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Abstract

We develop and analyse a mathematical model of tumour-immune interaction that explicitly incor-

porates heterogeneity in tumour cell cycle duration by using a distributed delay di�erential equation.

Our necessary and su�cient conditions for local stability of the cancer free equilibrium completely

characterise the importance of tumour-immune interaction in disease progression. Consistent with the

immunoediting hypothesis, we show that decreasing tumour-immune interaction leads to tumour ex-

pansion. Finally, we show that immune involvement is crucial in determining the long-term response to

viral therapy.

1 Introduction

Malignant tumours contain a highly heterogeneous population of cells that have distinct genotypes and
reproductive abilities [Bell and McFadden, 2014; Lichty et al., 2014]. The heterogeneous nature of tumours
is mirrored in the reproduction speed of malignant cells. Most existing mathematical models greatly simplify
the impact of heterogeneity in cell cycle times by either neglecting the cell cycle or assuming that all tumour
cells have identical cell cycle durations. We will account for the range of cell cycle durations by deriving
a mathematical model of tumour growth using a delay di�erential equation (DDE) with a distribution of
delays. This is, to our knowledge, a novel method of considering the heterogeneity present in malignant
tumours and presents a physiologically realistic model of tumour expansion.

Distributed DDEs model a continuum of cell cycle durations that belong to an interval of physiologically
realistic values, with durations distributed according to a probability density function (PDF). Representing
the time length of the cell cycle by a distributed DDE explicitly allows for variability in cell cycle duration.
This contrasts with discrete DDEs, where the discrete delay represents the cell cycle duration which is taken
to be the same for all tumour cells. Thus discrete delays implicitly assume homogeneity of the tumour cell
cycle duration which limits the physiological relevance of such models.

The human immune system attempts to eradicate malignant cells and inhibit tumour establishment [Hal-
lam et al., 2009; Hoos et al., 2011]. We study this phenomenon by explicitly including tumour-immune
interaction in our mathematical model. Analysis of this model shows that there is a threshold tumour
size below which the immune system successfully prevents tumour establishment and quanti�es the role of
immune surveillance in tumour establishment and growth.
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Therapeutic strategies under development attempt to exploit the immune system to eradicate malignant
tumours via immuno-oncology and genetically engineered oncolytic viruses [Cassady et al., 2016; Chiocca
and Rabkin, 2015; Hoos et al., 2011; Lawler and Chiocca, 2015]. Oncolytic viruses are designed to exploit
the high reproductive rate characteristic of malignant tumours and preferentially infect cancerous cells.
Immune regulated death of infected tumour cells releases tumour speci�c antigens that signal the immune
system [Breitbach et al., 2016]. We incorporate oncolytic viral therapy into our mathematical model to
study how these viruses can prime the immune system to eliminate tumours.

The release of tumour speci�c antigens induces a long-lasting immune response that causes tumour re-
gression which persists after resolution of the infection [Bourgeois-Daigneault et al., 2016]. Consequently,
oncolytic viruses have recently been recast as instigators of immuno-oncology and are being engineered to
induce immune recruitment. For example, in 2015, the United States Food and Drug Administration ap-
proved a modi�ed herpes virus that promotes granulocyte-macrophage colony-stimulating factor production
and resulting anti-tumour immunity for treatment of melanoma [Bommareddy et al., 2017].

Mathematical models have been used extensively to understand and predict tumour growth and tumour-
immune interactions (see Santiago et al. [2017]; Walker and Enderling [2016]; Wodarz [2016] for reviews).
Existing models range from formulations as ordinary di�erential equations (ODEs) [Idema et al., 2010; Kim
et al., 2015; Kirschner and Panetta, 1998; MacNamara and Eftimie, 2015], to partial di�erential equations
[Hillen et al., 2013; Malinzi et al., 2017] and discrete DDEs [Liu et al., 2007; Mahasa et al., 2017; Villasana
and Radunskaya, 2003].

Crivelli et al. [2012] developed and analysed a discrete DDE model of tumour growth and viral oncology.
The Crivelli model is simple enough to be analytically tractable while retaining important physiological
aspects of tumour growth and oncolytic viral therapy, but neglects the role of the immune system in
tumour eradication. Crivelli et al. [2012] model the interaction of virions and tumour cells by using a
non-di�erentiable function which signi�cantly complicates the analysis of the model. This contact function
allows for viral therapy alone to drive tumour remission in their model, without interaction with the immune
system.

We develop a tumour growth and viral oncology model which incorporates immune recruitment to drive
tumour clearance. Our model is partly based on the Crivelli model but augments and generalises it in
very signi�cant ways. We explicitly model phagocytosis of the tumour cells, and cytokine driven phagocyte
recruitment. As mentioned, we also include a distribution of cell cycles times for the tumour cells which
results in a DDE with distributed delays. The inclusion of a heterogeneous cell cycle duration is more
realistic than models with a discrete delay, because a discrete delay is equivalent to assuming that that
every cell in the tumour has a constant and identical cell cycle duration. We show the explicit link between
our work and Crivelli et al. [2012] in Appendix A.

The distributed DDE tumour-immune model is developed in full generality in Section 2. In Section 3,
we prove that solutions of the initial value problem evolving from non-negative initial data remain non-
negative. Next, in Theorem 3.3, we determine a condition for treatment free extinction of the tumour that
quanti�es the link between immune involvement and disease progression. Our results show that immune
involvement is crucial in controlling tumour growth. As a direct consequence, we show in Corollary 3.4
that homogeneous tumours are less robust than tumours with heterogeneous cell cycle durations. Finally,
by showing the existence of a cancer-immune co-existence equilibrium in Theorem 3.5, we establish a direct
link between the minimal viable tumour size and the immune killing capacity that is consistent with the
immunoediting hypothesis of tumour progression [Mittal et al., 2014]. In Section 4, by deriving a variant of
the linear chain technique, we prove that the distributed DDE is equivalent to a �nite dimensional ODE. We
end Section 4 by simulating viral oncology treatment and illustrating the previously derived stability results.
Our simulations show the existence of a transcritical bifurcation where the unstable nonzero equilibrium
acts as a separatrix between tumour extinction and growth. Biologically, this result implies that treatment
strategies that force the malignant tumour across the separatrix will eradicate the tumour. Moreover, we
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show that su�ciently strong immune involvement can counteract aggressive tumour growth and lead to
tumour extinction without treatment. Finally, we discuss our results in Section 5.

2 Model Development

Our model of tumour-immune interaction is given by the system of di�erential equations

d
dt
Q(t) = 2

∫ t

−∞
exp

[
−
∫ t

σ
d̂K + η(U(x)) + ψG(U(x))dx

]
a2G1(σ)K(t− σ)dσ

−a1Q(t)− d1Q(t)− ψQ(U(t))Q(t)

d
dt
G1(t) = a1Q(t)− a2G1(t)− d2G1(t)− η(U(t))G1(t)− ψG(U(t))G1(t)

d
dt
I(t) = η(U(t)) [G1(t) +N(t)]− δI(t)

d
dt
V (t) = −η(U(t)) [G1(t) +N(t)] + α[δI(t)]− ωV (t)

d
dt
C(t) = Cprod(U(t))− kelimC(t).

d
dt
P (t) = ϕ(C(t))− γpP (t)



(1)

In equation (1), Q(t) and G1(t) denote the quiescent and proliferative phase tumour cells. The cytokine
concentration is denoted by C(t), and the phagocyte concentration in the tumour microenvironment by
P (t). Finally, V (t) is the concentration of oncolytic virions and I(t) is the number of infected tumour cells.

In the Burns and Tannock [1970] model of the cell cycle, Q(t) corresponds to cells in the G0 phase while
G1(t) corresponds to the G1 phase. We consider the S, G2 and M phases to be the active phases of the
cell cycle, which we model as a process rather than as populations.

In a similar manner to Crivelli et al. [2012]; Dawson and Hillen [2006] and Liu et al. [2007], we use a
constant transition rate from G0 to G1. The G1-S and the G2-M checkpoints have been explored as targets
of emerging cancer treatment [Dominguez-Brauer et al., 2015; Matheson et al., 2016; Visconti et al., 2016].
By separating the G1 phase from the S, G2 andM phases, our model could be easily adapted to include the
precise e�ects of interventions that arrest the cell cycle at the G1-S checkpoint, such as cyclin dependent
kinase inhibitors [Dominguez-Brauer et al., 2015]. It would also be possible to incorporate drug induced cell
cycle arrest at the G2-M checkpoint by decreasing mitotic output (without e�ecting transition across the
G1-S checkpoint), similar to emerging treatments discussed by Dominguez-Brauer et al. [2015]; Visconti
et al. [2016].

We denote by N(t) the total number of cells in the active portion (the S,G2 and M phases) of the cell
cycle, given by

N(t) =

∫ ∞
0

a2G1(t− ξ) exp

[
−
∫ t

t−ξ
d̂K + ψG(U(x)) + η(U(x))dx

](
1−

∫ ξ

0
K(σ)dσ

)
dξ, (2)

as derived in Appendix B. In equations (1) and (2) the distribution of the duration of the active phase of
the cell cycle is described by the PDF K(t). We do not choose a speci�c distribution in our model; see
Section 2.1 for a discussion of the properties of K(t).

The functions η(U(t)), ψQ(U(t)), ψG(U(t)), ϕ(C(t)), and Cprod(U(t)) in equation (1) are de�ned in equa-
tions (8), (10), (11) and (13). To simplify notation, we denote the vector

U(t) = [Q(t), G1(t), I(t), V (t), C(t), P (t)].

The distributed DDE is given initial data Q(t0), I(t0), C(t0) and [G1(s), V (s), P (s)] = [φG(s), φV (s), φP (s)]
for s ∈ (−∞, t0] for integrable functions φG(s), φV (s), φP (s) to create an initial value problem. For
simplicity, we take t0 = 0.
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Figure 1: Pictorial representation of the tumour growth model. Populations are de-
noted by circles, processes by squares and rates by arrows. Quiescent cells enter G1(t)
at rate a1 and undergo apoptosis at rate d1. Cells leave G1(t) and enter the active
phase of the cell cycle at rate a2 while undergoing apoptosis at a rate d2. The active
phase death rate is d̂k and cells re-enter quiescence after mitosis. Phagocytes interact
with quiescent and G1 phase cells at respective rates ψQ and ψG. Tumour-immune
interaction drives cytokine production through the function Cprod.

