4. Meanwhile, invasive insects cost an estimated $70 billion dollars per 91 

year globally5 and insect pests may reduce agricultural harvests by up to 16%, with an equal 92 

amount of further losses of harvested goods6. Particularly noteworthy is a subset of arthropods 93 

that are disease vectors, transmitting pathogens to and between animals as well as plants. Vector-94 

borne diseases cause billions of dollars in crop and livestock losses, every year7–9. In humans, 95 

vector borne diseases account for more than 17% of all infectious diseases (e.g. malaria, Chagas, 96 

dengue, and leishmaniasis, Zika, West Nile, Lyme disease, and sleeping sickness), with hundreds 97 

of thousands of deaths, hundreds of millions of cases, and billions of people at risk, annually10,11.  98 
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 99 

The current economic and health burden of arthropod pests, exacerbated by invasive species, and 100 

uncertain effects of climate change12,13, has driven significant research programs and data 101 

collection efforts. These include crop pest, mosquito, and tick survey and reporting initiatives14–102 

18, citizen science projects19–21, and digitization of museum specimen data22,23, all yielding a rich 103 

and growing trove of field-based data spanning multiple spatial and temporal scales. Monitoring 104 

arthropod abundance (e.g. Figure 1) in different disciplines (e.g., biodiversity research, pest-105 

control assessment, vector-borne disease monitoring, or pollination research) uses similar 106 

techniques, with similar objectives: to quantify abundance, phenology and geographical ranges 107 

of target arthropod species. Despite a growing number of data collections, they are often not 108 

reusable, or comparable to similar data, due to a lack of standardization and metadata. In 109 

contrast, the advent of the deposition of data from high-throughput technologies (e.g. NCBI and 110 

GenBank), data and code sharing,  and other practices to improve transparency and reusability of 111 

research results are increasing rapidly across the sciences24–29. Furthering these advances through 112 

standardization and public archiving of arthropod abundance data can bring significant benefits, 113 

including  (1) supporting empirical parameterization and validation of mathematical models (e.g. 114 

of pest or disease emergence and spread), (2) validation of model predictions, (3) reduction in 115 

the duplication of expensive empirical research, and (4) revealing new patterns and questions 116 

through meta-analyses30–33. This will also lead to substantial public benefit through improved 117 

human, animal, plant, and ecosystem health, and reduced economic costs.  118 

 119 

A key impediment to the re-use of these data is the lack of adequate metadata or data descriptors 120 

(i.e. data about the data)34–37. In general, for data to be most valuable to the scientific community, 121 
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they should meet the FAIR Principles – they should be Findable, Accessible, Interoperable and 122 

Reusable – and delineate the key components of good data management and stewardship 123 

practices38,39. Data are Findable and Accessible when they are archived and freely downloadable 124 

from an online public data repository that is indexed and easily searchable. Interoperability and 125 

reusability describe the ease with which humans or computer programs can understand the data 126 

(e.g. via metadata) and explore/re-use them across a variety of non-proprietary platforms. Even 127 

when data are available, metadata for arthropod abundance data are often absent or not readily 128 

interpretable, limiting their reusability at a fundamental level.  129 

Results 130 

A minimum information standard for arthropod abundance data 131 

Here, we present a Minimum Information for Reusable Arthropod Abundance Data (MIReAAD) 132 

standard for reporting primarily longitudinal (repeated, temporally explicit) field-based 133 

collections of arthropods. In the same manner as has been developed in other biological 134 

disciplines40–45, this standard is “minimum” because it defines the necessary minimal information 135 

required to understand and reuse a dataset without consulting any further text, materials, or 136 

methods46. MIReAAD is designed to facilitate data archiving efforts of publishers and field 137 

researchers. It is not a data model and therefore does not define controlled vocabularies, or 138 

specific field titles, but should be easy to understand, and interpret by the wider scientific 139 

community46.  140 

 141 

The minimal standards are separated into two components, metadata and data. For each 142 

component, we provide a description of the information that should be included, 143 
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recommendations for how to make that information as useful as possible, and examples. The 144 

metadata component (Table 1) includes information for the origin of the data set (e.g. study 145 

