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Abstract

Metabolic syndrome (MS), overlapping type 2 diabetes, hyperlipidemia, and/or 

hypertension, based on high-fat diet, poses risk for cardiovascular disease. A critical feature 

associated with such risk is the functional impairment of endothelial progenitor cells (EPCs). 

Dipeptidyl dipeptidase-4 inhibitors are known not only to inhibit degradation of incretins to 

control blood glucose levels, but also to improve EPC bioactivity and induce anti-inflammatory 

effects in tissues. In the present study, we investigated the effects of such an inhibitor, MK-

06266, in ischemia model of MS using diet-induced obese (DIO) mice. EPC bioactivity was 

examined in MK-0626-administered DIO mice and non-treated control group, using an EPC 

colony-forming assay and bone marrow cKit+ Sca-1+ lineage-cells, and peripheral blood-

mononuclear cells. Our results showed that, in vitro, the effect of MK-0626 treatment on EPC 

bioactivities and differentiation was superior in comparison with non-treatment. Further, in 

vivo hindlimb ischemia model experiment indicated that microvascular density and pericyte-

recruited arteriole number were increased in MK-0626-administered group, but not control 

group. Lineage profiling of isolated cells from ischemic tissues disclosed that MK-0626 

administration has an inhibitory effect on unproductive inflammation. This occurred via a 

decrease in the influx of total blood cells and pro-inflammatory cells such as neutrophils, total 

macrophages, M1, total T-cells, cytotoxic T-cells, and B-cells, with a concomitant increase in 

number of regeneration-associated cells, such as M2/M ratio and Treg/T-helper. Laser Doppler 

analysis revealed that at day 14 after ischemic injury, blood perfusion in hindlimb was grater 

in DIO mice treated with MK-0626, but not in control. In conclusion, the dipeptidyl 

dipeptidase-4 inhibitor has a positive effect on EPC differentiation in MS model of DIO mice. 

Following ischemic injury, DPP-4 i sharply reduces recruitment of pro-inflammatory cells into 

ischemic tissue, and triggers regeneration and reparation process. Thus, DPP-4 i is a promising 

therapeutic agent for MS treatment.
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Introduction

Vascular regeneration is an initial and essential process for organ regeneration. 

Endothelial progenitor cells (EPCs) play key roles in vasculogenesis [1] and in regulating 

angiogenesis [2]. Thus, EPC kinetics and bioactivities are essential for vascular regeneration 

and organogenesis in regenerative medicine. Type 2 diabetes is associated with the decrease in 

number and impaired function of circulating EPCs, which in turn has been linked to 

cardiovascular disease complication [3]. There are several options to stimulate EPC 

proliferation and biological functions in diabetes that are being actively pursued by researchers 

[4]. For example, several cytokines such as stromal cell-derived factor-1 (SDF-1), granulocyte 

colony stimulating factor (G-CSF), and granulocyte macrophage colony stimulating factor 

(GM-CSF), angiogenic growth factors such as vascular endothelial growth factor (VEGF), and 

pharmaceutical drugs such as estrogen and statins, have all been reported to augment EPC 

bioactivities, such as proliferation, differentiation, migration, mobilization, and recruitment of 

BM-derived EPCs [5, 6].

Dipeptidyl dipeptidase-4 (DPP-4) inhibitors (DPP-4 i) have been broadly applied in 

clinical aspects for controlling blood glucose levels in type 2 diabetic patients (T2DP). DPP-

IV i inhibits the degradation of incretins, such as glucagon-like peptide-1 (GLP-1), glucose-

dependent insulinotropic polypeptide (GIP), leading to increased insulin secretion from 

Langerhans islets [7]. Notably, DPP-4 also targets other physiological substrates, especially 

functional cytokines regulating stem/progenitor bioactivities, e.g., stromal derived factor-1α 

(SDF-1α) [8]. Further, studies have shown that DPP-4 is critical for the mobilization of EPCs 

from the bone marrow [9]. 

Fadini et al. demonstrated that the DPP-4 i sitagliptin increases the level of circulating 

EPCs in type 2 diabetic patients, with concomitant up-regulation of SDF-1 [10]. However, at 
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that time, EPC research methodologies were still relatively underdeveloped to obtain clear 

scientific insights into stem cell biology for vascular regeneration. Recently, our laboratory 

developed new EPC research methodologies, EPC-CFA (new EPC colony forming assay) and 

QQ-EPC culture (quality and quantity controlled serum-free EPC culture technique), to 

identify a variety of EPC phenotypes and functions[11]. These methodologies allow us to 

precisely evaluate the key factors of EPC kinetics and bioactivities, and ultimately lead us to 

understand how EPC differentiates in healthy or diseased states to promote new vasculature. 

In this study, we investigated whether a sitagliptin analogue, MK-0626, affects EPC 

kinetics in peripheral blood or bone marrow in diabetic animal models, using the new EPC 

quality and quantity evaluation methods. Furthermore, the developed cell isolation technique 

from ischemic muscles was used to define and compare in situ cell phenotype and quantity of 

hematopoietic cells in tissues, in order to evaluate inflammatory cell kinetics in diabetic 

animals following MK-0626 administration.