We derive equation (1) in three steps. First, we consider tumour growth in the absence of immune interaction
and viral therapy in Section 2.1. Tumour heterogeneity is explicitly accounted for by using a distributed
cell cycle time length. The tumour growth equations are derived keeping in mind the eventual use of the
model to describe the impact of an RNA oncolytic virus on tumour growth. Next, in Section 2.2, we derive
the tumour-immune interaction and incorporate immunosurveillance into the tumour growth model. The
graphical representation of the tumour-immune growth model is given in Figure 1. Finally, by including
viral therapy and immune recruitment in Section 2.3, we arrive at equation (1).

2.1 Tumour Growth Model Development

RNA viruses replicate in infected cells during stages G1 throughM of the Burns and Tannock [1970] model
of the cell cycle. As previously noted, we separately model the quiescent (Q(t)) and G1 phase (G1(t))
tumour cell populations. Quiescent tumour cells undergo apoptosis at a rate d1. We denote the transit rate
between the quiescent and G1 population as a1. Cells in G1 undergo apoptosis at a rate d2, and enter into
the active phase of the cell cycle at a rate a2. We de�ne the cell cycle duration as the time length of the
active portion of the cell cycle, calculated as the time a cell takes between exiting G1 and re-entering Q.

We assume that the cell cycle time of tumour cells is a positive random variable with PDF K(t) satisfying

K(t) > 0 ∀t ∈ [0,∞),

∫ ∞
0

K(t)dt = 1.

We assume that cells have an expected mean cell cycle duration of τ , so the expected value of K(t) satis�es

EK(t) :=

∫ ∞
0

tK(t)dt = τ <∞. (3)
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We will also use that

EK(f(t)) =

∫ ∞
0

f(t)K(t)dt, (4)

where in particular we note that the Laplace transform L[K](λ) of the PDF K(t) is equivalent to EK(e−λt)
since

L[K](λ) :=

∫ ∞
0

e−λtK(t)dt = EK(e−λt). (5)

Let AR(t) denote the rate that successfully dividing cells re-enter quiescence at time t. Such cells began
the active portion of the cell cycle some time σ in the past at rate a2G1(σ). The likelihood that these
cells complete the cell cycle at time t is given by K(t − σ). Disregarding immune interaction for now,
cells in the active portion of the cell cycle undergo apoptosis at a constant, distribution speci�c, rate d̂K .
Consequently, cells that spend more time in the active phase of the cell cycle are more likely to undergo
apoptosis instead of completing the cell cycle and returning to quiescence. Thus

AR(t) = 2

∫ t

−∞
exp

[
−
∫ t

σ
d̂Kdx

]
a2G1(σ)K(t− σ)dσ. (6)

Later, we will update AR(t) to include tumour-immune interaction and viral therapy. The distributed delay
expression AR(t) is a novel model of tumour cell reproduction which is more physiologically appropriate
than a discrete delay.

The discrete delay model considered by Crivelli et al. [2012] corresponds to K(t) = δ(t − τ) and dδ = d3.
The explicit link between equation (1) and the Crivelli model is shown in Appendix A. The expected
cellular output of the cell cycle with a discrete and �xed duration is

Eδ[te−d3t] = τe−d3τ .

To ensure a consistent cellular output from the cell cycle for di�erent distributions K(t), we de�ne d̂K > 0
as the distribution dependent unique positive value that solves

EK [te−d̂Kt] = τe−d3τ . (7)

The parameter d̂K must exist for a given distribution K as the function

fK(ζ) = EK [te−ζt]− τe−d3τ

is continuous and satis�es

fK(0) = τ(1− e−d3τ ) > 0 and lim
ζ→∞

fK(ζ) = −τe−d3τ < 0.

The intermediate value theorem along with the fact that f(ζ) is strictly decreasing for ζ > 0 guarantees
the existence and uniqueness of d̂K .

The resulting model of tumour growth without immunosurveillance is then

d

dt
Q(t) = AR(t)− a1Q(t)− d1Q(t)

d

dt
G1(t) = a1Q(t)− a2G1(t)− d2G1(t),

where AR(t) is given by (6).
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2.2 Immune Model Development

The tumour microenvironment is complex and contains a multitude of cytokines and cell types [Bartlett
et al., 2013; Cassady et al., 2016; Grivennikov and Karin, 2011; Hallam et al., 2009]. To avoid overcompli-
cating the model by adding variables and creating equations corresponding to each cytokine and signalling
pathway, we instead model a general local proin�ammatory cytokine compartment C(t). We assume the
cytokine is produced at a variable rate Cprod(U(t)) with the homeostatic production rate C∗prod. The viral
and immune mediated destruction of tumour cells results in increased cytokine production by releasing
tumour speci�c antigens [Bartlett et al., 2013; Bell and McFadden, 2014]. Conversely, we do not consider
apoptosis of tumour cells to be immunogenic [Bartlett et al., 2013]. Therefore, Cprod(U(t)) is an increasing
function of viral and immune destruction of tumour cells. The resulting positive feedback loop is consistent
with self activation of immune cells observed experimentally [Mosser, 2003]. Finally, we assume that the
cytokine is cleared linearly at rate kelim, mimicking the dynamics of many endogeneous cytokines [Craig
et al., 2016; Krzyzanski et al., 2010; Piscitelli et al., 1997]. The simpli�ed cytokine dynamics are thus given
by

d

dt
C(t) = Cprod(U(t))− kelimC(t).

We assume that phagocytes can undergo phagocytosis multiple times, so phagocyte clearance is linear, and
we do not include a phagocytosis related death term. In�ammatory cytokines drive phagocyte recruitment
and activation [Bartlett et al., 2013; Cassady et al., 2016; Hallam et al., 2009]. Consequently, we model
the local phagocyte population in a similar cytokine driven manner to Schirm et al. [2016] by using a
Michaelis-Menten growth function ϕ(C(t)) with maximal production rate kcp and half e�ect concentration
of cytokine C1/2. The phagocyte dynamics are therefore given by

d

dt
P (t) = ϕ(C(t))− γpP (t), where ϕ(C(t)) =

kcpC(t)

C1/2 + C(t)
. (8)

The disease free equilibrium concentrations of (C(t), P (t)) represent the tumour-free tissue concentrations
of cytokine and phagocytes and are given by

C∗ =
C∗prod
kelim

and P ∗ =
1

γp

kcpC
∗

C1/2 + C∗
. (9)

We describe phagocyte-tumour cell interaction by

ψQ(U(t))Q(t) =
kpP (t)

1 + kqQ(t)
Q(t), and ψG(U(t))G1(t) =

kpP (t)

1 + ksG1(t)
G1(t). (10)

For small tumour cell populations, the tumour-immune interaction follows mass-action kinetics, while for
large tumour cell populations, the phagocytosis rate is limited by the phagocyte concentration as would be
expected. We assume that cells in the active portion of the cell cycle interact with the immune system in
the same way as cells in the G1 phase.

The total immune mediated death is then

Ψ(U(t)) = ψQ(U(t))Q(t) + ψG(U(t))(N(t) +G1(t)).

Contact rates similar to equation (10) were derived by Imran and Smith [2007] using a handling time
argument.
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2.3 Viral Therapy Model Development

Viral infections are caused by virus speci�c particles, called virions, that infect and replicate in host cells.
Infected host cells die after undergoing lysis and releasing virions into the surrounding tissue. To model
the e�ect of oncolytic virus treatment, we consider the virion population, V (t), and the number of infected
malignant cells, I(t).

Infection occurs following contact of a virion and a susceptible cell. Susceptible cells are cells in the
G1, S,G2 and M phases of the cell cycle. We model the infection rate between virions and susceptible cells
by η(U(t)). Infection due to virion and susceptible cell contact occurs in a similar manner to tumour-immune
interactions. Consequently, η(U(t)) is structured similarly to equation (10), with half e�ect concentration
η1/2 and maximal infectious rate κ, so

η(U(t)) = κ
V (t)

η1/2 + V (t)
. (11)

As previously noted, disease remission following viral therapy is thought to result from activation of the
immune system against the tumour and increased antitumour immunity [Bartlett et al., 2013; Bell and
McFadden, 2014; Cassady et al., 2016; Fukuhara et al., 2016; Rehman et al., 2016]. Therefore, introduction
of viral therapy alone should not impact the stability of the disease free equilibrium but rather immune
response to viral therapy may change the quantitative behaviour of solutions. This is in contrast to Crivelli
et al. [2012], who modelled contact between virions and susceptible cells using a non-di�erentiable contact
function. Their choice of contact function was motivated by noting that viral therapy has driven cancer
into remission, which implicitly assumed that the virus alone drives disease remission.

Infected tumour cells are produced following infection and undergo lysis at a rate δ. Lysis of infected
tumour cells releases α virions. Virions are only produced during lysis and lose infectivity at a rate ω,
leading to the di�erential equations for I(t) and V (t)

d

dt
I(t) = η(U(t)) [G1(t) +N(t)]− δI(t)

d

dt
V (t) = −η(U(t)) [G1(t) +N(t)] + αδI(t)− ωV (t).

Clearance of proliferating cells leads to exponential loss as the cleared cells no longer divide nor return
to quiescence. This is accounted for by updating equation (6) to include the loss of mitotic cells due to
immune and viral mediated death, giving

AR(t) = 2

∫ t

−∞
exp

[
−
∫ t

σ
d̂K + η(U(x)) + ψG(U(x))dx

]
a2G1(σ)K(t− σ)dσ. (12)

Finally, the link between the oncolytic virus and the immune system is cytokine production, modelled by
Cprod(U(t)). Both lysis of infected cells and immune killing are immunogenic, leading to an increase in
immune signalling. Therefore, we link virus and immune mediated cell death by the cytokine production
rate Cprod(U(t)), given by

Cprod(U(t)) = C∗prod + (Cmaxprod − C∗prod)
[δI(t) + Ψ(U(t))]

Ψ1/2 + [δI(t) + Ψ(U(t))]
. (13)

We note that Cprod(U(t)) > C∗prod > 0 for nonnegative cell populations; the homeostatic cytokine production
rate is e�ectively the minimal cytokine production rate.