information and licensing for usage). The second component (Table 2) lists and describes 146 

specific data fields that should be included in data collection sheets. We also provide 147 

recommendations and examples to demonstrate how these recommendations can be 148 

implemented. MIReAAD was designed to match the data that are generally collected by 149 

academic researchers and surveillance initiatives, and can serve as a checklist for important 150 

information that needs to be recorded but is often unintentionally omitted (e.g. Figure 2A). By 151 

adhering to MIReAAD standards, omissions and ambiguity can be avoided even if the data are 152 

shared in different formats (Figure 2B and C). Finally, we identify common problems likely to 153 

be encountered across all the MIReAAD metadata and data fields, and data quality standards that 154 

can be employed to avoid confusion (Box 1). 155 

  156 
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Box 1. Data quality standards 

No abbreviations. Abbreviations (including in columns names) are ambiguous, with the 

exception of measurement units (e.g. centigrade and  meters).  

No external legend/key files. While repetitive, all data should be explicitly given within 

the data table. Separate files mapping ID numbers to GPS locations, full species names, 

etc., should be avoided. In addition, rich metadata is essential for good data discovery and 

reuse. 

Unambiguous dates. Because of country-level differences in date formats, data should be 

reported with 4 digit years, and months provided alphabetically and not numerically (e.g. 

4-Jun-2017 or Nov 12, 2015). 

Machine-readable file formats. Data should be provided in non-proprietary machine 

readable formats such as comma-separated text files. PDFs and multiple spreadsheets in 

the same document should be avoided.\ 

No font styling or subsection headings. Formatting (color, bold, italics, subscripts, sheet 

tab names, etc.) should not be required for understanding the data. Subsection headings 

should not be required to understand data; every line of data should be interpretable in 

isolation from any other line of data.   

Highest precision possible. Data should be provided at the highest temporal, spatial, 

numerical, and taxonomic resolution available. If location (e.g., geographical coordinate) 

data need to be presented at a lower resolution than available for privacy reasons, this 

should be made clear in the submission in Study Information (Resource Metadata; Table 

1).  
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Language. Once data are ready to be deposited/submitted, all fields and data are 

preferably written in English. This will allow researchers and data curators worldwide to 

understand and reuse the data. Use of other languages is better than not publishing data. 

Please avoid introducing data reuse barriers through incomplete translation. For example, 

non-English field names in an English-language submission. 

    157 

Examples 158 

Below we provide three examples to illustrate MIReAAD compliant data (linked to 159 

Supplemental Data Files 1-4, respectively). Researchers can use these data sheets as a basis for 160 

formatting their own data. In these examples, note that all data meet the data quality standards of 161 

Box 1; are adequately described, have columns labeled, etc. to eliminate ambiguity (even if the 162 

data appear repetitive; for example, the sex and life stage are repeated in every row). Examples 1 163 

and 2 should be sufficient for most data generators. Example 3  (Data Files 3-4) demonstrates a 164 

more complex data collection scenario. 165 

  166 

1.  Long-format trapping data. Each row captures count data for a single species’ occurrence in a 167 

given sampling event. This illustrates an example of the most common mosquito collection 168 
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protocol. [Sup Datasheet 1]. Also see Figure 2B. 169 

 170 

2.  Wide format trapping data. Each row captures count data from a given sampling event. Each 171 

identified taxonomic group is identified in a separate column.  An ‘additional sample 172 

information’ field, ‘sub-location,’ has been added to describe the various locations around the 173 

village where collections were made. [Sup Datasheet 2]. This illustrates an example of adult 174 

mosquito populations that have been tracked over time and in specific locations. Also see Figure 175 

2C. 176 

 177 

3. Complex trapping data scenario. Tick surveillance performed using tick drags and flags and 178 

collections of ectoparasites on trapped mice. The tick drags/flags report three life stages 179 

independently (adult, larvae, and nymph) [Sup Datasheet 3] . Larvae are only identified to the 180 

genus, while adults and nymphs are identified to the species.  Observations of different life 181 

stages and sexes are preferably documented in separate records. A Sample Name is used to help 182 

link these records (but would not be necessary.) The mouse survey uses an additional sample 183 

information field to record the sex of the trapped mouse from which the parasites were collected 184 