Materials and methods

All studies were performed with the approval of national and institutional ethics 

committee. The Tokai School of Medicine Animal Care and Use Committee gave local 

approval for these studies, based on Guide for the Care and Use of Laboratory Animals 

(National Research Council).

Reagents

Dipeptidyl dipeptidase-IV (DPP-4) inhibitor (DPP-4 i) MK-0626 was gifted by MSD 

K. K. (Kenilworth, N.J., USA.). MK-0626 was dissolved in 0.25% methyl cellulose (M-0389, 

SIGMA, St. Louis, MO, USA) solution for per os administration [12].
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Animals

Ten- to fifteen-week-old C57BL/6J (Lean) and C57BL/6J DIO (DIO) male mice were 

purchased from Charles River Laboratories (Yokohama, JAPAN) via Oriental Yeast Co. Ltd. 

(Tokyo, JAPAN) and maintained under the standard conditions (20±2°C, relative humidity 

(50-60%), light/dark 12h/12hcycles) at the Support Center for Medical Research and Education 

in Tokai University, School of Medicine.

During one week of acclimatization, C57BL/6J mice received a standard rodent diet, 

in which 10% of energy came from fat (D12450J, Research Diet Inc., New Brunswick, NJ, 

USA), while C57BL/6J-DIO mice received a high fat diet (HFD), in which 60% energy came 

from fat (D12492, Research Diet Inc., New Brunswick, NJ, USA). After three weeks of feeding 

with the respective diets, mice were divided into two groups. The solution of MK-0626 was 

daily administered to mice of each group by oral cannulation with sonde (3 mg/kg/day) for 1 

week. Based on previous report, this dose of MK-0626 was predicted to result in continuous 

blocking of incretins, such as GLP-1 and GIP, and inactivation of DPP-4[13]. Food intake of 

the mice was recorded every two days and their body weight (BW) and blood sugar (BS) were 

measured 9 and 3 days before surgery, and on day 4 and day 11 after surgery. Based on BW at 

each time point, the volume of MK-0626 solution was adjusted to maintain the same dose in 

each mouse until the subsequent measurement. The BS was measured using a blood glucose 

test meter (Gultest Ace R, ARKRAY Factory, Inc. Shiga, Japan) and disposable blood glucose 

level test sensor (Gultest sensor, Panasonic Healthcare Co., Ltd.). 

At the end of the experimental period, the mice were anesthetized with pentobarbital 

and their plasma collected and stored at –80°C. 

Cell preparation and culture

Mouse peripheral blood mononuclear cells (mPBMNCs) were collected with 27G-
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Insulin syringe (TERUMO, Tokyo, Japan) from the apex of the heart under adequate anesthesia 

using 1.5% to 2.0% isoflurane (Dainippon Sumitomo Pharma Co., Ltd., Osaka, JAPAN). The 

cells were further isolated by density gradient centrifugation with Histopaque (d=1.083; Sigma-

Aldrich Co., St Louis, MO, USA), as previously reported[14].

Preparation of human peripheral blood mononuclear cells (hPBMNCs) was performed 

after obtaining informed consent from healthy volunteers according the Tokai University 

institutional the review board. The peripheral blood (10 mL) was drawn by heparinized venous 

puncture at the forearm. Isolation protocol for hPBMNCs was the same as that for mPBMNCs. 

Briefly, cells were cultured with QQ (Quality and Quantity) culture media of Stem Line II 

(Sigma-Aldrich, St. Louis, MO), supplemented with 100 ng/mL recombinant mouse (rm) or 

human (rh) stem cell factor (SCF), 100 ng/mL Flt-3 ligand (FL3L), 20 ng/mL thrombopoietin 

(TPO), 50 ng/mL vascular endothelial growth factor (VEGF), 20 ng/mL interleukin-6 (IL-6) 

(these five proteins were purchased from Peprotech, Inc. (Rocky Hill, NJ, USA), and 

antibiotics Penicillin/Streptomycin (100 U/100 μg/mL; Gibco). The cells (5 × 105 cells) were 

cultured for 3 days (mouse mPBMNCs) or 7 days (human hPBMNCs) MNCs on 24-well plate 

(BD Falcon, BD Bioscience, San Jose, CA, USA) in a 37°C incubator containing humidified 

atmosphere with 5% CO2.

Enrichment of EPCs from bone marrow

Bone marrow (BM) EPCs were isolated from no-fat diet and DIO-mice femurs and 

tibias as previously described [15]. Nuclear cells were washed with PBS-EDTA and the 

erythrocytes were removed by hemolyzation lysis buffer. Nuclear cells were initially stained 

with a lineage positive antibody cocktail containing CD45R/B220, TER119, CD3e, CD11b, 

Ly-6G, and Ly6C (Gr-1) for 20 minutes at 4°C (all antibodies were obtained from BD 

Pharmingen). After labeling the lineage positive antibodies with biotin-labeled magnetic beads, 
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cells underwent a negative selection process with a magnetic cell sorting system (Auto 

MACSTM, Miltenyi Biotec.). An EPC-enriched BM population (Lin–, c-kit+, Sca-1+; KSL) was 

isolated by FACS AriaTM cell sorter (BD) from BM-Lin–cells. The Lin– cells were counted and 

then incubated with Rat-FITC anti-mouse Ly-6A/E (Sca-1) (BD PharMingen) and Rat-PE 

CD117 (c-kit) (BD PharMingen) for 20 min at 4°C, washed three times and suspended in 20% 

IMDM (Gibco). FITC-conjugated Sca-1+ and PE-conjugated c-Kit+ double positive cells 

(KSL) were obtained using the FACS Aria cell sorter (BD). 

