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Abstract

Explorative visualization techniques provide a first summary of microbiome read count
datasets through dimension reduction. A plethora of dimension reduction methods
exists, but many of them focus primarily on sample ordination, failing to elucidate the
role of the bacterial species. Moreover, implicit but often unrealistic assumptions
underlying these methods fail to account for overdispersion and differences in
sequencing depth, which are two typical characteristics of sequencing data. We combine
log-linear models with a dispersion estimation algorithm and flexible response function
modelling into a framework for unconstrained and constrained ordination. The method
allows easy filtering of technical confounders. As opposed to most existing ordination
methods, the assumptions underlying the method are stated explicitly and can be
verified using simple diagnostics. The combination of unconstrained and constrained
ordination in the same framework is unique in the field and greatly facilitates
microbiome data exploration. We illustrate the advantages of our method on simulated
and real datasets, while pointing out flaws in existing methods. The algorithms for
fitting and plotting are available in the R-package RCM.

Introduction 1

Explorative visualization is a key first step in the analysis of high-dimensional ecological 2

datasets. It provides insights into the strongest patterns in the dataset, unbiased by the 3

researcher’s prior beliefs. It can also help to formulate new hypotheses to be tested in a 4

subsequent study. Nowadays, microbiological communities are characterized by 5

sequencing either marker genes or the entire metagenome of a sample, and attributing 6

the sequences to their matching operational taxonomic units (OTUs), species or other 7

phylogenetic levels. Throughout this paper we will refer to the lowest level to which the 8

reads are attributed as taxa. Sample-specific variables, such as patient baseline 9

characteristics or environmental conditions, can also be recorded. Microbiome 10

sequencing datasets typically contain information on thousands of microbial taxa, 11

whereas the number of samples and sample-specific variables is usually in the order of 12

tens to hundreds. These data are thus high-dimensional, and require a dimension 13

reduction before visualization. Apart from the biological variability, the 14
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DNA-extraction, amplification and sequencing steps, introduce additional variability 15

and technical artefacts, such as differences in sequencing depth. At best, data 16

visualization methods must be insensitive to this technical noise, while accurately 17

capturing the biological signal. The first aim of such a dimension reduction is to 18

optimally represent (dis)similarities between samples in an ordination: samples that are 19

similar in high dimensional space should also be represented close together in a two or 20

three dimensional visualization. A second aim is to elucidate which taxa drive the 21

(dis)similarities between samples. A final objective might be to identify which 22

sample-specific variables can explain the (dis)similarities in taxa composition between 23

samples. Current ecological ordination methods mainly focus on the first aim, which is 24

to ordinate samples optimally in few dimensions. These approaches often fail to 25

elucidate which bacterial taxa differentiate the samples. Moreover, methods that 26

attempt to visualize variability in a dataset (unconstrained ordination) and methods 27

that explore the role of sample-specific variables in shaping the community (constrained 28

ordination), have evolved independently. 29

A very popular ordination method for the microbiome is principal coordinates 30

analysis (PCoA) [1], also known as multidimensional scaling [2]. First, the data analyst 31

chooses a particular distance measure, which is calculated for every pair of samples in 32

the high-dimensional space. Next, samples are represented in two dimensions such that 33

their pairwise Euclidean distances approximate their corresponding distances in high 34

dimensional space as close as possible. However, no matter how well motivated the 35

choice of distance measure for a particular application, the contribution of the 36

individual taxa to the separation between the samples is lost in the distance calculation 37

(taxon scores are sometimes added to the PCoA plots as weighted sample scores, but 38

they do not reflect their contributions to the distance measures); see Fig 1A. Moreover, 39

distance-based approaches have been shown to be affected by differences in 40

dispersion [3] and library sizes [4, 5] between the samples. 41

Fig 1. Unconstrained ordination methods
(A): Principal coordinates (PCoA) sample ordination with Bray-Curtis distances on
relative abundances of the Turnbaugh mice dataset. Dots represent mice, percentages
on the axes indicate fraction of eigenvalue to the sum of all eigenvalues. (B): Biplot of
the unconstrained RC(M) ordination of the same dataset. Arrows represent taxa, the
ratios of the ψ parameters reflect the relative importance of the corresponding
dimensions. Only the six taxa with strongest departure from homogeneity are shown for
clarity. The sample ordination is similar to PCoA, but the RC(M) also identifies which
taxa contribute most to the separation of the samples. LF/PP: low fat,
plantpolysaccharide rich.