Combining the di�erential equations for each population with the PDF K(t) gives the complete model in
equation (1).
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3 Model analysis

The mathematical model in equation (1) represents cell populations which are non-negative quantities.
Consequently, we begin our analysis by showing that solutions of equation (1) evolving from non-negative
initial data remain non-negative.

Lemma 3.1. Assume that the parameters in equation (1) are strictly positive and that the initial conditions

are componentwise non-negative. Moreover, assume that G1(s) = φG(s) > 0 for s ∈ (−∞, 0]. Then

solutions of the initial value problem corresponding to equation (1) are non-negative for all time t > 0.

Proof. By the assumption on the initial conditions, Cprod(U(0)) > C∗prod > 0, so

d

dt
C(t) > −kelimC(t)

in a neighbourhood t ∈ [0, εC ]. Gronwall's inequality ensures that C(t) > C(0)e−kelimt > 0 for t ∈ [0, εC ].
In this interval,

−γpP (t) 6
d

dt
P (t) 6 kcp − γpP (t),

therefore

0 6 P (0)e−γpt 6 P (t) 6
kcp
γp

(1− e−γpt) + P (0)e−γpt 6 max
{kcp
γp
, P (0)

}
= Pmax.

We now investigate the populations Q(t) and G1(t). If Q(0) = G1(0) = 0 and φG(s) = 0 K-almost
everywhere in (−∞, 0], Q(t) and G1(t) remain identically zero for all time t > 0. If Q(0) = 0 and
φ(s)K(−s) > 0 on some set of positive measure in (−∞, 0], then Q(t) eventually becomes positive for some
t > 0. Therefore, we only need to consider the case where Q(0) > 0 and φ(s) > 0 for s ∈ (−∞, 0].

Now, let tg ∈ [0, εC ] be the �rst time that G1(tg) = 0. Then AR(t) de�ned by equation (12) satis�es
AR(t) > 0 for all t ∈ [0, tg]. It follows from equation (1) that

d

dt
Q(t) > −(a1 + d1 + kpP

max)Q(t) for t ∈ [0, tg].

Then Q(t) > 0 for t ∈ [0, tg] and

d

dt
G1(t)

∣∣
t=tg

= a1Q(tg)− a2G1(tg)− d2G1(tg)− η(U(t))G1(tg)− ψG(U(tg))G1(tg) = a1Q(tg) > 0. (14)

Thus G1(t) is strictly increasing at tg. If tg = 0, then G1(t) > 0 immediately. Conversely, if tg > 0, then
G1(t) must be nonincreasing at tg. This contradicts equation (14), so no such tg > 0 can exist and G1(t) > 0
for t ∈ (0, εC ]. Since AR(t) > 0 while G1(t) > 0, it follows from the arguments above that Q(t) > 0 while
G1(t) > 0. Finally, it is simple to see that G1(t) > 0 for t ∈ (0, εC ] implies that N(t) de�ned by (2) satis�es
N(t) > 0 for all t ∈ (0, εC ].

If V (0) = I(0) = 0, then the I(t), V (t) populations remain identically zero for all time. Therefore, we
consider V (0) + I(0) > 0 and we have three cases:

Case I If V (0) = 0 then I(0) > 0 and it is simple to calculate that

d

dt
V (t)|t=0 = αδI(0) > 0,

so V (t) becomes strictly positive immediately.

Case II If I(0) = 0

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 27, 2018. ; https://doi.org/10.1101/429233doi: bioRxiv preprint 

https://doi.org/10.1101/429233
http://creativecommons.org/licenses/by-nd/4.0/


9

If Q(0) = 0 and φ(s) = 0 almost everywhere in (−∞, 0], the tumour free case, then Q(t), G1(t) and I(t)
remain identically zero for all time t > 0 and V (t) decays exponentially to 0.

Thus, as above, we need only consider Q(0) > 0 and G1(t) > 0 in (0, εC ]. Now, I(0) = 0 so V (0) > 0 and
for all t ∈ (0, εC ], if I(t) = 0 then

d

dt
I(t) = η(U(t)) [G1(t) +N(t)] > 0

and I(t) > 0 for all t ∈ (0, εC ], otherwise a contradiction ensues.

Case III Thus, it only remains to consider the case where V (t) and I(t) are both strictly positive imme-
diately and remain positive in some neighbourhood of t = 0. While I(t) and V (t) are non-negative, we
compute

d

dt
(I(t) + V (t)) = −(δ − αδ)I(t)− ωV (t) > −max[(δ − αδ), ω](I(t) + V (t)),

so
V (t) + I(t) > [V (0) + I(0)] exp (−max[(δ − αδ), ω]t) > 0.

If there exists a time tv such that V (tv) = 0 then I(tv) > 0 and d
dt
V (t)|t=tv 6 0, but arguing as in Case I,

we see that d
dt
V (t)|t=tv > 0, and hence no such time tv can exist. Similarly, if there exists a time tI such

that I(tI) = 0 then V (tI) > 0 and d
dt
I(t)|t=tI 6 0, but arguing as in Case II, we see that d

dt
I(t)|t=tI > 0,

so no such tI can exist. Therefore, V (t) > 0 and I(t) > 0 for all t ∈ [0, εC ].

Finally, forQ(t), G1(t), I(t), V (t), P (t) strictly positive, the cytokine production rate satis�es Cprod(U(t)) >
C∗prod, so

d

dt
C(t) > C∗prod − kelimC(t),

and C(t) >
(
C∗prod
kelim

(1− e−kelimt) + C(0)e−kelimt
)
> 0 for all t ∈ [0, εC ]. Then, each component is positive

at t = εC and the above argument extends from [0, εC ] to [0,∞).

3.1 Linearisation of the distributed DDE

The system (1) has the cancer free equilibrium (CFE), U∗ = (0, 0, 0, 0, C∗, P ∗). Although it is often
convenient to regard a trajectory U(t) of the system (1) as a parameterised curve with with U(t) ∈ C(R,R6),
it is important to realise that the DDE system (1) de�nes an in�nite dimensional dynamical system. The
in�nite-dimensional phase space is

L1((−∞, 0],R6, µ) =

{
f : (−∞, 0]→ R6

∣∣ ∫ ∞
0
|f(−s)|dµ(s) <∞

}
where | · | is the `1 norm in R6, and µ is a probability measure whose Radon-Nikodym derivative with
respect to the Lebesgue measure is K(t). When K(t) is Riemann integrable (such as in the case of the
Gamma distribution that we will consider in Section 4) this implies that

µ(t) =

∫ t

0
K(ξ) dξ.

This space satis�es the axioms given by Hale and Verduyn Lunel [1993]; Hino et al. [1991], so there exists
a unique solution to the corresponding initial value problem.

To investigate the long term behaviour of the model, we linearise the system around the CFE in L1(µ).
In a similar procedure to Câmara De Souza et al. [2018], we �rst linearise the function AR(t), given in
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equation (12) around the CFE. Using the Taylor expansions of η(U(x)) and ψG(U(x)), with η(U∗) = 0, we
approximate the inner integral

I = −
∫ t

t−σ
d̂K + η(U(x)) + ψG(U(x))dx

= −
∫ t

t−σ
d̂K + ψ∗G + η′(U∗)(U(x)− U∗) + ψ′G(U∗)(U(x)− U∗) +O(|U(x)− U∗

∣∣2)dx.

The full expansion of eI is

eI = e−[d̂K+ψ∗G]σ exp

(
−
∫ σ

0
η′(U∗)(U(t− x)− U∗) + ψ′G(U∗)(U(t− x)− U∗) +O(|U(t− x)− U∗|2)dx

)
= e−[d̂K+ψ∗G]σ

[
1−

∫ σ

0
η′(U∗)(U(t− x)− U∗) + ψ′G(U∗)(U(t− x)− U∗)dx+O(|U(t− x)− U∗|2)

]
.

Importantly, eI is multiplied by G1(t − σ) in AR(t) and any non-constant terms of U(t) in the expansion
of eI are consequently nonlinear. So we obtain

AR(t) = 2

∫ ∞
0

exp
(
−[d̂K + ψ∗G]σ

)
dσ +O(|U(t)− U∗|2) (15)

We translate the CFE of equation (1) to zero by setting C̄(t) = C(t)− C∗ and P̄ (t) = P (t)− P ∗ with C∗
and P ∗ given by equation (9). Then, noting that η(U∗) = 0 and using (15), the N(t) terms in the I(t) and
V (t) equations are also nonlinear. Equation (1) becomes

d
dt
Q(t) = 2

∫ ∞
0

exp
(
−[d̂K + ψ∗G]σ

)
a2G1(t− σ)K(σ)dσ

− (a1 + d1 + kpP
∗)Q(t) +O(|U(t)− U∗|2).

d
dt
G1(t) = a1Q(t)− (a2 + d2 + kpP

∗)G1(t) +O(|U(t)− U∗|2)

d
dt
I(t) = −γI(t) +O(|U(t)− U∗|2)

d
dt
V (t) = αI(t)− ωV (t) +O(|U(t)− U∗|2)

d
dt
C̄(t) =

(
Cmaxprod−C

∗
prod

Ψ1/2+kpP ∗

)
[δI(t) + kpP

∗(G1(t) +Q(t))]− kelim(C̄(t)) +O(|U(t)− U∗|2)

d
dt
P̄ (t) =

kcp
C1/2+C∗ C̄(t)− γpP̄ (t) +O(|U(t)− U∗|2).



(16)

We follow Smith [2011] to complete the linearisation. We de�ne X(t) := U(t)− U∗ and use Xτ to denote
the linear delayed terms via

Xτ (t) :=

∫ ∞
0

e−[d̂K+ψ∗G]σX(t− σ)K(σ)dσ.

By making the ansatz X(t) = Ceλt, we see that Xτ (t) satis�es

Xτ (t) =

∫ ∞
0

e−[d̂K+ψ∗G]σX(t− σ)K(σ)dσ = Ceλt
∫ ∞

0
e−(λ+d̂K+ψ∗G)σK(σ)dσ = X(t)L[K](λ+ d̂K + ψ∗G),

where L[K](λ) is the Laplace transform of K(σ) de�ned by (5).