EPC colony forming assay

Freshly isolated human or mouse peripheral blood mononuclear cells (PBMNCs) and 

mouse BM mononuclear cells (BMMNCs) were cultured in semisolid methyl cellulose-based 

culture medium, (MethoCultTM SF M3236, STEMCELL Technologies Inc., Vancouver, BC, 

Canada) containing 100 ng/mL SCF, 50 ng/mL VEGF, 50 ng/mL basic fibroblast growth factor 

(bFGF), 50 ng/mL epidermal growth factor (EGF), 50 ng/mL insulin-like growth factor (IGF), 

50 ng/mL interleukin-3 (IL-3) (these six proteins were purchased from Peprotech, Inc. Rocky 

Hill, NJ, USA), 2 IU/mL heparin (Ajinomoto Pharmaceutical Co. Ltd. Tokyo, Japan), 30% 

(v/v) fetal bovine serum (Nichirei Biosciences Inc., Tokyo, Japan) and penicillin/streptomycin 

(100 U/100 μg/mL; Gibco). Cells were seeded at 1.5 × 105 cells/35 mm dish (BD Falcon, BD 

Bioscience, San Jose, CA, USA) and left in a humidified incubator with 5% CO2 at 37°C till 

EPC colony formation. The number of adherent colonies on the dishes was counted between 

day 6–10 (mouse) and 16–18 (human) using gridded scoring dish (STEMCELL Technologies 

Inc. Vancouver, BC, Canada) under a phase-contrast light microscope (Eclipse TE3000; Nikon, 

Tokyo, Japan). Primitive EPC colony-forming units (pEPC-CFUs) and definitive EPC colony-

forming units (dEPC-CFUs) were separately counted. 
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Endothelial lineage characterization

As previously described [16], after culturing PBMNCs for 7 days in the endothelial cell growth 

medium (EGM-2 MV BulletKit, Lonza, Walkersville, MD, USA), we evaluated enrichment of 

the EPC lineage by staining with Fluorescein Ulex Europaeus Agglutinin I (UEA-I Lectine, 

FL-1061, Vector Laboratories Inc. Burlingame, CA, USA) and acetylated low-density 

lipoprotein labeled with 1,1'-dioctadecyl-3,3,3',3'-tetramethylindo-carbocyanine perchlorate 

(DiI-Ac LDL, BT-902, Biomedical Technologies Inc. St. Stoughton, MA, USA), and then 

observed the cells under the Bio Revo fluorescence microscope (BZ-9000, Keyence, Osaka, 

Japan). EGM-2-MV complete medium was adjusted to EBM-2 basal medium by adding 5% 

FBS (SAFC Biosciences Inc., Lenexa, KS) and supplemented with growth factors, except 

hydrocortisone. PBMNCs were adjusted to the similar cell density (1 × 106 cells/mL) with 

EGM-2-MV complete medium containing 5% FBS. Cells were then plated on 6-well Primaria 

tissue culture plate (2 × 106 cells/2 mL per well) and cultured. 

Induction of hindLimb ischemia model

The mice were divided into two groups, Lean and DIO, one week before surgery. 

Hindlimb ischemia induction (HLI) was performed under adequate anesthesia by 1.5% to 2% 

isoflurane to minimize pain, according to the 3Rs rule (replacement, reduction, and 

refinement). Briefly, the proximal portion of the left common and deep femoral artery with 

their three branches were successfully ligated with a 6-0 nylon suture (Sigma Rex., Kono 

manufacturing Co., Ltd. Ichikawa, Japan), and the proximal and distal portions of the 

saphenous artery were subjected to bipolar electrocautery (MERA N3‐14; SENKO 

MEDICAL INSTRUMENT mfg. Co., Ltd., Tokyo, Japan). The skin was closed with a 4-0 

nylon suture (Sigma Rex., Kono manufacturing Co., Ltd. Ichikawa, Japan). To reduce post-
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surgery suffering from pain, pentobarbital (Kyouritu Seiyaku Co., Ltd., Tokyo, Japan) was 

injected at a dose of 10 mg/kg via i.p. administration.

Laser doppler imaging and blood flow assessment

Baseline laser Doppler perfusion imaging (LDPI; Moor Instrument, Axminster, UK) 

was performed of animals under anesthesia with 1.5% isoflurane (Dainippon Sumitomo 

Pharma) and after induction of ischemia at days 0, 7, and 15 to assess blood perfusion ratio in 

ischemic vs. healthy hindlimb. Acquired data using LDPI were analyzed with moorLDITM 

Main software (Laser Doppler Imager ver 5.2; Moor Instruments, Devon, UK). Mice with toe 

necrosis or limb salvage were included in the study, whereas those with foot necrosis or 

autoamputation were excluded.