Correspondence analysis (CA) [6] is a classical statistical method for the exploration 42

of contingency tables, which allows for quantification of taxon contributions to the 43

sample ordination. Canonical correspondence analysis (CCA) [7] even allows to restrict 44

the sample ordination to be explained by sample-specific variables (see Fig 2A). This 45

technique thus allows for unconstrained (CA) and constrained (CCA) analysis in the 46

same framework, which greatly enhances their use for researchers. Correspondence 47

analysis relies on residuals for capturing the discrepancy between observed counts and 48

the counts expected in case of identical taxa composition in all samples (sample 49

homogeneity). It implicitly assumes a certain mean-variance relationship for 50

normalization of these residuals. However, a residual-based approach is not well adapted 51

to skewed data, and its mean-variance assumption is too rigid to account for the 52

overdispersion which is typically encountered in sequencing data [3]. Moreover, both CA 53

and CCA implicitly assume unimodal response functions, i.e. for each taxon the 54

expected abundance shows a bell-shaped functional relationship with a score. This score 55
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Fig 2. Constrained ordination methods
(A): Triplot of canonical correspondence analysis (CCA) of the Zeller data. Dots
represent samples, the taxon labels indicate the location of the peaks of the taxon
response functions under strict assumptions. For clarity, only the eight taxa with peaks
furthest from the origin are shown. Percentages along the axes indicate fractions of
total inertia explained by the dimension. Arrows depict the contribution of the variables
to the environmental gradient. (B): Triplot of the constrained ordination of the same
dataset by the RC(M) method with linear response functions. Arrows represent taxon
response functions, and labels represent variables constituting the environmental
gradient. The ratio of the ψ parameters reflects the relative importance of the
corresponding dimensions. Only the eight taxa that react most strongly to the
environmental gradients (the longest arrows) are shown. Two Fusobacterium species are
among the taxa most sensitive to the environmental gradient, and are more abundant in
cancer patients than in the others, which is in accordance with the findings of [9].

may be latent (CA) or observed (CCA), and represents the value of a particular sample 56

along a gradient of e.g. environmental conditions. CCA makes strong assumptions on 57

the shape of these taxon response functions [7, 8]. 58

Recently, new data visualization methods for sequence count data have been 59

proposed that aim to account for their compositionality [10]. Compositional data are 60

constrained to a constant sum that is unrelated to their composition (e.g. the library 61

size for sequencing data). As a result, only the proportions of the components (e.g. 62

taxa) are meaningful, and an increase in proportion (relative abundance) of one taxon 63

automatically entails a decrease in proportion of some other taxon or taxa. These 64

visualization methods take the compositional nature of the data into account by 65

working on log-ratios of relative abundances, and allow to visualize the role of the taxa 66

in the ordination. However, since sequencing count tables have very high zero count 67

frequencies, working with log-ratios requires the addition of pseudocounts before 68

log-transformation to avoid division by zero. The choice of the pseudocount is arbitrary 69

and can strongly affect the eventual ordination [11]. In addition, normalizing to relative 70

abundances and using ratios, discards the information in the library size and taxon 71

abundance, and associated variance. As a result these methods fail to account for 72

heteroscedasticity, and can be distorted by technical artefacts such as differences in 73

library size). 74

Row-column interaction models have been used previously for ordination [12,13], but 75

only for unconstrained ordination. Moreover, some assume inappropriate distributions 76

with a common dispersion parameter for all taxa [12] or do not treat samples and taxa 77

on an equal footing [13]. 78

As the preceding examples illustrate, a rich literature exists on ordination of 79

ecological data, but few methods bridge the gap between unconstrained and constrained 80

ordination. Correspondence analysis [6, 7] is a rare exception, but it is too restrictive for 81

sequencing count data. Other methods have no counterpart for constrained 82

analysis [10, 12, 13], or resort to inefficient two-step approaches [14]. On the other hand, 83

many methods for constrained ordination focus solely on the estimation of either the 84

gradient or the response curve. As a result, they do not produce comprehensive triplots 85