Dropping the nonlinear terms in equation (16) and setting

ξc =
(Cmaxprod − C∗prod)

Ψ1/2 + kpP ∗
,
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we obtain the linearised in�nite dimensional DDE

d

dt
X(t) = AX(t) + BXτ (t) = (A + L[K](λ+ d̂K + ψ∗G)B)X(t), (17)

where

A + L[K](λ+ d̂K + ψ∗G)B =



−(a1 + d1 + kpP
∗) 2a2L[K](λ+ d̂K + ψ∗G) 0 0 0 0

a1 −(a2 + d2 + kpP
∗) 0 0 0 0

0 0 −δ 0 0 0
0 0 αδ −ω 0 0

ξckpP
∗ ξckpP

∗ ξcδ 0 −kelim 0

0 0 0 0
kcp

C1/2+C∗ −γp


.

Hence equation (17) becomes

Cλeλt = (A + L[K](λ+ d̂K + ψ∗G)B)Ceλt, (18)

From equation (18), the characteristic equation is

q(λ) := det
[
A + L[K](λ+ d̂K + ψ∗G)B− λI

]
= 0.

Using the block nature of the linearisation matrix gives

q(λ) = ρ(λ)p(λ) = 0,

where
ρ(λ) = (δ + λ)(ω + λ)(kelim + λ)(γp + λ),

p(λ) = 2a1a2L[K](λ+ d̂K + ψ∗G)− (a1 + d1 + kpP
∗ + λ)(a2 + d2 + kpP

∗ + λ).

}
(19)

Here ρ(λ) is the determinant of the lower triangular block and has strictly negative real roots. The explicit
roots of ρ(λ) imply that the stability of the CFE is determined by the roots of p(λ).

To study the persistence of small tumours, we characterise the stability of the disease free steady state.
Typically, for DDEs, this involves solving a transcendental equation with in�nitely many roots. To simplify
the following analysis, we �rst show that the rightmost root of the characteristic equation is real. This
result is unsurprising, as a complex rightmost eigenvalue would give rise to spiralling solutions around the
CFE, which would become negative, contradicting Lemma 3.1.

Lemma 3.2. For strictly positive parameters, the rightmost root of q(λ) is real.

Proof. First, we note from (5) that the Laplace transform of a non-negative function f , is a decreasing
function of λ. Similarly,

L[K](λ+ d̂K + ψ∗G) =

∫ ∞
0

e−(λ+d̂K+ψ∗G)σK(σ)dσ

is decreasing for real λ where it converges. Therefore, as a function of a real variable, p(λ) is continuous
and p(λ) is strictly decreasing for

λ > max[−(a1 + d1 + kpP
∗),−(a2 + d2 + kpP

∗)] := −Θ.

Moreover,
p(−Θ) = 2a1a2L[K](−Θ + d̂K + ψ∗G) > 0 and lim

λ→∞
p(λ) = −∞,

so there is exactly one real root λ∗ of p(λ) that satis�es λ∗ > −Θ.
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Since ρ(λ) has strictly negative real roots, any complex roots, ν = νr + iνi with νr ∈ (−Θ,∞) and νi 6= 0,
of the characteristic equation q(λ) must solve p(ν) = 0, which we may rewrite as

(a1 + d1 + kpP
∗ + ν)(a2 + d2 + kpP

∗ + ν) = 2a1a2L[K](ν + d̂K + ψ∗G). (20)

Taking the magnitude of the equality (20) gives[
(a1 + d1 + kpP

∗ + νr)
2 + ν2

i )((a2 + d2 + kpP
∗ + νr)

2 + ν2
i

]1/2
= 2a1a2

∣∣L[K](ν + d̂K + ψ∗G)
∣∣. (21)

However,

(a1 +d1 +kpP
∗+νr)(a2 +d2 +kpP

∗+νr) <
[
(a1 + d1 + kpP

∗ + νr)
2 + ν2

i )((a2 + d2 + kpP
∗ + νr)

2 + ν2
i

]1/2
and

2a1a2

∣∣L[K](ν + d̂K + ψ∗G)
∣∣ = 2a1a2

∣∣ ∫ ∞
0

exp
[
−(νr + iνi + d̂K + ψ∗G)σ

]
K(σ)dσ

∣∣
6 2a1a2

∫ ∞
0

∣∣ exp
[
−(νr + d̂K + ψ∗G)σ

]
K(σ)

∣∣∣∣e−iνiσ∣∣dσ
= 2a1a2

∫ ∞
0

∣∣ exp
[
−(νr + d̂K + ψ∗G)σ

]
K(σ)

∣∣dσ
= 2a1a2L[K](νr + d̂K + ψ∗G)

where the last equality comes from the nonegativity of the integrand. Substituting these bounds into
equation (21) gives

(a1 + d1 + kpP
∗ + νr)(a2 + d2 + kpP

∗ + νr) < 2a1a2L[K](νr + d̂K + ψ∗G),

from which we obtain
0 = p(νr + iνi) < p(νr).

Since p(λ) is strictly decreasing for λ > −Θ, we must have νr < λ∗. Then, the rightmost root of q(λ) is
either λ∗ or a root of ρ(λ) and is real.

The preceding result simpli�es the analysis of the transcendental characteristic equation by ensuring that
the critical characteristic root is real. Therefore, the stability of the CFE, and consequently, the persistence
of small tumours, can be characterised using the intermediate value theorem.

Theorem 3.3. The cancer free equilibrium U∗ of equation (1) is locally stable if

2a1a2L[K](d̂K + ψ∗G) < (a1 + d1 + kpP
∗)(a2 + d2 + kpP

∗) (22)

and unstable if

2a1a2L[K](d̂K + ψ∗G) > (a1 + d1 + kpP
∗)(a2 + d2 + kpP

∗).

Proof. The condition for stability is equivalent to p(0) < 0. In this case, since p(λ) is strictly decreasing for
λ > max[−(a1 + d1 + kpP

∗),−(a2 + d2 + kpP
∗)], there can be no real root of the characteristic equation

with non-negative real part. Since the rightmost root must be real, all roots of the characteristic equation
must have negative real part and the CFE is stable.

The condition for instability is equivalent to p(0) > 0. Since

lim
λ→∞

p(λ) = −∞,

the intermediate value theorem ensures that there is a root of the characteristic equation in the positive
half plane and the CFE is unstable.
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Using (5) we can rewrite the stability condition (22) as

2a1a2 EK(exp
(
−[d̂K + ψ∗G]t

)
) < (a1 + d1 + kpP

∗)(a2 + d2 + kpP
∗). (23)

This can be rearranged as a basic reproduction number type condition

Rate into quiescence︷ ︸︸ ︷2a2EK(exp
(
−[d̂K + ψ∗G]t

)
)

a1 + d1 + kpP ∗


︸ ︷︷ ︸

Rate out of quiescence

Rate into G1︷ ︸︸ ︷[
a1

a2 + d2 + kpP ∗

]
︸ ︷︷ ︸

Rate out of G1

< 1.

Hence, the CFE is locally attracting if the product of the ratios of expected transit rates into and out of
the quiescent and G1 phases is less than one. Biologically, this corresponds to each cell that transits out of
either the quiescence or G1 phase not replacing itself through mitosis.

Finally, we can characterise the importance of heterogeneity in cell cycle duration as a determining factor
of disease progression. Let P be the parameter space of the distributed DDE (1). Following Campbell and
Jessop [2009], for each PDF K(t), we de�ne the stability region as

ΩK = {p ∈ P |The CFE of (1) is locally asymptotically stable} .

Then, we are able to characterise the stability regions for certain PDFs with respect to the discrete DDE.
For these PDFs, the tumour heterogeneity in cell cycle duration acts to destabilise the CFE and leads to
more a robust tumour. We formalise this relationship in the following corollary.

Corollary 3.4. For any PDF K(t) which satis�es (3) and d̂K 6 d3 we have the inclusion ΩK ⊆ Ωδ.

Proof. Take p ∈ ΩK so that equation (23) is satis�ed and the CFE is locally stable. Now, we de�ne

hK(x) = exp
(
−[d̂K + ψ∗G]x

)
.

It is simple to see that hK(x) is convex. Jensen's inequality gives

exp
(
−[d̂K + ψ∗G]τ

)
= hK

(∫ ∞
0

xK(x)dx

)
6
∫ ∞

0
exp

(
−[d̂K + ψ∗G]x

)
K(x)dx = EK(exp(−(d̂K + ψ∗G)t).

Now, using d̂K 6 d3, we have

Eδ(exp(−(d̂K + ψ∗G)t) = exp (−[d3 + ψ∗G]τ) 6 exp
(
−[d̂K + ψ∗G]τ

)
6 EK(exp(−(d̂K + ψ∗G)t).

It follows that
Eδ(exp(−(d̂K + ψ∗G)t)− (a1 + d1 + kpP

∗)(a2 + d2 + kpP
∗) < 0,

so the CFE is stable in the discrete DDE case and p ∈ Ωδ.

The condition d̂K 6 d3 corresponds to∫ ∞
0

te−d3tK(t)dt− τe−d3τ 6 0,

which can be viewed as a measure of the skewness of the PDF K(t). Using equation (3), this condition is
satis�ed if∫ τ

0
t
(
e−d3t − e−d3τ

)
K(t)dt 6

∣∣∣∣∫ ∞
τ

t
(
e−d3t − e−d3τ

)
K(t)dt

∣∣∣∣ =

∫ ∞
τ

t
(
e−d3τ − e−d3t

)
K(t)dt.
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It is important to note that the linearisation only determines local stability. So, while small tumours may
not grow, large tumours do not necessarily disappear. In fact, for a given level of immune recognition of
tumour cells, kp, there is a critical tumour size above which the tumour grows unboundedly. The critical
tumour size acts as a separatrix between tumour extinction and growth and takes the form of a nonzero
equilibrium point where tumour growth and immune surveillance are balanced. In Theorem 3.5, we show
that such an equilibrium must exist. Transition across this equilibrium has been hypothesised to occur
as part of the cancer immunoediting process that allows tumours to grow and corresponds to a transient
decrease of kp [Bhatia and Kumar, 2011; Mittal et al., 2014; Swann and Smyth, 2007].