Identification of phenotypes of recruited cells isolated from 

ischemic tissues

All mice were fed with 5 g HFD per day till enough BS and BW could be retained; 

then they were divided into two groups, control (received 0.25% methylcellulose only) and 

MK-0626 group (MK-0626 was administrated per os using sonde 3 days before and 3 days 

after onset of LHI). At day seven, mouse was sacrificed after anesthesia, and systemically 

perfused with cold PBS to exclude blood cells. An anterior tibial muscle (ATM) was dissected 

for further isolation of cells that had infiltrated the ischemic tissue. Our previous 

immunohistochemistry analysis study showed that ATM is the most sensitive for ischemic 

injury. In brief, ATM muscle vessels, tendons and nerve fibers were removed under light 

microscope and minced by using optical fine micro scissors. To effectively liberate skeletal 

muscle cell types, collagenase type II (500 U/mL) (Worthington Lab.) and collagenase/dispase 
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(1 mg/mL) (Roshe Diagnostics) were used for 1.5 h at 37°C with gentle agitation, as reported 

elsewhere [17]. After digestion, the tissue was triturated and meshed through a 70-m cell 

strainer. Finally, cells were washed twice with DMEM (Gibco) and then counted using a 

hemocytometer. The Fc receptors were blocked with mouse anti-Fc receptor (Biolegend Co. 

Ltd. CA, USA) to reduce nonspecific binding of antibodies and left at 4°C for 30 min and then 

washed twice with FACS buffer. Subsequently, cells were stained with the mixture of 

antibodies (Biolegend Co. Ltd. CA. USA) against CD45, CD34, CD206, F4/80, CD11b, Ly-

6G, CD31, Sca-1, CD117, CD3e, CD4, CD8a, CD25 and CD19 at 4°C for 40 min after which 

the cells were washed twice. Flow cytometric analysis was performed on a BD FACS Verse 

and Fortessa (BD), and data was analyzed using FlowJo (TreeStar 10.2 version) and the 

DeNova software version 6.

Immunohistochemistry analysis

Two weeks after surgery, the mice were injected with 20 L of fluorescein 

isothiocyanate-conjugated Griffonia simplicifolia isolectin B4 (IB4-FITC, FL1201, Vector 

Laboratories Inc.) via tail vein to detect functional capillaries in vivo. Twenty minutes after 

injection, the mice were sacrificed under overdose of pentobarbital 150 mg/kg/ml (via i.p 

administration), and then systemically perfused animals were fixed with 4% paraformaldehyde. 

Ischemic tissues were left in 4% paraformaldehyde overnight at 4°C, and anterior tibial muscles 

were excised, and embedded into paraffin block. The deparaffinized tissue sections were 

mounted on slide glass with glycerol-PBS solution (pH 8.0) including DABCO (D27802-25G 

SIGMA-Aldrich) for preventing photobleaching. To evaluate pericyte recruitment, Cy3-

conjugated monoclonal anti-actin alpha-smooth muscle (SMA) antibody (1:200, clone: 1A4, 

Sigma-Aldrich), and for micro vascular density (MVD) IB4-FITC (1:1000, Invitrogen) was 

used. The tissue sections for MVD and pericyte recruitment were observed and counted using 
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fluorescence microscopy VH Analyzer (Keyence). 

Statistical analysis

All values are shown as mean ± SE. Mann-Whitney U and Kruskal-Wallis test were 

used for two and three non-parametric groups with Dunn’s multiple comparison test, 

respectively. For multiple comparisons between groups at different time points, 2-way 

ANOVA was applied, followed by Tukey’s post hoc test. All statistical analyses were 

performed using GraphPad Prism 7.1 (GraphPad Prism Software Inc., San Diego, CA, USA). 

P < 0.05 value was considered to indicate statistically significant differences.

Results

EPC differentiation was induced by MK-0626 

To evaluate the efficacy of MK-0626 on EPC’s colony forming ability and 

differentiation, PBMNCs were isolated from Lean mice, MK-0626-administered Lean mice, 

DIO mice, and MK-0626-administered DIO mice, and cultured in semisolid culture media. The 

number of definitive EPC-CFUs (dEPC-CFUs) from control DIO mice decreased compared to 

that from control Lean mice, whereas dEPC-CFUs from MK-0626-administered DIO mice 

were similar in number to those from the Lean littermates (Fig 1A). The frequency of dEPC-

CFUs per peripheral blood (PB) volume also sharply decreased in DIO mice compared with 

that in control mice, while MK-0626-administered mice showed a dramatic improvement in 

the number of dEPC-CFUs per 1 mL PB (Fig 1B). These data suggest that EPC differentiation 

in PBMNCs was impaired in DIO mice and MK-0626 treatment effectively recovered the EPC 

differentiation ability to similar levels seen in Lean mice. We further investigated whether 

DPP-4 i administration affected bone marrow c-Kit+/Sca-1+/Lin– (BM-KSL) stem cells in 
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obese and healthy condition. To address this, purified BM-KSL stem cells, isolated from either 

control (lean) or DIO mice, were evaluated for their EPC colony formation abilities. As shown 

in Fig. 1C, BM-KSL cells displayed similar EPC-CFUs between all tested groups, indicating 

that the EPC differentiation ability was not affected by obese condition or MK-0626 

administration in BM. However, the calculated number of EPC-CFUs in hemi bone represented 

stimulated expansion of EPCs in DIO mice, and MK-0626 did not affect the frequency of EPC-

CFUs in BM in both DIO and Lean mice (Fig 1D). 