[Sup Datasheet 4]. 185 

Discussion 186 

MIReAAD as the path to FAIR data principles 187 

We designed MIReAAD to achieve a balance between standards that are too onerous for data 188 

generators and standards that are sufficient to ensure at least minimal reusability31,40. Like all 189 
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minimum standards, MIReAAD only aims at ensuring data ‘Reusability’. However, ultimately 190 

this will promote the implementation of data models —  the explicit definition of data field 191 

names, data formats (e.g., for dates and GPS locations), and controlled vocabularies (e.g., the 192 

Darwin Core47). Data models enable ‘Interoperability’, and in turn facilitate structured databases, 193 

public repositories, and development of data analysis tools46,48. Deposition in open databases 194 

make data ‘Findable’ and ‘Accessible’49–51. MIReAAD compliant data contain sufficient 195 

information for established aggregators/databases such as VectorBase and SCAN (Symbiota 196 

Collections of Arthropods Network52) to process and store the data in a standardized data model 197 

[e.g., Darwin Core, a widely used universal data standard that supports opportunistic observation 198 

and collection data (occurrence core) as well as presence/absence and abundance data collected 199 

using strict and documented methodology (event core)47], and ultimately facilitate data transfer 200 

to even more comprehensive biodiversity databases [e.g. GBIF, which contains over one billion 201 

species occurrence records, from thousands of environmental, ecological, and natural resource 202 

investigations, including research on Arthropoda in numerous ecological and monitoring 203 

projects, allowing for study of changes and trends in populations.51]. Indeed, in Supplemental 204 

File 5, we provide an example of the mapping of data fields from this minimum information 205 

standard, to DarwinCore and GBIF.  In this way, MIReAAD opens the door to FAIR data and 206 

more sophisticated methods to integrate data across many scales.  207 

 208 

Benefits to field researchers 209 

It is essential that the benefits of a minimal data standard extend not just to data re-users, but also 210 

to the researchers who collect and generate data in the first place. MIReAAD provides a 211 

framework for data preparation that can help scientists achieve recognized professional merit for 212 
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sharing data such as increased citation rates, academic recognition, opportunities for co-213 

authorship, and new collaborations [sensu Roche et al. 201431].  Large, deposited data sets can 214 

now themselves be standalone, citable “data papers” (e.g. 53–55)  or even depositions without any 215 

traditional manuscript (but as an authored ‘digital product,’ with persistent identifiers, such as a 216 

DOI number), if desired. Data sets are increasingly recognized as valuable research outputs that 217 

count towards academic recognition and professional advancement (e.g. grants, interviews, and 218 

tenure). For example, several funders (e.g. United States National Science Foundation and Swiss 219 

National Science Foundation) have adopted or are in the process of adopting the Declaration on 220 

Research Assessments (DORA)56, offering further opportunities for data generators to gain 221 

recognition and publication credit for their work57. Also, an increasing number of funders are 222 

mandating public data access, and detailed data management plans are often required even at the 223 

grant proposal stage. Therefore, reporting data according to MIReAAD will provide a 224 

foundational pipeline for stipulating archival formats.  225 

 226 

Furthermore, many data generators are also data users. Developing analyses that rely on 227 

standardized fields can facilitate the development of generalized analytical tools that can be 228 

easily extended to datasets beyond those that were collected by a single individual or lab. In this 229 

way, they can enable extensions of work that would otherwise not happen, such as comparisons 230 

of population dynamics in different locations or assessments of interspecies interactions. 231 

Adopting MIReAAD therefore can both help data generators reap the benefits of sharing data 232 

they have collected and enable them to more readily leverage data collected by others. 233 

 234 

Further MIReAAD applications and extensions  235 
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The creation of minimum information standards for these types of databases facilitates analyses 236 

of data at the scales that cannot be attained by a single individual or lab group.    Linking records 237 

to additional information also extends the utility of these data to address population level 238 

questions. For example, a well-populated database presents opportunities to investigate 239 

interactions between populations of different species of arthropod that overlap in geography, but 240 

may be of interest individually to different realms of research. As a case in point, in the 241 

northeastern USA, Agrilus plannipennis, the Emerald Ash Borer (EAB), is a highly destructive 242 

invasive insect, monitored closely by both state and federal agencies for management58. 243 