which simultaneously show the relationships between samples, taxa and sample-specific 86

variables [8, 15,16]. 87

Upon combining ideas of log-linear analysis of contingency tables [17, 18], dispersion 88

estimation for sequencing data [19] and flexible response function estimation [8, 20], we 89

propose a new row-column interaction model for the visualization of the strongest 90

signals in a microbiome count dataset. As it is based on a statistical regression model, 91

our approach has the flexibility to correct for known confounders such as sequencing 92
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center or technology, and to adequately deal with the mean-variance relationships of 93

sequencing data. Our method integrates unconstrained and constrained ordination into 94

the same framework, will simplifies the workflow of a microbiome data exploration. It is 95

implemented in R [21] in the form of the RCM package, which enables the creation of 96

annotated graphs of the ordinations. Unlike many other ordination methods, the 97

underlying assumptions of our method are explicitly stated and can be verified through 98

simple diagnostic plots. 99

Comparisons of ordination methods have mainly focused on sample ordination, 100

either from the viewpoint of ordination along a gradient [3, 22–26] or clustering [4, 27], 101

and have failed to identify a single best method. They rely mainly on simulated data 102

based on gradients with hypothesized response functions [22–25,28], and on clusters of 103

samples with similar compositions [3, 25, 28] or on real datasets with supposedly known 104

gradients or clusters [3, 25,26,28,29]. Few studies pay attention to the role of the taxa 105

in the ordination, but none of them does so in a quantitative way [3, 28, 30, 31]. Here we 106

present a simulation study that evaluates sample ordination as well as identification of 107

taxa that contribute to the separation of the samples. 108

Materials and methods 109

Computations were run on a Dell laptop, on two servers with 12 respectively 30 cores 110

and on the high performance computing facilities of VSC (the Flemish Supercomputer 111

Center). All analyses were run with the R programming language versions 3.4.3 and 112

3.3.1 [21]. All R-code used for the publication is available in the S1 File. The code for 113

fitting and plotting the RC(M) models can be found in the R-package RCM , which can 114

be installed from https://github.com/CenterForStatistics-UGent/RCM. 115

Datasets 116

The Human Microbiome Project (HMP, V13 region of the 16S rRNA gene) [32] and the 117

American Gut Project (AGP) [33] provide microbiome count datasets of healthy human 118

volunteers. Data from two studies on the colorectal microbiome of cancer patients, 119

referred to as the Zeller data [9] and the Kostic data [34] are also included. 120

Furthermore, a study on several generations of gnotobiotic mice, referred to as the 121

Turnbaugh data [35], provides non-human microbiome data. A study on microbes in 122

cooling water provides data from a non-mammalian source, referred to as the Props 123

data [36]. All datasets are available in the S2 File. 124

Simulation study 125

Simulations were set up by assuming a particular count distribution, for which the 126

parameters were estimated from a real dataset. Parameter values for the taxa and 127

samples were then sampled from this pool of realistic parameter estimates for every 128

Monte Carlo simulation. We chose the negative binomial, zero-inflated negative 129

binomial and Dirichlet multinomial as count distributions. The Dirichlet multinomial 130

distribution generates much higher zero frequencies than observed in microbiome data, 131

but it was included because of its common use in microbiome science [37]. Parameter 132

values were obtained as follows. Library sizes were randomly sampled from a pool of 133

observed library sizes of the HMP datasets. The taxon-wise mean abundance and 134

dispersion parameters from the negative binomial distribution were estimated by 135

maximum likelihood from the mid vagina, stool and tongue dorsum samples from the 136

HMP and from the AGP data. The overdispersion parameter of the Dirichlet 137

multinomial was estimated from the AGP dataset using the method of moments. The 138
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mixing proportions of the zero-inflated negative binomial were estimated by maximum 139

likelihood from the AGP data. Datasets were generated with 60 samples and 1000 taxa. 140