To emphasise the biological interpretation of Theorem 3.5, we use the stability condition as written in
equation (23) to characterise the existence of the non-zero equilibrium.

Theorem 3.5. Assume that the parameters in equation (1) are nonnegative. Let kcritp solve

2a1a2EK [exp
(
−[d̂k + kcritp P ∗]σ

)
− (a1 + d1 + kcritp P ∗)(a2 + d2 + kcritp P ∗) = 0.

Then, for kp > kcritp , there exists a strictly positive untreated equilibrium solution Ȳ ∗1 = (Q̄, Ḡ1, 0, 0, C̄, P̄ )
of equation (1) with Q1 and G1 strictly positive.

Proof. First, in the absence of viral treatment, V (0) = 0 and I(0) = 0, so (V ∗, I∗) = (0, 0).

To simplify notation in the proof, we set ξi = ai + di + kpP
∗ for i = 1, 2. We consider the di�erential

equation for G1(t) at equilibrium, so d
dt
G1(t) = 0 and

a1Q
∗ = G∗1

(
a2 + d2 +

kpP
∗

1 + ksG∗1

)
.

This can be rearranged as a quadratic equation in G∗1,

(a2 + d2)ks(G
∗
1)2 + (ξ2 − ksa1Q

∗)G∗1 − a1Q
∗ = 0,

whose positive root is a function of Q∗ de�ned by

G∗1(Q∗) =
ksa1Q

∗ − ξ2 +
√

(ksa1Q)2 + 2(a2 + d2 − kpP ∗)ksa1Q+ ξ2
2

2(a2 + d2)ks
. (24)

Now, inserting G∗1(Q∗) into d
dt
Q(t) = 0 gives

0 = 2a2G
∗
1(Q∗)

∫ ∞
0

exp
[
−
(
d̂K + η(U∗)) + ψG(U∗)

)
σdx

]
K(σ)dσ − (a1 + d1 + ψQ(U∗))Q∗.

Using (4) gives

F (Q∗) = 2a2G
∗
1(Q∗)EK [exp

(
−(d̂k + ψG(U∗))σ

)
]−
(
a1 + d1 +

kpP
∗

1 + kqQ∗

)
Q∗ = 0.

We write

F (Q∗) =
f(Q∗)

1 + kqQ∗

where

f(Q∗) = kq

a1a2EK [exp
(
−(d̂k + ψG(U∗))σ

)
]

a2 + d2
− (a1 + d1)

 (Q∗)2 +
a1a2EK [exp

(
−(d̂k + ψG(U∗))σ

)
]

a2 + d2
Q∗

+
a2EK [exp

(
−(d̂k + ψG(U∗))σ

)
]

ks(a2 + d2)

(
−ξ2 +

√
(ksa1Q)2 + 2(a2 + d2 − kpP ∗)ksa1Q+ ξ2

2

)
kqQ

∗

− ξ1Q
∗ +

a2EK [exp
(
−(d̂k + ψG(U∗))σ

)
]

ks(a2 + d2)

(
−ξ2 +

√
(ksa1Q)2 + 2(a2 + d2 − kpP ∗)ksa1Q+ ξ2

2

)
.
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The equilibrium concentrationQ1 must therefore solve f(Q1) = 0. A simple calculation shows that f(0) = 0,
so we search for Q1 positive. Now, as Q∗ →∞,

f(Q∗) =

(a1a2EK [exp
(
−(d̂k + ψG(U∗))σ

)
]

a2 + d2
− (a1 + d1)

)
kq(Q

∗)2

+ kqQ
∗
a2EK [exp

(
−(d̂k + ψG(U∗))σ

)
]

ks(a2 + d2)

√
(ksa1Q)2 + 2(a2 + d2 − kpP ∗)ksa1Q+ ξ2

2 +O([Q∗]3/2).

This is equivalent to

f(Q∗) =
[
2a1a2EK [exp

(
−(d̂k + ψG(U∗))σ

)
]− (a1 + d1)(a2 + d2)

] kq(Q
∗)2

(a2 + d2)
+O([Q∗]3/2) as Q∗ →∞,

so the sign of
[
2a1a2EK [exp

(
−(d̂k + ψG(U∗))σ

)
]− (a1 + d1)(a2 + d2)

]
determines the sign of f(Q∗) as Q∗

grows in�nitely large. Now,

2a1a2EK [e−(d̂k+ψG(U∗))σ]− (a1 + d1)(a2 + d2)

> 2a1a2EK [e−(d̂k+kcritp P ∗)σ]− (a1 + d1 + kcritp P ∗)(a2 + d2 + kcritp P ∗) = 0,

so f(Q∗) grows in�nitely large with Q∗ and must be positive for large values of Q∗.

Next, as Q∗ → 0,

f(Q∗) =
a1a2EK [exp

(
−(d̂k + ψG(U∗))σ

)
]

ks(a2 + d2)

(
−ξ2 +

√
(ksa1Q)2 + 2(a2 + d2 − kpP ∗)ksa1Q+ ξ2

2

)
+
a1a2EK [exp

(
−(d̂k + ψG(U∗))σ

)
]

a2 + d2
Q∗ − ξ1Q

∗ +O([Q∗]3/2).

Taylor expanding the square root about the point Q∗ = 0 gives

−ξ2 +
√

(ksa1Q)2 + 2(a2 + d2 − kpP ∗)ksa1Q+ ξ2
2 = −ξ2 +

√
ξ2

2 +
(a2 + d2 − kpP ∗)

ξ2
ksa1Q+O([Q∗]2),

so for Q∗ near 0,

f(Q∗) =
a1a2EK [exp

(
−(d̂k + ψG(U∗))σ

)
]

a2 + d2
Q∗ − ξ1Q

∗

+
a2EK [exp

(
−(d̂k + ψG(U∗))σ

)
]

ks(a2 + d2)

(a2 + d2 − kpP ∗)
ξ2

ksa1Q+O([Q∗]3/2).

Crucially, a2 + d2 − kpP ∗ = 2(a2 + d2)− ξ2, so with f(0) = 0

f ′(0) = lim
Q∗→0

f(Q∗)

Q∗
=

1

ξ2

[
2a1a2EK [exp

(
−(d̂k + ψG(U∗))σ

)
]− ξ1ξ2

]
.

Thus, the sign of f ′(0) is determined by the sign of

g(kp) = 2a1a2EK [exp
(
−(d̂k + ψG(U∗))σ

)
]− ξ1ξ2.

The function g(kp) is strictly decreasing with g(kcritp ) = 0, therefore, f ′(0) < 0 for kp > kcritp .
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Consequently, f(Q∗) is negative for Q∗ small and positive, and positive for large Q∗, so there must be a
positive root Q̄ with f(Q̄) = 0. This root de�nes a solution Ḡ1 = G∗1(Q1) of equation (24).

Finally, we can write an equilibrium solution of d
dt
P (t) = 0 as a function of C(t) via

P̄ =
ϕ(C(t))

γp
6
kcp
γp
.

Given the upper bound of P̄ and the pair (Q̄, Ḡ1), the function Ψ(U(t)) is bounded. Therefore, there must
exist a solution C̄ > 0 to

0 = Cprod(Q̄, Ḡ1, ϕ(C̄)/γp)− kelimC̄.

Finally, using the value of C̄, we can calculate the corresponding equilibrium P̄ .

4 The Gamma Distribution and Equivalent ODE System

To translate our results for a generic distribution into predictions of tumour growth, we must specify a
distribution of cell cycle durations, corresponding PDF K(t), and death rate d̂K . We assume that cell
cycle durations follow a gamma distribution, so K(t) = gja(t). The function g

j
a(t) is the PDF of the gamma

distribution with

gja(t) =
ajtj−1e−at

Γ(j)
with

d

dt
g1
a(t) = −ag1

a(t) and
d

dt
gja(t) = a[gj−1

a (t)− gja(t)], j > 2. (25)

The real positive parameters a and j in equation (25) de�ne the shape of the gamma distribution. The
expected cell cycle duration is τ = j/a. For given τ we take j to be a strictly positive integer and determine
a by a = j/τ . The standard deviation, s2, of the gamma distribution is given by s2 = τ2/j. For �xed τ ,
larger values of j result in a more concentrated distribution about τ . In Appendix A we demonstrate that
in the limit as j → ∞ (with �xed τ) the gamma distributed model converges in distribution to a delta
distributed model with discrete delay τ .

To calculate d̂g, we note that the expected cellular output of the cell cycle is

Eg(σ) =

∫ ∞
0

σe−
∫ t
t−σ d̂gdxgja(σ)dσ =

aj

Γ(j)

∫ ∞
0

σj+1−1e−(a+d̂g)σdσ =
aj

(a+ d̂g)j+1
j =

[
a

a+ d̂g

]j+1
j

a
.

Imposing the equality (7) and τ = j/a gives(
1

1 + d̂gτ/j

)j+1

τ = τe−d3τ .

Therefore, d̂g is given by

d̂g =
j

τ

[
(ed3τ )1/j+1 − 1

]
. (26)

4.1 Equivalent ODE Formulation

The link between gamma distributed DDEs and transit chain ODEs has been known since at least the
1960s [Vogel, 1961]. The equivalence between in�nite dimensional DDEs and ODEs is typically established
through the linear chain technique. Among many other areas, the linear chain technique has recently been
used in the pharmaceutical sciences [Câmara De Souza et al., 2018; Hu et al., 2018]. More generally, the
equivalence between distributed DDEs and ODEs was studied by Diekmann et al. [2017].
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Typical applications of the linear chain technique involve a transit chain type ODE without growth or loss
throughout the chain. In the example of cellular growth represented by a transit chain model, the number
of cells is conserved throughout the delayed process. Here, we derive a variant of the linear chain technique
that accounts for the exponential decay of the mitotic cell population due to apoptosis, immune pressure
and lysis as modelled in equation (1). The resulting ODE system is a compartment model with linear
clearance throughout the transit chain.