Interestingly, EAB are creating lots of new habitat for carpenter bees, a species interaction that 244 

can be tracked and anticipated using large scale arthropod data. 245 

 246 

Another example of the utility of linked data is for disease vectors. Data on insecticide resistance 247 

linked with time and place would be valuable for coordinating control strategies within and 248 

between nations and communities. Presence/absence data on infection levels would be helpful 249 

for tracking and investigating disease outbreaks, and dynamics. Standardization of these data 250 

would be particularly useful for pathogens that infect multiple vectors and hosts and would 251 

facilitate a “One Health” approach. Other important vector phenotypes that contribute to control 252 

and transmission such as pathogen susceptibility, biting preferences, and breeding behaviours 253 

could be measured over time and space.  254 

 255 

We note that MIRreAAD is applicable not only to abundance measurements, but could be easily 256 

extended to any other kind of routinely sampled time-series field data.  For example, in addition 257 
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to aphid abundance, plant pathogen (such as mosaic virus) infection and insecticide resistance 258 

statuses of the aphids could be reported in MIRreAAD format.  259 

Conclusion 260 

We present MIReAAD, a minimum information standard for representing arthropod 261 

abundance data. MIReAAD will facilitate collation and analyses of data at scales that cannot be 262 

attained by a single individual or lab, to address key questions across temporal and spatial scales, 263 

such as within and across-year phenology of abundance of target arthropod taxa over large 264 

geographical areas. This is particularly important given the pressing need to understand and 265 

predict the population dynamics of harmful (e.g., disease vectors and pests) as well as beneficial 266 

(e.g., pollinators, bio-control agents) arthropods in natural and human modified landscapes. This 267 

is the first step for achieving the broad benefits of FAIR data for arthropod abundance. We call 268 

on data generators, authors, reviewers, editors, journals, research infrastructures (e.g. data 269 

repositories) and funders to embrace MIReAAD as a standard to facilitate FAIR data use and 270 

compliance for arthropod abundance data. 271 

 272 
Table 1. The MIReAAD Study Information (Resource metadata) fields. The information in this 273 
table should be included with every data submission, for example by including data in the file 274 
header as demonstrated in Data Files 1-4. 275 
  276 

Field Details Recommendations Examples 
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Contact details 
 
 

A name, person, authority, 
etc. that may be contacted 
with enquiries about the 
data. 
  

Include investigator 
ORCID(s), email 
address, website (if 
institutional) if 
possible. 

Kurt Vandegrift 
orcid.org/0000-0002-5690-3300 
kurtvandegrift@gmail.com 
  
State University 
Agricultural Extension 
John Smith (jsmith@StateU.edu) 
www.StateU.edu/AgriculturalExtension/ 

General 
description of 
the 
experiment/ 
collection set 

A short description of the 
study objectives, sampling 
design, and hypotheses. 
  
Used to aid in  browsing 
multiple studies. 
 
A short title and long form 
name might be helpful. 
 

Useful things to 
indicate are: 
  
Random sampling or 
continuous monitoring 
in fixed locations 
  
General time frames 
and location. 
 
General description of 
where data is from. 

“Long term, fixed trapped,  municipal 
surveillance of west Nile vector population in 
Colorado from 2000-2010” 
 ----- 
“Pennsylvania Ixodes scapularis weekly 
abundance” 
 
Continuous (weekly) monitoring of tick 
numbers attached to White-footed mice in 
fixed locations in Pennsylvania,  USA (12 
sites). 2003-present.” 
----- 
“Long term aphid emergence monitoring 
using continuous suction traps” 

Citations 
 

Reference to related 
publications, digital if 
possible (e.g. DOI(s) or 
PMID(s)). 

   “A web-based relational database for 
monitoring and analyzing mosquito 
population dynamics 
Sucaet Y, Van Hemert J, Tucker B, 
Bartholomay L.” 
 