Two sets of scenarios were considered. In a first set no biological signal was 141

introduced. The first scenario consisted in simulating data with the negative binomial 142

distribution such that in each of four groups of 15 samples, the sampled library sizes 143

were multiplied with a constant: 0.2, 1, 5 and 10 for the four groups. This generates 144

technical variability that should not be picked up by the ordination method. The 145

second scenario was similar, but now the sampled taxon-wise dispersions were 146

multiplied by 0.2, 1, 2 and 5 for the four groups. The second set of scenarios were 147

designed to represent different types of biological signal that should be detected and 148

visualized by the ordination method. Counts were also generated for 4 equally sized 149

groups of samples, but with different taxa compositions. 150

In the first scenario, which will be referred to as NB, initially one taxa composition 151

was sampled for all the groups. This composition was then altered for every group 152

separately by multiplying a random sample of 10% of the taxon abundances by a fold 153

change of 5 so as to make them differentially abundant (DA). Counts were generated 154

with the negative binomial distribution. The second setting, referred to as NB(cor), was 155

identical to the first, except that counts were generated with between-taxon correlations. 156

These taxon correlation networks were estimated by SpiecEasi [38] on the mid vagina, 157

stool and tongue dorsum datasets of the HMP and on the AGP data. A correlation 158

network was sampled for every Monte Carlo instance. The third scenario, referred to as 159

NB(phy), was also similar to NB, only now a random phylogenetic tree was created for 160

every dataset. Next, the tree was divided into 20 clusters of related taxa, and 161

differential abundance was introduced in one of the clusters with a fold change of 5. 162

This assures that the DA taxa are phylogenetically related, similar to the second 163

approach in [39]. The fourth simulation scenario, which will be referred to as DM, used 164

the Dirichlet multinomial distribution, for which DA is introduced as for the NB 165

scenario. The fifth scenario, referred to as ZINB, was again similar to the NB setup, but 166

used the zero-inflated negative binomial distribution. The DA is introduced only in the 167

count part of the distribution. Further details and additional simulation scenarios can 168

be found in Section 3.1 of the S1 Appendix. 169

Competitor ordination methods 170

As competitor ordination methods we include (1) detrended correspondence analysis 171

(DCA), (2) ordination through PCoA with (a) Bray-Curtis dissimilarities on absolute 172

abundances (Bray-Curtis-Abs), rarefied absolute abundances (Bray-Curtis-rare), 173

relative abundances (Bray-Curtis) and log-transformed abundances (after adding a 174

pseudocount of 1) (Bray-Curtis-Log), with (b) Jensen-Shannon divergence (JSD), with 175

(c) unweighted and weighted UniFrac distances (UniFrac and w-UniFrac), and (3) 176

ordination through non-metric multidimensional scaling with Bray-Curtis dissimilarities 177

on relative abundances (Bray-Curtis-NMDS) and (4) DPCoA using phyloseq [40]. 178

Correspondence analysis approximating the Pearson’s chi-squared (CApearson), the 179

contingency ratio (CAcontRat) and the chi-squared distance (CAchisq) was 180

implemented according to [41]. The ordination based on the Hellinger distance 181

(Hellinger) follows [42]. Compositional data analysis (CoDa) biplots follow [10]. The 182

gomms R-package was used to run the GOMMS ordination method [12] and the tsne 183

R-package for the t-SNE method [43]. All methods were applied to count matrices 184

trimmed for taxa below a prevalence threshold of 5% or with total count lower than 185

10% of the number of samples. Ordinations in three dimensions were requested. 186
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Performance metrics 187

The results of all ordinations on the simulated datasets were evaluated for separation of 188

the sample clusters through silhouettes [44] and through a pseudo F-statistic [29,45]. 189

The contribution of the taxa to the correct separation of the samples is quantified by 190

the ”taxon ratio”. This metric is based on the average inner product of the DA taxon 191

scores and the samples scores of samples in which the taxa are known to be 192

differentially abundant. This yields a measure of how much these DA taxa contribute to 193

the separation of the samples. The mean inner product of the non-DA taxon scores with 194

the same sample scores should be small for an ordination method that can discriminate 195

between DA and non-DA taxa. The ratio of the former to the latter mean inner product 196

is the taxon ratio. It is used as a measure of method performance in terms of taxon 197

identification. Finally, also the correlations of the sample scores with the observed 198

library size are calculated. These summary measures allow a quick evaluation of all 199

simulation runs, but inevitably high values for these measures do not always correspond 200

to an aesthetically pleasing biplot. 201

Results 202

The RC(M) model 203

The unconstrained RC(M) method and biplots 204

A typical microbiome count dataset is represented as an n×p count table X for n 205

samples and p taxa. An n×d matrix of sample-specific variables Q (the metadata) can 206

also be available; categorical variables are represented by 0/1 dummy variables. In the 207

unconstrained RC(M) model, the expected count of taxon j in sample i is modelled as 208

log(E(Xij)) = ui + vj +

M∑
m=1

ψmrimsjm, (1)

in which ui + vj represents the independence model. The independence model describes 209

the expected counts under the assumption of equal taxa composition in all samples 210