By taking K(t) = gja(t) with j ∈ N and a = ktr = j/τ and setting

Ai(t) =

∫ t

−∞

a2

ktr
e−

∫ t
σ d̂g+η(U(x))+ψG(U(x))dxG1(σ)giktr(t− σ)dσ for i = 1, 2, ..., j,

we can reduce the distributed DDE model to a system of ODEs. We show in Theorem 4.2 that equation (1)
is equivalent to the system of ODEs

d
dt
Q(t) = 2ktrAj(t)− a1Q(t)− d1Q− ψQ(U(t))Q(t)

d
dt
G1(t) = a1Q(t)− a2G1(t)− d2G1(t)− ψG(U(t))G1(t)− η(U(t))G1(t)

d
dt
A1(t) = a2G1(t)− ktrA1(t))− [d̂g + η(U(t)) + ψG(U(t))]A1(t)

d
dt
Ai(t) = ktr(Ai−1(t)−Ai(t))− [d̂g + η(U(t)) + ψG(U(t))]Ai(t) for i = 2, 3..., j

d
dt
I(t) = −δI(t) + η(U(t)) [G1(t) +N(t)]

d
dt
V (t) = αδI(t)− ωV (t)− η(U(t)) [G1(t) +N(t)]

d
dt
C(t) = Cprod(U(t))− kelimC(t)

d
dt
P (t) = ϕ(C(t))− γpP (t)



(27)

with identical initial conditions to the distributed DDE for Q(0), V (0), I(0), P (0), C(0) and

G1(0) = φ(0), Ai(0) =

∫ ∞
0

a2

ktr
e−

∫ t
−σ d̂g+η(U(x))+ψG(U(x))dxφ(−σ)giktr(σ)dσ,

where φ(s) is the history function of equation (1).

Lemma 4.1. For an integrable function G1(t) and j ∈ N with a = ktr = j/τ , the vector with i-th component

given by

Ai(t) =

∫ t

−∞
e−

∫ t
σ d̂g+η(U(x))+ψG(U(x))dx a2

ktr
G1(σ)giktr(t− σ)dσ for i = 1, 2, ..., j, (28)

is the solution of the system of di�erential equations given by

d

dt
A1(t) = a2G1(t)− ktrA1(t))− [d̂g + η(U(t)) + ψG(U(t))]A1(t)

d

dt
Ai(t) = ktr(Ai−1(t)−Ai(t))− [d̂g + η(U(t)) + ψG(U(t))]Ai(t) for i = 2, 3..., j

}
(29)

Proof. Using the Lebniz and product rules, we di�erentiate A1(t) to obtain

d

dt
A1(t) = a2G1(t)− ktr

∫ t

−∞

a2

ktr
e−

∫ t
σ d̂g+η(U(x))+ψG(U(x))dxG1(σ)g1

ktr(t− σ)dσ

+

∫ t

−∞

d

dt
e−

∫ t
σ d̂g+η(U(x))+ψG(U(x))dx a2

ktr
G1(σ)g1

ktr(t− σ)dσ. (30)
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Computing the derivative of the exponential then gives

d

dt
A1(t) = a2G1(t)− ktrA1(t))− [d̂g + η(U(t)) + ψG(U(t))]A1. (31)

Similarly for general i, di�erentiating the expression for Ai(t) from (28) gives

d

dt
Ai(t) =

a2

ktr
e0G1(t)gia(0) +

∫ t

−∞

a2

ktr

d

dt
[e−

∫ t
σ d̂g+η(U(x))+ψG(U(x))dxG1(σ)giktr(t− σ)]dσ

= ktr(Ai−1(t)−Ai(t))− [d̂g + η(U(t)) + ψG(U(t))]Ai(t).

Thus, the vector A(t) = [A1(t), A2(t), ..., Aj(t)] satis�es equation (29).

Comparing equations (30) and (31) shows that the exponential loss of cells during the cell cycle in equation
(1) corresponds to linear clearance in the equivalent transit compartment system of ODEs.

We now show the equivalence of the ODE and DDE models by using Lemma 4.1 to replace the integral
terms in equation (1).

Theorem 4.2. The system of distributed DDEs (1) with K(σ) = gja(σ), d̂g as given in (26) and initial

conditions Q(0) = Q0, I(0) = I0, C(0) = C0 and history functions V (s) = φV (s), P (s) = φP (s) and

G1(s) = φG(s) for s ∈ (−∞, 0] is equivalent to the system of ODEs (27) with initial conditions Q(0) = Q0,

I(0) = I0, C(0) = C0, V (0) = φV (0), P (0) = φP (0), G1(0) = φG(0) and

Ai(0) =

∫ ∞
0

a2

ktr
exp

[
−
∫ 0

−σ
d̂g + η(U(x)) + ψG(U(x))dx

]
φG(−σ)giktr(σ)dσ. (32)

Proof. Using Lemma 4.1, we see that

2ktrAj(t) = 2

∫ t

−∞
a2 exp

[
−
∫ t

σ
d̂g + η(U(x)) + ψG(U(x))dx

]
G1(σ)gjktr(t− σ)dσ = AR(t).

Thus, the di�erential equations for Q(t) in (1) and (27) are equivalent.

The remaining terms in equation (27) are exactly those in equation (1). To �nish the conversion from
the DDE (1) to the ODE (27), we must specify the initial conditions. Given the history functions
[φG(s), φV (s), φP (s)] from the DDE model, we chose the initial conditions Ai(0) of equation (27) according
to equation (32). This ensures that the solution of equation (27) is equivalent to the solution of equation (1)
[Smith, 2011].

To convert from the ODE (27) to the DDE (1), we must take care with the construction of the history
functions (φG(s), φV (s), φP (s)). The ODE is equipped with initial conditions V (0) and P (0). For simplicity,
we set φV (s) = V (0) and φP (s) = P (0).

The j initial conditions for each Ai(0) de�ne j constraints on φG(s). There are many history function
that satisfy these constraints and the ODE reduction of the DDE de�nes the same solution for each such
history function. We show how to construct one such history function φG ∈ L1((−∞, 0],R, µ). Let the
ODE system have initial conditions

αi = Ai(0) for i = 1, 2, ..., j and αi ∈ R,

and chose a sequence of points

0 < x1 < ... < xj <∞.
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Now, we make the following ansatz for φG(s)

φG(s) =

j∑
n=1

bnδ(s+ xn), (33)

where δ(x) is the Dirac function. We will show that is possible to chose the {bn}jn=1 such that∫ ∞
0

a2

ktr
giktr(σ) exp

[
−
∫ 0

−σ
d̂g + η(U(s)) + ψG(U(s))ds

]
φ(−σ)dσ = αi. (34)

However, the histories φV (s), φP (s) and φG(s) appear in the integral term

I =

∫ 0

−σ
d̂g + η(U(s)) + ψG(U(s))ds,

so some care is needed. We have already set φV (s) = V (0) so η(U(s) is de�ned on (−∞, 0], so we need
only consider

ψG(U(s)) =
kpP (0)

1 + φG(s)
for s < 0

with φP (s) = P (0). Inserting equation (33) for φG(s) gives

ψG(U(s)) =
kpP (0)

1 +

j∑
n=1

bnδ(s+ xn)

=

 kpP (0) if s /∈ {−xi}ji=1

0 if s ∈ {−xi}ji=1 .

Since ψG only appears in a Lebesgue integral and di�ers from kpP (0) on a set of measure 0, the following
holds ∫ 0

−σ
d̂g + η(U(s)) + ψG(U(s))ds =

∫ 0

−σ
d̂g + η(U(s)) + kpP (0)ds.

Therefore, �nding {bn}jn=1 such that equation (34) holds is equivalent to �nding {bn}jn=1 such that∫ ∞
0

a2

ktr
giktr(σ) exp

[
−
∫ 0

−σ
d̂g + η(U(s)) + kpP (0)ds

]
φG(−σ)dσ = αi. (35)

Using the ansatz for φG in equation (35) gives the following system of equations for i = 1, 2, ..., j

αi =

j∑
n=1

bn
a2

ktr
giktr(xn) exp

[
−
∫ 0

−xn
d̂g + η(U(s)) + kpP (0)ds

]
. (36)

To simplify notation, set

µn =

∫ 0

−xn
d̂g + η(U(s)) + kpP (0)ds

and note µn is independent of the unknowns {bn}jn=1.

Equation (36) de�nes a linear system of equations for the unknowns {bn}jn=1. Consequently, there exists a
unique solution to (36) if the matrix

A =


a2
ktr
g1
ktr

(−x1) exp [−µ1] · · · a2
ktr
g1
ktr

(−xj) exp [−µj ]
a2
ktr
g2
ktr

(−x1) exp [−µ1] · · · a2
ktr
g2
ktr

(−xj) exp [−µj ]
...

. . .
...

a2
ktr
gjktr(−x1) exp [−µ1] · · · a2

ktr
gjktr(−xj) exp [−µj ]


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is invertible. To show this matrix is invertible, we will show that det(A) 6= 0. Using the de�nition of
gjktr(xi), the m-th column has a common factor of

a2

ktr
e−ktrxm exp [−µm] > 0

while, the n-th row has a common factor of kntr/(n− 1)! > 0 for n,m = 1, 2, .., j. Thus

det(A) =

 j∏
n,m=1

a2

ktr
e−ktrxm exp [−µm]

kntr
(n− 1)!

det(V ),

where

V =


1 1 · · · 1
x1 x2 · · · xj
...

...
. . .

...

xj−1
1 xj−1

2 · · · xj−1
j


Since V is a Vandermonde Matrix and the {xi}ji=1 are distinct, det(V ) 6= 0. Consequently, det(A) 6= 0 so

A is invertible and we can uniquely determine the {bn}jn=1.

The equivalence between ODEs and gamma distributed DDEs has been used extensively since Vogel [1961].
Some authors have shown how to convert ODE transit compartment models to distributed DDE for speci�c
initial conditions [Câmara De Souza et al., 2018; Cooke and Grossman, 1982]. However, to the author's
knowledge this is the �rst proof of direct equivalence between an ODE and a distributed DDE for arbitrary
ODE initial conditions established by explicitly constructing a suitable history function.