“PMID: 18714883” 
 
Horiuchi, Kaho, Kosei Hashimoto, and 
Fumio Hayashi. "Cantharidin world in air: 
Spatiotemporal distributions of flying 
canthariphilous insects in the forest interior." 
Entomological Science (2018). 

Species 
Identification 
Method 

A description of method of 
species identification. 
Particularly important for 
cryptic species complexes. 

  “Morphological” 
  
“Genotyped, using method of Smith et al 
2014, PMID: 18714883” 

Not present vs 
zero 
information 

Indication of what gaps, 
zeros, NA, etc mean. 

It is imperative, 
especially for 
population surveys, to 
understand the 
difference between a 
species was not found 
when the collection 
method would be 
expected to find the 
given species 
(confirmed absence) 
or a species was not 

“Zero indicates was looked for and not 
found. NA represents a trap failure etc” 
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looked for (e.g. a  trap 
failure) 
 
Preferably, a zero 
indicates was looked 
for and not found, and 
a NA represents was 
not looked for/trap 
failure/ etc. 
 
Blank values are 
discouraged 

GPS 
obfuscation 
information 
 
 

If GPS data obfuscation 
(e.g. GPS points are 
intentionally offset from their 
actual locations) or de-
resolution occurs (e.g. GPS 
precision is intentionally 
reduced) , a statement on 
the manner by which this 
occurred. 

The highest resolution 
data (e.g. trap-level, 
specific GPS location) 
are the most useful. It 
is hoped that no data 
obfuscation / de-
resolution occurs 

“GPS locations have been truncated to 3 
decimals” 
  
“GPS locations obfuscated using N-
Dispersion” 
 
”No GPS deresolution was performed” 

Data usage 
information 
 

The data reuse policy for 
your data. 
 
Please provide a creative 
commons license 
identification.  
 
See 
https://creativecommons.org  
for more information.  

For data to be   
F.A.I.R., it must be 
Reusable. We 
therefore recommend 
data be provided as 
“CC0” or “CC BY 4.0”.  
 
“CC0”, under which 
data are made 
available for any use 
without restriction or 
particular 
requirements on the 
part of users 
 
“CC BY 4.0”, under 
which data are made 
available for any use 
provided that 
attribution is 
appropriately given for 
the sources of data 
used, in the manner 
specified by the owner 
(e.g. citation).  

“CC0”  
 
or  
 
“CC BY 4.0” 
 
 
 
 

  277 
  278 

Table 2. The MIReAAD data fields. Fig 1B provides an annotated example. 279 
  280 
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Field(s) Details Recommendations Examples 

Start Time (for 
collection) 
 
 

Start time of the 
data sample 
collection. 
  
e.g. The trap was 
set... 

Be as specific as practically 
possible. 
  
Any unambiguous format is 
acceptable. However, do not 
use two-digit year abbreviations. 
 
If relevant, provide timezone in 
field or in header, a 24 hour 
clock is preferred, but should be 
made unambiguous as to which 
time format is being used. 

“2012-04-27” 
 
“July 26, 2017” 
“2017-Jul-26” 
“2017-July-26 Morning ” 
“2017-Jul-26 20:00 GMT ” 
 

End Time (for 
collection) 

End time of the 
data sample 
collection. 
  
e.g. The trap was 
collected... 

See above. 
  
If instantaneous data collection 
(e.g. a tick drag), End Time may 
be the same as Start Time. 

See above. 
  

Location 
 
 
 

The geographical 
location of sample 
collection. 

As detailed as possible. Latitude 
and longitude if possible with 
specified accuracy   
Providing both a GPS point 
(decimalized GPS points are 
prefered) field and a 
geographical name field is 
prefered. 
 
Note only providing  location 
names is highly discouraged  as 
they change over time  and can 
be ambiguous.  
Place / Trap  names and GPS 
fields can be provided. 
 
If obfuscation was used, it 
should be indicated in the 
Metadata (Table 1). 
 
Splitting latitude and longitude 
further into two columns further 
reduces ambiguity. 