(sample homogeneity). In the current context, exp(ui) is a measure of sequencing depth 211

of sample i, and exp(vj) is the mean relative abundance of taxon j. The factor rim is a 212

sample score that captures departure from homogeneity in sample i in dimension m, 213

and sjm is a taxon score for taxon j in dimension m. Because the sample and taxon 214

scores are normalized (see Section 2.1.5 of the S1 Appendix), the parameter ψm is a 215

measure of overall strength of departure from homogeneity in dimension m. The 216

constant M is the number of dimensions of the ordination, which is usually 2 or 3. This 217

mean model is augmented with a negative binomial count distribution for Xij , which 218

captures the high variance and high zero frequency in microbiome count data [3, 27]. 219

The term
∑M
m=1 ψmrimsjm in Equation 1 can be used to make interpretable biplots for 220

visualizing departures from homogeneity. In 2D one can plot ψ1ri1 versus ψ2ri2 to 221

obtain a sample ordination plot. Samples close together on this plot depart similarly 222

from homogeneity and thus have similar taxa compositions (see Fig 1B). To reveal the 223

role of the individual taxa in this ordination, we add the p taxon scores sj1 versus sj2 as 224

arrows on the same plot. The orthogonal projection of (sj1, sj2) on (ψ1ri1, ψ2ri2) gives 225∑2
m=1 ψmrimsjm, which quantifies the deviation of taxon j in sample i from sample 226

homogeneity; see Equation 1. 227

Loosely speaking, taxa have a higher expected abundance in samples for which the 228

sample dots and taxon arrows lie at the same side of the origin, and a lower expected 229

abundance if they lie at opposite sides. See Section 2 of the S1 Appendix for a detailed 230
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description of the estimating algorithm and the construction of biplots, Section 4 for 231

real data examples. 232

Conditioning in the RC(M)-model 233

Technical sample-specific variables such as sequencing center and technology are known 234

to affect the observed counts [46]. When these confounding variables are known, they 235

can be included in the RC(M) model. This effectively filters out their effect, similar to 236

conditioning in correspondence analysis [47]. With G an n×k confounder matrix (a 237

subset of Q), model 1 is extended to 238

log
(
E(Xij)

)
=

Independence model︷ ︸︸ ︷
ui + vj +

k∑
l=1

ζjlgil︸ ︷︷ ︸
Extended null model

+

Biological signal︷ ︸︸ ︷
M∑
m=1

ψmrimsjm . (2)

In this model, ζjl is a parameter such that the interaction term ζjlgil captures the 239

departure from homogeneity of taxon j in sample i due to variable l. As a result, the 240

biological signal term
∑M
m=1 ψmrimsjm is free of the effect of the confounding variables. 241

This is illustrated in Fig 3. Details can be found in Section 2.1.4 of the S1 Appendix. 242

Conditioning on known confounders can be applied in the unconstrained as well as in 243

the constrained RC(M) model (see next section). 244

Fig 3. Effect of conditioning on unconstrained RC(M) ordination
Left: Unconstrained RC(M) sample ordination of the anterior nares samples of the
HMP dataset without conditioning. Right: Ordination of the same sample, but after
conditioning on the main sequencing center (Washington University genome center
(WUGC), J. Craig Venter Institute (JCVI), Baylor College of Medicine (BCM) and
Broad Institute (BI)). The ratio of the ψ parameters reflects the relative importance of
the corresponding dimensions.