4.2 Numerical Results

For the purpose of numerical simulation, the system of �nite dimensional ODEs derived in Section 4.1
is much more tractable than the distributed DDE. Numerically solving the distributed DDE requires the
development and implementation of a numerical di�erential equation solver capable of accurately computing
the semi-in�nite convolution integral, while there are numerous existing methods for solving systems of
ODEs. To solve the DDE given in equation (1), we simulate the equivalent ODE in equation (27) and
calculate N(t) as shown in Appendix B to illustrate the analytical results of Section 3.

For simplicity, we only present the dynamics of Q(t), as these dynamics are representative of the full model's
behaviour. The parameters used in these simulations are given in Table 1.

The smallest detectable tumour size has been estimated to be roughly 230 ≈ 1 × 109 cells [Carlson, 2003;
Schwartz, 1961]. As viral oncology has only been approved for advanced melanoma, we consider tumours
with approximately 1010 cells. (This corresponds to viral treatment starting 4 tumour doublings after
diagnosis.) To ensure that our numerical computations involve numbers of similar magnitude, we measure
the number of tumour cells in units of 1010 cells. Given the homeostatic approximation of leukocytes
(≈ 6 × 109 cells/L) and roughly 7 litres of blood, we measure the phagocyte concentration in identical
units, namely 1010 cells.

To illustrate the di�erence between distributed and discrete delays in the cell cycle duration, we simulate
equation (27) without viral therapy for j = 6 and the discrete delay case in Figure 2 a). In Figure 2 b),
we show the discrete case and the gamma distributed case when j = 50. These simulations show that the
discrete delay case has a larger basin of attraction than the distributed delay case. This is unsurprising,
since for both j = 6 and j = 50, the result of Corollary 3.4 holds, so all parameter regimes leading to
stability of the CFE for the gamma distributed DDE also lead to stability of the CFE in the discrete delay
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Parameter Value Biological Interpretation (Unit) Reference

a1 0.9 Quiescent to interphase rate (1/day) Crivelli et al. [2012]
d1 1× 10−5 Quiescent death rate (1/day) Crivelli et al. [2012]
a2 0.7 Interphase to active phase rate (1/day) Crivelli et al. [2012]
d2 0.19 Interphase death rate (1/day) Crivelli et al. [2012]
d3 0.19 Active phase death rate (1/day) Crivelli et al. [2012]

d̂g 0.167 Active phase death rate (1/day) Calculated from equation (26)
κ 1.15 Virion contact rate (1/day) Crivelli et al. [2012]
η1/2 V (0)/10 Virion half e�ect concentration (virions) See caption

δ 1.119 Lysis rate (1/day) Crivelli et al. [2012]
α 1.65 Lytic virion release rate (virions/cell) Crivelli et al. [2012]
ω 0.75 Virion death rate (1/day) Crivelli et al. [2012]
kcp 6.63 Maximal phagocyte production rate ( 1010 cells/day) Schirm et al. [2016]
C1/2 0.87743 Phagocyte production half e�ect (ng/mL/day) Liu et al. [2007]

Ψ1/2 7 Cytokine production half e�ect (1010 cells/day) See caption

γp 1 Phagocyte death rate (1/day) Liu et al. [2007]
C∗prod 0.014161 Homeostatic cytokine production rate (ng/mL/day) Craig et al. [2016]

Cmaxprod 1.4161 Maximal cytokine production rate (ng/mL/day) See caption

kelim 0.16139 Cytokine elimination rate (1/day) Craig et al. [2016]
kp 0.065 Phagocyte-tumour cell contact rate (1/day) Liu et al. [2007]
kq,s 1.75 Phagocyte cell digestion constant See caption
τ 2.13285 Expected cell cycle duration (day) Crivelli et al. [2012]

Table 1: The parameters used to simulate equation (27) in Figure 3. C1/2 was calculated from the
homeostatic phagocyte production rate and kp was calculated from the mass-action tumour-immune
interaction from Liu et al. [2007]. Cmaxprod was calculated from G-CSF response to infection [Pauksen et al.,
1994]. η1/2 was chosen to ensure a high initial infectivity of viral therapy while kq,s and Ψ1/2 were selected
to give physiologically realistic simulations.

case. Biologically, this corresponds to increased cell cycle duration heterogeneity leading to more robust
tumours.

In Figure 2, we also show the impact of including tumour-immune interaction by comparing our model with
that of Crivelli et al. [2012]. We compare the results of our simulation with tumour-immune interaction
(kp = 0.065) with the Crivelli model (kp = 0) as written in Appendix A. This simulation underlies the
importance of tumour-immune interaction in determining disease progression.

In Appendix A, we show that the gamma distribution converges to the degenerate distribution as j grows
in�nitely large, with τ > 0 held constant. The case j = 1 corresponds to an exponential distribution of
cell cycle durations. In what follows, we assume that the distribution of cell cycle durations is neither
exponential nor degenerate, so 1 < j < ∞. In the numerical simulations that follow, we illustrate a
representative case of our results with j = 6.

In Figure 3, we simulate the �nite dimensional representation of the distributed DDE (1) for di�erent levels
of immune recruitment, kcp, during viral therapy. Figure 3 shows that changing kcp changes the long-term
success or failure of viral treatment. Su�ciently large values of kcp induce long-lasting remission while
smaller values of kcp lead to eventual tumour progression after oncolytic virus treatment.

Figure 4 shows the impact of parameter variability on stability of the CFE. Figure 4 (a) shows that increased
immune interaction (kp) can counteract fast transit between quiescence and mitosis (a1 and a2 respectively)
to ensure stability of the CFE. Moreover, su�ciently slow entrance into the active phase of the cell cycle
(small a2) also stabilises the CFE. Figure 4 (b) shows that immune recruitment (kcp) must grow in�nitely
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Figure 2: A comparison of simulation results for various distributions with kcp = 2.65. Figure (a) shows
the simulation of equation (1) with a gamma distribution for j = 6 in blue, a discrete delay in red and
the Crivelli model (equation (37)) in black. Figure (b) shows the simulation of equation (1) with a gamma
distribution for j = 50 in blue, a discrete delay in red and the Crivelli model (equation (37)) in black.
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Figure 3: Simulated viral therapy with limited and su�cient immune recruitment. The parameters used in
su�cient immune recruitment are given in Table 1. Limited immune recruitment occurs with kcp = 1.63
and other parameters as given in Table 1.

large to account for less e�cient immune-tumour interaction (kp), while a large death rate during the cell

cycle (d̂g) can ensure stability of the CFE regardless of immune involvement. These investigations con�rm
the impact of immune recruitment and clearance of tumour cells. This result indicates that increasing
immune involvement is important in developing therapeutic strategies.

Finally, Figure 5 shows the relationship between the nonzero equilibrium found in Theorem 3.5 and the
parameter kp. The diagram indicates that the CFE gains stability through a transcritical bifurcation as kp
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the relationship between stability of the CFE and the parameters kcp, kp and d̂g.
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Figure 5: The bifurcation diagram showing a transcritical bifurcation. Figure (a) shows the transcritical
bifurcation as kp increases past kcritp for the quiescent population. The dashed lines represent unstable
equilibria and the solid lines denote stable equilibria. Figure (b) the dependence of asymptotic behaviour
on initial conditions. The quiescent initial populations used are shown in Figure (a) as crosses.

increases. For kp > kcritp and initial conditions straddling the unstable equilibirum, we see the dependence
of asymptotic behaviour on initial conditions. A similar relationship exists between the stability of the CFE
and kcp. Biologically, Figure 5 (b) shows that the same immune system can control small tumours while
large established tumours grow unboundedly.
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5 Discussion

Malignant tumours are comprised of an extremely heterogeneous population of malignant cells. Oncolytic
viruses combat this heterogeneity by exploiting two common characteristics of malignant cells: weakened
antiviral immunity and explosive growth rates. Once an oncolytic virus has in�ltrated a tumour, lysis of
infected cells and immune recruitment combine to eliminate the tumour. Past models of tumour growth and
viral oncology have used discrete DDEs to model the cell cycle duration and infection of susceptible cells.
However, discrete DDEs enforce a uniform and constant tumour cell cycle time and do not incorporate any
aspect of the inherent heterogeneity of malignant cells inside the tumour microenvironment.

In this work, we produced a mathematical model of tumour cell growth that incorporates the heterogeneity
of tumour reproduction speed by modelling cell cycle duration as a random variable following a PDF K(t).
This framework is a novel representation of tumour growth and is more physiologically realistic than the
discrete delay case. Speci�cally, variation in tumour cell cycle duration can be seen as a measure of tumour
cell heterogeneity. Using linear stability analysis, we established the relationship between the expected
number of cells surviving the cell cycle and tumour remission. As we assumed a constant death rate
throughout the cell cycle, the expected number of cells surviving the cell cycle is directly related to the
distribution of cell cycle durations. The distribution of cell cycle durations and disease progression are
explicitly linked in our stability threshold. The stability threshold determines the minimal anti-tumour
immune response that ensures that nascent tumours do not persist. This result shows that increasing
immune involvement can stabilise the tumour free state regardless of the cancer growth rate.

Our results indicate that lysis of infected cells and increased immune recruitment act synergistically to
eliminate tumour cells during viral therapy. Our simulations show that the combination of viral therapy
and the resulting immune recruitment function by driving solutions across a separatrix into the basin of
attraction of the tumour free equilibrium. If immune recruitment is insu�cient to control tumour growth,
we predict that viral therapy will drive initial tumour remission that is followed by disease recurrence.
Moreover, our results show that viral therapy can act as the external force required to shrink tumours to a
size manageable by the immune system, leading to long-term remission. These observations are consistent
with clinical results and suggest that oncolytic viruses designed to maximise immune response may have
clinical bene�ts.

Finally, our modelling techniques develop a novel mathematical treatment of tumour cell growth by using a
distributed DDE. The distributed DDE considered in this work incorporates the discrete delay case studied
by Crivelli et al. [2012] and others for a suitable choice of K(t) and kp. In the speci�c case of a gamma
distribution, we derive a novel linear chain technique that incorporates cellular loss throughout the cell
cycle. Using this technique, we reduce the in�nite dimensional distributed DDE to an equivalent �nite
dimensional ODE. Our derivation of the equivalent ODE formulation is easily generalisable to physiological
processes with exponential growth or decay. The reduction of the distributed DDE to an ODE o�ers a
method whereby models using discrete DDEs can include more physiologically realistic distributed delays
without losing the ability to easily simulate the model.