 “Kukar Maikiya, Jigawa State, Nigeria” 
 
“40.697”  and “ -74.015” 
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Collection 
method 
 
 

Sampling 
apparatus (e.g.  
trap type, 
observation 
method) 

 
 
 
  

“CDC light trap” 
  
“Tick drag” 
  
“Quadrat count” 
 
“BG Sentinel Trap” 
 
“Pitfall trap” 
 
“Larval dip” 
 
“Johnson suction trap” 
 
“Lindgren Funnel Trap” 

Collection 
attractants 

The attractant/ 
lures used to attract 
insects to a trap or 
collection 

 “None” 
 
“Carbon dioxide” 
 
“UV light” 
 
“BG-Sweetscent Mosquito Lure” 
 
“Human/animal bait”  

 Collection area The spatial extent 
(area or volume) of 
the sample. 

If relevant (e.g., when collection 
method is transect or quadrat), 
in units of area or volume, the 
spatial coverage of the sampling 
unit 
 
Note this field would not 
typically be used for mosquito 
collections.  

“100 m^2” 
“1  liter” 
“1 ha” 
“10m^3” 

Taxonomy Classification of 
sample collected. 
 
 

Scientific genus and species 
preferred. 
  
Avoid abbreviation. 
 

“Ixodes scapularis” 
  
“Aedes aegypti” 
  
‘Anopheles gambiae sensu stricto” 
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Unit(s) of 
measurement 
and observation 

Description of 
exactly what was 
observed, the unit 
for “Value” below. 
 
For counts, should 
indicate life stage, 
sex, etc. 
 
Unit measures can 
be encoded into 
value field header. 
Consider multiple 
unit fields (e.g. 
separate fields for 
sex and stage.) 
See Figure 2. 

Do not abbreviate. 
 
 
Coded data key should be 
provided in field name (e.g. “1 = 
species present 0= species 
absent”) 
 
 

“Number of individuals per m^2” 
  
“Female” and “Adult” 
 
“Male and Female” and “Nymphs” 

Value The numerical 
amount or result 
from the sample 
collection.  
 
Often this will be a 
quantity of 
observed 
individuals.  
Unit measures can 
be encoded into 
value field header. 
See Figure 2. 

Units should be provided in a 
separate field. 
 
 
 

“0” 
  
“23” 
  
“Yes” 
 
“Not present”  

Additional sample 
information 

This could be more 
than one field and 
should be used 
when more 
information is 
required to 
understand the 
experiment, for 
example 
experimental 
variables, sub-
locations, etc. 
 
Some users may 
report wind speeds, 
temperatures, 
elevations etc. 

 Do not abbreviate. “Forest” 
vs 
“Field” 
  
“Winter” 
vs 
“Summer” 
  
“Inside” 
vs 
“Outside” 
 
“200 meters above sea level” 
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Sample Name 
 
 

A human readable 
sample name. 
 
May exist solely for 
the benefit of the 
depositor in 
organizing their 
data, use their own 
internal naming 
conventions etc. 
 
May also be used 
to tie related 
observations 
together. 

Naming convention is not 
restricted, but any encoded 
metadata should be revealed in 
the other datafields. For 
example, you may name a 
sample named 
‘Aphid1_StickyTrap_Jan4,’ but 
you will still have “Sticky Trap” 
listed in a Collection Method 
field, and “Jan 4, 2017” in the 
date field. 

“Trap1_Night1” 
  
“KissingBug_2” 
  
“00004” 
  
“Jan08_animal_4,” 
  

Field names in bold should be considered also required. Remaining fields are optional or 281 
depend on the complexity of the experimental design 282 
          283 
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Figures 323 

 324 
Figure 1. Example population abundance time-series. 325 
 326 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 17, 2018. ; https://doi.org/10.1101/429142doi: bioRxiv preprint 

https://doi.org/10.1101/429142


22 
 
 
 

327 
Figure 2. MIReAAD reduces data ambiguity. A. Seemingly clean data can still lack key328 
information or have ambiguous metadata, hindering data reuse. B. MIReAAD compliant data329 
includes the metadata necessary for data reuse and removes ambiguity. C. Note data can be330 
formatted differently, but still be MIReAAD complaint, such as by presenting data in a wide331 
format 332 
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