The constrained RC(M) model 245

The idea of a constrained ordination is to visualize the variability in the dataset that can 246

be explained by sample-specific variables [7, 8]. Constrained ordination is traditionally 247

performed by finding an environmental gradient αm for every dimension m. Let ci 248

represent the ith row of C (a subset of Q, excluding G) containing the sample-specific 249

variables for which one wishes to investigate the effect on the taxa composition. The 250

environmental gradient then defines an environmental score him = αtmci for every 251

sample i. This him can be seen as an equivalent of the row score rim, but constrained to 252

be a linear combination of sample-specific variables. Each taxon j is allowed to react to 253

this environmental score in a different way through taxon-specific response functions 254

fjm(him). The constrained RC(M) model then becomes 255

log
(
E(Xij)

)
= ui + vj +

M∑
m=1

ψmfjm(αtmci), (3)

in which ui, vj and ψm play the same role as in models 1 and 2. The difference with the 256

classical gradient analysis methods is that we use the response functions to model the 257

departure from homogeneity. In this way our method automatically accounts for 258

differences in sequencing depth and taxon abundance. The environmental gradient αm 259
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Fig 4. RC(M) ordination with nonparametric response functions
One-dimensional triplot of the first dimension of the constrained RC(M) ordination with
non-parametrically estimated response functions of the Zeller data. Coloured lines
represent taxon response functions. The horizontal dotted line represents the expected
taxon abundances under sample homogeneity. Only the eight taxa that react most
strongly to changes in the environmental score are shown for clarity. Black labels show
the variables constituting the gradient and vertical dashes at the bottom represent the
sample scores. The horizontal positions of the variable labels indicate how much they
contribute to the environmental gradient; the vertical stacking is only for readability.

is estimated by maximizing the likelihood ratio between a model with the taxon-specific 260

response functions fjm of model 3, and a model with a common response function, 261

fm = f1m = f2m = · · · = fpm, for all taxa. This encourages maximal niche separation 262

between the taxa [8]. The correct shape of the response function has been the subject of 263

theoretical debate [15,16,48], but it evidently depends on the taxon, as well as on the 264

available sample-specific variables and their observed values. For easy interpretability 265

we propose to use linear response functions fjm(him) = β0jm + β1jmhim, analogous to 266

redundancy analysis [49]. These response functions can easily be represented in two 267

dimensions by an arrow originating in
(
−β0j1

β1j1
,−β0j2

β1j2

)
, with slope

β1j2

β1j1
and magnitude 268

proportional to
√
β2
1j1 + β2

1j2. The origin of the arrow then corresponds to the values of 269

the environmental scores, (hi1, hi2), at which the taxon j does not depart from 270

homogeneity in the first two dimensions. The direction and magnitude of the arrow 271

indicate to which sample-specific variables the taxa abundances respond most strongly, 272

and in which samples the departure from homogeneity is largest. See Fig 2B for an 273

example of such an ordination. The (approximate) validity of the linearity assumption 274

can be verified through diagnostic plots (see Section 4.4.3 in the S1 Appendix). 275

A more flexible approach to modelling the taxa niches is provided by non-parametric 276

estimation of the response functions with generalized additive models (GAMs) [50], 277

similar to [20]. It provides possibly improved constrained sample ordination and 278

gradient estimation, but also allows the researcher to study the way the taxa react to 279

the environment with less prejudice. Fig 4 shows that different taxa can react entirely 280

differently (and non-linearly) to changes in their environment. Quadratic response 281

functions are frequently used implicitly [7] or explicitly [8, 51] to model unimodal 282

response functions; they are also implemented in the RCM R-package. They are, 283

however, harder to depict in a triplot than linear response functions, while still 284

providing less flexibility than non-parametrically estimated response functions. 285

Moreover, for some taxa the estimated parameters of quadratic response functions may 286

make the response curve convex rather than concave [52]. 287

Diagnostic tools for the RC(M) ordination 288

Almost all ordination methods come with certain assumptions, but they are rarely 289

explicitly mentioned, let alone checked by the user ( [13] is a notable exception). The 290

likelihood framework by which the RC(M) model is fitted, explicitly states model 291

assumptions, and allows these to be checked. Deviance residuals are a standard 292

diagnostic tool in generalized linear models [53], and can be used to detect taxa and 293

samples that poorly fit the model. Influence functions can help to identify samples or 294

taxa with a dominant role in shaping the final ordination [54]. Both of these diagnostic 295

plots can point researchers to outlying and possibly interesting samples and taxa that 296

deserve further scrutiny (see Section 2.4 of the S1 Appendix for examples). 297
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Fig 5. Results of simulations without signal
Boxplots of the pseudo-F statistic for sample clustering (y-axis) for several ordination
methods (x-axis) for 100 parametric simulation runs. See Section Competitor ordination
methods for the meaning of the abbreviations. All samples have the same mean taxa
composition, counts were sampled from the negative binomial distribution. A small
pseudo-F value is preferred. Results from the RC(M) method are shaded in grey. Top:
Four groups with differences in library sizes. Bottom: Four groups with differences in
dispersions.