To investigate MK-0626 effect on EPC biology, we employed ex-vivo regenerative 

conditioning in culture with or without MK-0626 on BM-derived KSL cells from DIO or Lean 

mice. After one week of culturing, colony-forming assay (CFA) was used to evaluate these 

cells. Conditioning BM-KSL cells with MK-0626 promoted the EPC colony forming potential 

compared with Lean mice without MK-0626 treatment (Fig 2B). However, EPC-CFA values 

were higher in DIO mice compared with those in control lean mice, and did not further improve 

upon MK-0626 administration. Two thirds of the EPCs in treated and non-treated Lean mice 

were in the pEPC stage, while half of the EPCs in treated and un-treated DIO mice were 

definitive EPC colonies, which are responsible for vasculogenesis (Fig 2C).

MK-0626 recovered human EPC colony formation and 

differentiation capability under inflammatory conditions

To verify the effect of MK-0626 on human EPCs, we performed EPC-CFA and EPC 

culture assay on regenerative conditioned PBMNC. Diet-induced obesity (DIO) develops 

systemic chronic inflammatory milieu, by increasing secretion of pro-inflammatory cytokines, 

such as TNFα, IL-6 and IL-1b[18, 19]. Based on this, we attempted to assess whether EPC 

differentiation cascade differs under a normal regenerative condition (QQ culture) or an 

inflammatory condition induced by TNFα (QQ + TNFα). EPC differentiation was evaluated 
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by EPC-CFA before and after QQ culture of hPBMNCs. Inflammatory conditioning markedly 

decreased EPC colony forming units (Fig 3Ac and 3B), suggesting that inflammatory 

conditioning significantly impairs EPC colony formation bioactivity. In contrast, MK-0626 

supplementation together with TNFα beneficially recovered the EPC function under 

inflammatory conditioning (Fig 3Ad and 3B), while MK-0626 treatment alone did not increase 

EPC activity in regenerative conditioning. This may suggest that under regenerative 

conditioning healthy EPC activation is at its peak and may not respond to additional stimulation 

with MK-0626. Furthermore, co-staining showed that UEA-I Lectine and DiI-Ac LDL EPCs 

were decreased significantly in TNFα-treated DIO cells, while combination of MK-0626 and 

TNFαrecovered the EPC numbers to the same extent as in the healthy Lean group (Fig 3Ca 

through d, and 3D), suggesting that MK-0626 recover EPC function under inflammatory 

conditions. Together, these results depicted that MK-0626-treatment under inflammatory 

conditioning favorably enhanced EPC functions such as colony formation and differentiation.

MK-0626 administration promoted blood flow perfusion after HLI 

in DIO mice

To demonstrate in vivo blood flow perfusion recovery, we induced mouse HLI model 

in healthy and DIO mice and examined the effects using laser Doppler perfusion imaging. After 

HLI surgery (left-side limb), DIO mice blood flow perfusion deteriorated sharply (0.23 ± 0.03), 

in comparison with MK-0626-treated DIO mice. Moreover, at day 13 after HLI surgery, DIO 

mice treated with MK-0626 showed significant improvement of blood flow (0.46 ± 0.03, P < 

0.05), similar to that seen in the Lean groups (0.47 ± 0.06 and 0.53 ± 0.06 in Lean and Lean 

treated with MK-0626, respectively) (Fig 4A and 4B). This data showed that DPP-4 i 

accelerates angiogenesis for further enhancement of blood flow and limb salvage in DIO-

conditioned mice.  
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MK-0626 administration reduced infiltration of pro-

inflammatory hematopoietic cells lineages 

At day 3 after onset of HLI, infiltrated blood cells in the ischemic anterior tibial muscle were 

successfully isolated and analyzed using flow cytometry for cell subset determination (Fig 5). 

Viable cell population was gated into two main cell populations, CD45 positive (CD45+) or 

negative (CD45–) cells. This strategy led us to determine origin of infiltrated cells, such as 

blood cells, resident cells or transitional phase cells. HLI surgery caused abundant recruitment 

of CD45+ cells into the ischemic tissue in DIO group, which diminished significantly (5 times 

less, P < 0.028) by MK-0626-treatment (Fig 6A). To determine the inflammation- and 

regeneration- associated cell proportion among blood cells, we separately gated total 

macrophages (F4/80+), neutrophils (Ly-6G), T-cells (CD3e+) and B-cells (CD19+) lineages 

(Fig 5). Numerically, F4/80+ and Ly-6G cell accumulations in the ischemic skeletal muscle 

were significantly increased in DIO mice (P < 0.01 and P = 0.057, respectively), in comparison 

with the MK-0626-treated DIO group (Fig 6B). To evaluate the total macrophage sub-

population, we gated two different functional macrophages, pro-inflammatory M1 

(CD45+/F4/80+/CD11b+) and anti-inflammatory M2 (CD45+/F4/80+/CD206+) (Fig 5). 