Our modelling framework has certain limitations. The mathematical model greatly simpli�es immune
recruitment and tumour-immune interactions in favour of an analytically tractable model. The interactions
between the legion of cytokines and immune cell types in the tumour micro-environment are not considered
in this work, nor have we studied the e�ect of immune system selection of cancer cells.

This modelling work raises the interesting question of which distribution best models tumour cell cycle
durations. Most existing models either use the discrete or gamma distribution to exploit the existing
numerical methods to simulate these models. Without data, it is di�cult to determine which distribution
most accurately models tumour cell cycle durations. Nevertheless, our analytic results are valid for any
distribution describing tumour cell cycle durations. In summary, our model incorporates an aspect of
tumour cell heterogeneity, makes predictions that are consistent with clinical observations and indicates
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future avenues of oncolytic virus development.
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Appendix A Reduction to the Crivelli Model and the Discrete Delay

Case

We show that the Crivelli model [Crivelli et al., 2012] is a special case of the general distributed DDE model (1) developed in
Section 2 without immune recruitment. We do this two ways, �rst by showing that the discrete DDE model corresponds to
the distributed DDE model with a degenerate distribution. Then alternatively by showing that the discrete DDE model can
be recovered from the distributed DDE model in a suitable limit when K(t) is taken to be a Gamma distribution.

Crivelli et al. [2012] do not consider tumour-immune involvement, so we take kp = 0 in (1). Then, the immune recruitment
has no impact on the tumour model, so we drop the di�erential equations for P (t) and C(t). Crivelli et al. [2012] use a
discrete DDE to model the cell cycle duration. The simplest way to recover a discrete DDE from a distributed DDE is to let
K(t) = δ(t− τ). Then, equation (7) gives dδ = d3. Thus the model (1) becomes

d

dt
Q(t) = 2 exp [−d3τ ] a2G1(t− τ)δτ (t− σ)− a1Q(t)− d1Q(t)

d

dt
G1(t) = a1Q(t)− a2G1(t)− d2G1(t)− η(U(t))G1(t)

d

dt
I(t) = −δI(t) + η(U(t))

[
G1(t) +

∫ τ
0
G1(σ) exp [−d3σ] dσ

]
d

dt
V (t) = αI(t)− ωV (t)− η(U(t))

[
G1(t) +

∫ τ
0
a2G1(σ) exp [−d3σ] dσ

]
.


(37)

Finally, evaluating equation (2) with K(t) = δ(t− τ) gives

N(t) =

∫ ∞
0

a2G1(t− ξ) exp

[
−
∫ t

t−ξ
d̂K + ψG(U(x)) + η(U(x))dx

](
1−

∫ ξ

0

δ(σ − τ)dσ

)
dξ

=

∫ τ

0

a2G1(t− ξ) exp

[
−
∫ t

t−ξ
d̂K + ψG(U(x)) + η(U(x))dx

]
dξ,
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and taking η(U(t)) to be the non-di�erentiable contact rate

η(U(t)) = κ
V (t)

V (t) + I(t) +G1(t) +N(t) +Q(t)
,

returns the mathematical model in Crivelli et al. [2012]. To illustrate that their results are a special case of ours, we use
Theorem 3.3 to determine the stability of the CFE for the Crivelli model. With kp = 0 and K(t) = δ(t − τ), it is simple to
calculate that ΨG1 = 0 and

L[δ(t− τ)](d3) = e−d3τ .

Then the stability condition (22) becomes

2a1a2e
−d3τ − (a1 + d1)(a2 + d2) < 0, (38)

which is exactly the same as found by Crivelli et al. [2012].

We have shown that discrete DDEs can be modelled as degenerate distributed DDEs. Next, we show a distinct method of
reducing the general distributed DDE to a discrete DDE by considering a gamma distributed DDE, i.e. K(t) = gjktr (t), in the
limit as j →∞. We parameterise the gamma distribution by choosing j ∈ N and setting aj = τ/j. Then, for each integer j,
the expected duration of the cell cycle is τ . Moreover, the standard deviation is given by s2

j = τ2/j with

lim
j→∞

s2
j = 0.

Heuristically, as j increases, gja(t) becomes increasingly concentrated about the expected value, τ . Formally, the characteristic
function of the gamma distribution converges in distribution to the characteristic function of the δ(t− τ) distribution with∫ ∞

0

y(t− σ)gjj/τ (σ)dσ → y(t− τ) as j →∞

for any test function y(t). From equation (26), d̂g is dependent on the parameter j via

d̂jg =
j

τ

[
(ed3τ )1/j+1 − 1

]
.

To compute the limit of d̂jg as j →∞, we �rst note that

lim
n→∞

n(a1/n − 1) = lim
n→∞

a1/n − 1

1/n
=

d

dt
at
∣∣
t=0

= ln(a). (39)

Therefore,

lim
j→∞

d̂jg = lim
j→∞

j

τ

[
(ed3τ )1/j+1 − 1

]
=

1

τ
ln(ed3τ ) = d3,

so d̂jg converges to the death rate of the discrete DDE as j →∞.

Finally, we compute the linearisation matrix for the linearised DDE (17) with K(t) = gja(t):

A + L[Γ](λ+ d̂jΓ + kpP
∗)B =



−(a1 + d1 + kpP
∗) 2a2

aj

(a+λ+d̂
j
Γ+kpP∗)j

0 0 0 0

a1 −(a2 + d2 + kpP
∗) 0 0 0 0

0 0 −γ 0 0 0
0 0 α −ω 0 0

ξkpP
∗ ξkpP

∗ ξδ 0 −kelim 0

0 0 0 0
kcpC1/2

(C1/2+C∗)2
−γp


and the corresponding characteristic function, once again using equation (19),

q(λ) = ρ(λ)

[
2a1a2

aj

(a+ λ+ d̂g + kpP ∗)j
− (a1 + d1 + kpP

∗ + λ)(a2 + d2 + kpP
∗ + λ)

]
.

Using Theorem 3.3, the condition for stability of the CFE is

2a1a2
aj

(a+ d̂g + kpP ∗)j
− (a1 + d1 + kpP

∗)(a2 + d2 + kpP
∗) < 0. (40)

Using a = j/τ , we rearrange this condition to �nd a cell cycle duration, τj , that ensures local stability of the CFE

τj >
j

d̂jg + kpP ∗

[(
2a1a2

(a1 + d1 + kpP ∗)(a2 + d2 + kpP ∗)

)1/j

− 1

]
.
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Then, the minimal cell cycle duration for stability, τ∗j , is given by

τ∗j =
j

d̂jg + kpP ∗

[(
2a1a2

(a1 + d1 + kpP ∗)(a2 + d2 + kpP ∗)

)1/j

− 1

]

and is dependent on the parameter j. Once again, using equation (39), we see that

lim
j→∞

τ∗j = lim
j→∞

j

d̂jg + kpP ∗

[(
2a1a2

(a1 + d1 + kpP ∗)(a2 + d2 + kpP ∗)

)1/j

− 1

]
=

1

d̂3 + kpP ∗

[
ln

(
2a1a2

(a1 + d1 + kpP ∗)(a2 + d2 + kpP ∗)

)]
.

Thus the critical cell cycle duration when K(t) = gja(t) converges to the critical cell cycle duration time in discrete delay case
case. Moreover, when kp = 0, τ∗j converges to the critical delay time found by Crivelli et al. [2012].

Consequently, the discrete DDE model considered by Crivelli et al. [2012] can be considered a degenerate case of the distributed
DDE or as a limit of a gamma type distributions.

Appendix B Number of Cells in the Cell Cycle

Here, we detail the calculation of the number of cells in the active portion of the cell cycle at time t. Fix ξ > 0, so the number
of cells entering the active portion of the cell cycle at time t− ξ is a2G1(t− ξ).

Then, at time t, the probability that a cell that entered the active portion of the cell cycle at time t − ξ has not completed
the cell cycle is ∫ ∞

ξ

K(σ)dσ = 1−
∫ ξ

0

K(σ)dσ.

Of the cells that have not exited the active portion of the cell cycle, the fraction that have not died by time t is

a2G1(t− ξ) exp

[
−
∫ t

t−ξ
d̂K + ψG(U(x)) + η(U(x))dx

]
.

Integrating over all previous times ξ gives the total number of cells remaining in the cell cycle. Consequently, the number of
cells in the cell cycle at time t is

N(t) =

∫ ∞
0

a2G1(t− ξ) exp

[
−
∫ t

t−ξ
d̂K + ψG(U(x)) + η(U(x))dx

](
1−

∫ ξ

0

K(σ)dσ

)
dξ. (41)

By making the change of variable ν = t− ξ, we have the alternative form

N(t) =

∫ t

−∞
a2G1(ν) exp

[
−
∫ t

ν

d̂K + ψG(U(x)) + η(U(x))dx

](
1−

∫ t−ν

0

K(σ)dσ

)
dν. (42)

Equation (42) is di�cult to evaluate numerically. However, di�erentiating N(t) by using the Lebeniz and product rules, we
�nd the distributed DDE for N(t)

d

dt
N(t) = a2G1(t)−

[
d̂K + ψG(U(t)) + η(U(t))

]
N(t)

−
∫ ∞

0

a2G1(t− ξ) exp

[
−
∫ t

t−ξ
d̂K + ψG(U(x)) + η(U(x))dx

]
K(ξ)dξ (43)

which can be solved numerically. As we have shown in Proposition 4.1, we can replace the distributed DDE (43) with the
solution of the transit compartment ODE de�ned in equation (29) when K(σ) = gja(σ). Therefore, in our simulations of
equation (27), we calculate N(t) by solving

d

dt
N(t) = a2G1(t)−

[
d̂K + ψG(U(t)) + η(U(t))

]
N(t)− ktr

a2
Aj(t), (44)

subject to the initial condition from evaluating equation (41) at t = 0 by using the lower incomplete gamma function.
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