Fig 6. Results of biological signal simulations
Boxplots of the silhouette (top), pseudo-F statistic (center) and taxon ratio (bottom)
for several ordination methods (x-axis) over 100 parametric simulation runs. See Section
Competitor ordination methods for the meaning of the abbreviations. 10% of the taxa
were made differentially abundant in each of 4 sample groups, with a fold change of 5.
A large pseudo-F value is preferred. Columns correspond to the simulation scenario:
negative binomial (NB) (cor: data generation with taxon correlation, phy:
phylogenetically correlated taxa were made differentially abundant), Dirichlet
multinomial (DM) and zero-inflated negative binomial (ZINB). Results from the RC(M)
method are shaded in grey.

Simulation study 298

No-Signal Simulations 299

Fig 5 shows the pseudo F-statistics for the no-signal simulations with the negative 300

binomial distribution and with four groups of different library sizes or different 301

dispersions. Since sequencing depths are assumed to be unrelated to the biological 302

composition of a sample [10,27], they should not affect the sample ordinations by, for 303

example, forming clusters of samples with similar library sizes. Many methods appear 304

to be insensitive to library size variability, except the ordinations based on Hellinger 305

distances, PCoA with Bray-Curtis dissimilarities on absolute and logged abundances, 306

and the compositional data analysis (CoDa). Their sensitivity to the library sizes can 307

also be seen in S1 Fig, where the correlations between the sample scores and the library 308

sizes for the first three dimensions is shown. It has been noted before that 309

distance-based methods are sensitive to differences in dispersion between different 310

sample groups [3, 12]. Our simulations confirm that all PCoA methods investigated, as 311

well as CoDa, Hellinger distance and our RC(M) method tend to cluster samples with 312

the same dispersion levels together, even when all samples have equal taxa compositions 313

(see Fig 5). 314

Biological Signal Simulations 315

As shown in Fig 6, he biological signal is best detected with the RC(M) method (large 316

Silhouette and pseudo-F values) and RC(M) succeeds best in identifying the driving 317

taxa (large taxon ratio). This holds for all scenarios, except for data generated by the 318

Dirichlet multinomial (DM) distribution. Also detrended correspondence analysis 319

(DCA) is good at detecting the important taxa. More results, with similar conclusions, 320

can be found in Section 3 of the S1 Appendix. 321
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Discussion 322

Unconstrained and constrained ordination techniques that are currently employed in 323

microbial ecology rely mainly on eigenvalues/eigenvectors and singular value 324

decompositions. Although having the advantage of computational efficiency, they are 325

too rigid to deal with some of the more peculiar aspects of microbial amplicon 326

sequencing data. For instance, sequencing depths varying between samples and 327

taxon-wise overdispersions are two characteristics of microbiome data that may distort 328

ordinations. One possible reason why these flaws received little attention, is because 329

their underlying assumptions are rarely stated explicitly, and hence they are almost 330

never checked. Researchers in microbial ecology should become more aware of 331

assumptions and limitations of the ordination methods. Ordination methods developed 332

for ecological data with directly observed species counts may no longer be valid for 333

sequencing data, because sequencing counts are only a proxy of abundance and the 334

biological and technical variability show specific characteristics. Dimension reduction for 335

plotting inevitably entails information loss, but using ordination methods that are 336

inappropriate for the data type may yield misleading results. 337

Distance-based methods are currently very popular ordination methods in 338

microbiomics. However, by calculating distances between samples, the information on 339

which taxa discriminate the samples is discarded. As a result, distance based methods 340

cannot directly identify which taxa drive the differences between samples, limiting their 341