Interestingly, DPP-4 i treatment mainly inhibited influx of M1 subset (P < 0.02) along with an 

upward trend of M2 infiltration from the total macrophages (Fig 6C, 6D, and E). This suggests 

that DPP-4 i diminished total monocyte/macrophages accumulation in the ischemia-injured 

tissue, and converted them into the M2 population, which displays strong anti-inflammatory, 

reparative and angiogenic functions. Interestingly, the influx of stem or progenitor cell (CD117 

and Sca-1) was greater in DIO group (P < 0.02) than in the MK-0226-treated DIO group (Fig 

6F and 6G).

In summary, MK-0626 administration suppressed the influx of all hematopoietic 
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lineage cells (mainly pro-inflammatory cells) and accelerated regeneration-associated cell 

(RACs) polarization from pro-inflammatory M1 and CD4+ cells to the anti-

inflammatory/reparative M2 and Treg cells, thus inhibiting unproductive inflammatory cascades 

following ischemic injury for further beneficial tissue restoration.

MK-0626 administration enhanced MVD and pericyte recruitment 

in ischemic tissues

To evaluate MVD and pericyte recruited arterioles, IsolectineB4 and α-SMA co-

staining was performed. The immunohistology study revealed that in MK-0626-treated animals 

MVD was dramatically increased in comparison with DIO control (MVD/mm2; 872 ± 56 in 

MK-0626-treated vs. 528 ± 44 in DIO control, P < 0.001) (Fig 7A, a–d and 7B). To verify 

effect of MK-0626-treatment on arterial maturation, we stained ischemic hind limb tissues with 

α-SMA to detect pericyte recruitment. As shown in Fig 7A (e–h) and 7C, the number of α-

SMA positive vessels were superior in MK-0226-administered DIO mice (204 ± 81, P < 0.05), 

compared with that in DIO mice (160 ± 94). These results indicate that MK-0626 

administration promoted MVD enhancement along with pericyte recruitment for vascular 

maturation after ischemic injury.

Discussion

In the present study, we have demonstrated that the DPP-4 inhibitor MK-0626 

enhanced vascular development by promoting EPC differentiation and orchestrating 

regenerative microenvironment of ischemic tissues through reduced influx of pro-

inflammatory cells, such as neutrophils, M1 macrophages, cytotoxic T-cells and B-cells, and 

instead recruiting regeneration-associated cells, such as M2 macrophages and Treg cells in DIO 
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mice following onset of acute HLI (Fig 8). 

Effect of MK-0626 on EPC bioactivity

First, we examined EPC colony forming abilities in PB of animals to evaluate MK-

0626-triggered EPC mobilization effects. Definitive EPCs (dEPCs), representing more 

differentiated colony forming EPCs than primitive EPCs (pEPCs), significantly decreased in 

PB of DIO mice compared with healthy Lean mice. This impairment of dEPC kinetics in DIO 

was abrogated upon MK-0626 administration. Further, when we performed the same assay on 

BM-EPCs, represented by KSL cells, we found no differences between the groups of DIO and 

lean mice, suggesting that the impairment of dEPC kinetics in PB may be based on the obese 

condition. Moreover, the calculated number of EPC-CFUs in hemi bone displayed stimulated 

expansion of EPCs in BM microenvironment in DIO mice, and MK-0626 did not affect the 

frequency of EPC-CFUs in BM in both DIO and Lean mice. Taken together, our data suggest 

that the obese condition decreased EPC kinetics in PB through impairment in EPC 

differentiation, but stimulated EPC expansion in BM microenvironment. Further, MK-0626 

recovered the impaired dEPC kinetics into circulation, possibly by mobilization effect, but 

could not stimulate further EPC expansion in BM microenvironment. 

Former experiments showed that DIO condition aggravated stromal derived factor-1a 

(SDF-1a, CXCL12/CXCR4) axis, which is crucial for guiding hematopoietic cells, including 

EPCs, to the site of injury. SDF-1 is a substrate of DPP-4, and MK-0626 suppress degradation 

of SDF-1 by inhibiting enzyme activity of DPP-IV, consequently, the SDF-1 increases 

biological activities in PB and BM [10]. In accordance with this, our finding indicated that 

diabetic condition specifically impaired function of dEPC mobilization from BM to circulation. 

Under such conditions, DPP-4 i might restore the mobilization through preservation of SDF-1 

protein by modulating enzyme activity of CD26/DPP-IV.
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MK-0626 effect on vascular development

In vivo transplantation experiment demonstrated that while limb perfusion recovery 

of DIO animal at day 14 was significantly decreased in comparison with healthy Lean mice 

recovery, MK-0626 treatment abrogated the deterioration in DIO ischemic mice. 