use for data exploration. 342

Compositional data analysis (CoDa) analyzes ratios between taxon counts rather 343

than the counts themselves. Although sequencing data often should be treated as 344

compositional indeed, these methods ignore the count origin and the associated 345

heteroscedasticity. As a result, the sample scores of their ordinations correlate strongly 346

with the library sizes, which are considered as technical artefacts. This is highly 347

problematic for the interpretation of their ordination diagrams. Especially in datasets 348

with a low signal-to-noise ratio, differences in library sizes, rather than biological signal, 349

may be depicted in the ordination graphs. Because of the common association of library 350

sizes with sample-specific variables, this may incorrectly confirm the researcher’s prior 351

beliefs in differences in microbiome composition, whereas actually none exist. 352

Despite their longer computation times, ordination methods based on count 353

regression models are more flexible to deal with these issues, and have gained popularity 354

over the recent years. The RC(M) regression model can include an offset to account for 355

varying sequencing depths, and can be easily augmented with skewed count distributions 356

with taxon-wise parameters to address heteroscedasticity. Furthermore, it can condition 357

out the effect of other confounding variables. The main idea is that interaction terms 358

between samples and taxa capture departures from equal taxa composition in the 359

samples. These interaction terms can then be plotted to visualize the strongest signal in 360

the dataset. These strongest signals need not necessarily come from the most abundant 361

taxa. The likelihood framework in which the RC(M) model is fitted, comes with 362

standard diagnostic tools to assess model assumptions. Moreover, outlying or influential 363

observations can be identified, which can reveal useful information to researchers. 364

Just as row-column interaction models, correspondence analysis tries to represent 365

departures from sample homogeneity in few dimensions. Still, for skewed and 366

overdispersed data, an additive model for departure from equal sample composition is 367

inappropriate and produces ordination plots dominated by outliers. A multiplicative 368

model as employed in the RC(M) model is more appropriate for these data. 369

The performance of ordination methods can be assessed quantitatively through 370

simulations. Our comprehensive simulation study confirms a good performance of the 371

RC(M) method, both in terms of sample separation as in the identification of taxa that 372

contribute to these separations. The RC(M) method is not sensitive to library size 373
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variation, but, just as many other ordination methods, it is somewhat sensitive to 374

differences in dispersions. 375

We believe the potential of row-column interaction models is underemployed in the 376

analysis of all types of high-dimensional data, despite the availability of contemporary 377

fitting algorithms and computing power. However, given the reasonably good 378

performance of CoDa techniques in our simulations, a combination of log-linear models 379

that correctly model the mean-variance structure, and models that account for 380

compositionality would probably further improve visualization methods for the 381

microbiome. 382

Constrained ordinations include sample-specific variables in the visualization. 383

Despite a very rich theoretical foundation, they are less frequently employed in the 384

microbial ecology practice. We combined the row-column interaction model with flexible 385

response modeling using linear response functions as well as non-parametrically 386

estimated response functions. Linear response functions yield easily interpretable 387

triplots, and the linearity assumption can be verified using diagnostic plots. 388

Non-parametrically estimated response function allow maximal flexibility in modelling 389

the taxon niches. Our method uniquely combines unconstrained and constrained 390

ordination into the same framework for fitting and plotting, which greatly facilitates 391

comprehensive exploration of microbiome datasets. 392

Our methods are implemented in RCM the R-package RCM visualization of 393

microbiome data (available at 394

http://github.com/CenterForStatistics-UGent/RCM). The package comes with a 395

custom-written fitting algorithm for the RC(M) model as well as several ready-to-use 396

plotting functions. 397
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S1 Appendix A detailed discussion of the RC(M) method, with illustrations on real 402

datasets. Further, a detailed description of the setup and results of the simulation study, 403

followed by a list of software versions. 404

S1 File Auxiliary R-code All R-code for making the graphs shown in the 405

publication, along with the code for the simulation study. 406

S2 File Data All datasets used in this publication. 407

S1 Fig Correlations of library sizes and row scores Boxplots with the 408

correlation of sample scores with observed library sizes (y-axis) for different ordination 409

methods (x-axis). Side panels indicate the different parametric simulation scenarios, see 410

Section Simulation study for an explanation of the codes used. Top panels show the 411

dimension of the sample score. 412
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