Immunohistology analysis revealed that vascular regeneration, such as IB4 stained capillary 

densities as well as pericyte-triggered arteriole maturation, were superior in MK-0626-

administered DIO group, likely because the DPP-4 i promotes differentiation of primitive EPC 

to the definitive EPC to stimulate angiogenesis and arteriogenesis. In acute arterial injury 

model, short-term inhibition of DPP-4 i enhances endothelial regeneration through inhibition 

of SDF-1a degradation, and consequently increasing recruitment of circulating endothelial 

progenitor cells crucial for blood vessel development [20]. DPP-4 i is considered to promote 

vascular regeneration by two synergistic effects: by inhibiting the degradation of SDF-1a and 

via anti-inflammatory effects. Such incretin-based therapies with DP-4Ⅳ i, displays anti-

inflammatory activity through glucose control via DPP-4 [21] Pathological and physiological 

angiogenesis initiation mainly occur after inflammation [22]. However, on T2DM, chronic 

inflammation induces excessive inflammatory cytokine secretion, which affects stem cell and 

EPC differentiation for effective vascular regeneration [23].

Anti-inflammatory effect of MK-0626 to the ischemic tissue

DPP-4 i has been reported as an anti-inflammatory medicine in chronic inflammatory diseases, 

including T2DM [24],[25]. We assumed this DPP-4 i anti-inflammatory effect might contribute 

to vascularization and tissue regeneration, especially in situ ischemic tissue through 

recruitment of immune cells [26, 27]. Our hematopoietic cell isolation experiment from 
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ischemic muscles suggested that DPP-4 i had an inhibitory effect on unproductive 

inflammation by decreasing influx of total blood cell accumulation (by 5-fold), and pro-

inflammatory cells such as neutrophils (by 6.2-fold), total macrophages (by 7.4-fold), M1 (by 

7-fold), total T-cells (by 2.2-fold), cytotoxic T-cells (by 1.6-fold), and B-cells (by 4-fold), and 

by increasing regeneration-associated cells, such as M2/M ratio (by 2-fold) and Treg/T-helper 

ratio (by 2-fold). Recent research also highlighted that DPP-4 inhibition attenuates obesity-

related inflammation, atherosclerosis, and insulin resistance by regulating M1/M2 macrophage 

polarization [28, 29]. In an ApoE −/− mouse model on high cholesterol diet, long-term treatment 

with the DPP4 inhibitor sitaglipin significantly reduced atherosclerotic plaque, and this effect 

was inversely correlated with number of M2 macrophages in the plaque. Blockade of 

CXCR4/SDF-1 signaling by AMD3100 inhibited aortic M2 accumulation and the therapeutic 

effect of Sitagliptin [28]. Interestingly, in our study, c-Kit and Sca-1 cells significantly 

infiltrated into the DIO mice ischemic tissues, in comparison with the MK-0626-treated 

counterpart. Our ex vivo data revealed that proportion of primitive EPCs was higher than 

definitive EPCs in PB and BM in DIO mice, indicating that obesity-induced inflammatory 

milieu decrease stem/progenitor cell differentiation in ischemic tissue due to unproductive 

inflammation, which supports other studies [23, 30, 31]. The DPP-4 inhibitors, such as 

Sitagliptin [32], Vildagliptin [33], Linagliptin [34], Teneligliptin [35], Anagliptin [36], 

Trelagliptin [37], and Omarigliptin [38] are already in use for clinical treatment of diabetes. 

Sitagliptin increases the number of circulating progenitor cells in mouse models [39] and 

T2DM patients [10, 40]. Similar to Sitagliptin, in our study, MK-0626 also increased the 

number of circulating endothelial progenitor cells in healthy mouse. Many research groups 

have reported that to increase the number of circulating EPCs in T2DM, EPCs kinetics and the 

vascular regeneration is important to prevent the disease [41, 42]. Some have also reported that 

DPP-4 i decreases the risk of cardiovascular disease in T2DM [43-46]. 
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To conclude, our study shows that DPP-4 inhibition has a beneficial effect on 

vasculogenesis by enhancing EPC differentiation and bioactivity. Moreover, DPP-4 inhibition 

decreased the recruitment of pro-inflammatory cells into the ischemic injury, along with an 

increase in regeneration-associated cells, the latter being important in the tissue restoration and 

regeneration. Further clinical trials on metabolic syndrome need be conducted to prove the 

therapeutic potential of DPP-4 i in clinical practice as preventive medicine of arteriosclerosis.
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Figures and legends:
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Fig 5. 
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Fig 8.
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Fig 1. MK-0626 enhances EPC differentiation in vivo.

The colony number of pEPC-CFUs and dEPC-CFUs generated from 5 × 105 cells of 

BM (A), 1 mL of peripheral blood (B), 250 cells of BM-KSL (C) and hemi bone (D). 

The individual bars indicate cells from healthy mice (open), MK-0626-administered 

healthy mice (light gray), DIO mice (dark gray) and MK-0626-administered DIO 

mice (black). Data are represented as the mean ± SE. N = 6 mice per group. 

Experiments were repeated twice. In the graph, *P < 0.05, **P < 0.01, ***P < 0.001, 

and ***P < 0.0001 as determined by Two-way ANOVA followed Tukey’s multiple 

comparisons test.

Fig 2. Differentiation and mobilization ability of BM-KSL cells treated with MK-

0626 

(A) The graph shows counts of BM-KSL cells isolated from a pair of femur and tibia 

at a hemi-side in each mouse. (B) EPC-CFU counts generated from BM-KSL cells 

per dish (250 cells/dish), and also shows the percentage of differentiation of pEPC-

CFU count versus dEPC-CFU per dish (C). The bars indicate the counts of pEPC-

CFU (open) and dEPC-CFU (light gray). Data are represented as mean ± SE. N = 6 

mice per group. Experiments were repeated twice. In the graph, *P < 0.05, **P < 

0.01, and ***P < 0.001, as determined by Kruskal-Wallis and Dun’s multiple 

comparison test.
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Fig 3. MK-0626 accelerates EPC differentiation under inflammatory conditions.

(A) Representative picture of EPC-CFU generated from hPBMNCs. The images are 

of following EPCs: control (Aa), MK-0626-treated (Ab), TNFα-treated (Ac) and MK-

0626- and TNFα-treated (Ad). These EPC-CFUs were observed under high-power 

field (HPF) of 10×. (B) The graph shows EPC-CFU counts, generated from 

hPBMNCs (2 × 105 cells/dish). The bars indicate the values of pEPC-CFU (open) and 

dEPC-CFU (light gray). (C) Conditioned EPCs (cEPCs) were observed with 

fluorescence microscope after co-staining with UEA-I Lectine (green) for detection of 

endothelial cell and DiI-Ac LDL (red) for detection of endothelial and macrophage 

cell lineages. The images are of following cEPCs: control (Ca), MK-0626-treated 

(Cb), TNFα-treated (Cc), and MK-0626- and TNFα-treated (Cd). The number of the 

cEPC was counted under high-power field (HPF) of 20×. Data are represented as 

mean ± SE. N = 3 volunteers. Experiments were repeated at least three times. In the 

graph, *P < 0.05, **P < 0.01, and ***P < 0.001, determined by Two-way ANOVA 

followed by Tukey’s multiple comparisons test.
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Fig 4. Blood flow recovery rate after HLI.

(A) Laser Doppler imaging was used to analyze blood flow 14 days after ischemia. 

The panels show lean mice (Aa), MK-0626-administered lean mice (Ab), DIO mice 

(Ac), and MK-0626-administered DIO mice (Ad). The region of interest (ROI) for 

blood flow measurement is shown by the yellow square. (B) The graph presents blood 

flow ratio of ischemic-to-contralateral hind limb, during the observation period at day 

14. Experiments were repeated twice. In the graph, *P < 0.05, **P < 0.01, and ***P < 

0.001, determined by Kruskal-Wallis and followed Dun’s multiple comparison test.

Fig 5. Flow cytometric gating strategy of ischemic tissue infiltrated cells. 

The numbers of recruited total T-cells (CD45+/CD3e+), subsets of T-helper 

cells (CD45+/CD3e+/CD4+, P < 0.02), and cytotoxic T-cells (CD45+/CD3+/CD8a+, P 

= 0.2) significantly decreased, while the frequency of regulatory T-cells 

(CD45+/CD4+/CD25+) tended to increase in the MK-0626-administered DIO group, in 

comparison with DIO group (Figs 6H–K). In tSNE analysis, B-cell (CD19+) 

recruitment into the LHI tissue showed an upward trend in the DIO group, in 

comparison with the MK0626-administered DIO group, although this difference was 

not statistically significant (P > 0.11) (Fig 6L). 
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Fig 6. Quantification and characterization of ischemic tissue-infiltrated cells. 

(A–L, except E and K) All values are the absolute number of cells that infiltrated per 

anterior tibial muscle (n = 4–5, each). (E) M2 to total macrophages and (K) Relative 

ratio of Treg cells to total T cells in CD45+ cells (n = 4–5, each). Data were analyzed 

by Mann-Whitney U test.

Fig 7. MK-0626-treatment promotes vascular regeneration in ischemic hind 

limb.

(A) Representative pictures of angiogenesis and arteriogenesis in anterior tibial 

muscle (ATM) in each group. (a–d) The mouse microvessels were stained with FITC-

conjugated isolectin B4 (green). (e–h) Pericyte-recruited microvessels were stained 

with Cy3-conjugated anti-a SMA antibody (red). (B) The microvessels were counted 

with FITC-conjugated isolectin B4 under the HPF of 40× on a fluorescence 

microscope (C). The pericyte-recruited microvessels were counted with Cy3-

conjugated anti-α-SMA antibody. Data are represented as mean ± SE. N = 6 mice per 

group. Experiments were repeated twice with similar results. In the graph, *P < 0.05, 

**P < 0.01, and ***P < 0.001 as determined by One-Way ANOVA and Dunn’s 

multiple comparison test.

Fig 8.

Summary of our study.
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