
An Empirical Demonstration of Unsupervised Machine Learning in Species Delimitation 1 

 2 

Shahan Derkarabetian1,2, Stephanie Castillo2,3, Peter K. Koo4, Sergey Ovchinnikov5, Marshal 3 

Hedin2 4 

 5 

1. Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, 6 

Harvard University, Cambridge, MA 02138 7 

2. Department of Biology, San Diego State University, San Diego, CA 92182 8 

3. Department of Entomology, University of California, Riverside, Riverside, CA 92521 9 

4. Howard Hughes Medical Institute, Department of Molecular and Cellular Biology, Harvard 10 

University, Cambridge, MA 02138 11 

5. Center for Systems Biology, Harvard University, Cambridge, MA 02138 12 

 13 

 14 

Corresponding author: Shahan Derkarabetian 15 

Department of Organismic and Evolutionary Biology 16 

Museum of Comparative Zoology 17 

Harvard University 18 

Cambridge, MA 02138 19 

sderkarabetian@gmail.com 20 

  21 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 28, 2018. ; https://doi.org/10.1101/429662doi: bioRxiv preprint 

https://doi.org/10.1101/429662
http://creativecommons.org/licenses/by-nc-nd/4.0/


 2 

ABSTRACT 22 

One major challenge to delimiting species with genetic data is successfully differentiating 23 

species divergences from population structure, with some current methods biased towards 24 

overestimating species numbers. Many fields of science are now utilizing machine learning (ML) 25 

approaches, and in systematics and evolutionary biology, supervised ML algorithms have 26 

recently been incorporated to infer species boundaries. However, these methods require the 27 

creation of training data with associated labels. Unsupervised ML, on the other hand, uses the 28 

inherent structure in data and hence does not require any user-specified training labels, thus 29 

providing a more objective approach to species delimitation. In the context of integrative 30 

taxonomy, we demonstrate the utility of three unsupervised ML approaches, specifically random 31 

forests, variational autoencoders, and t-distributed stochastic neighbor embedding, for species 32 

delimitation utilizing a short-range endemic harvestman taxon (Laniatores, Metanonychus). First, 33 

we combine mitochondrial data with examination of male genitalic morphology to identify a 34 

priori species hypotheses. Then we use single nucleotide polymorphism data derived from 35 

sequence capture of ultraconserved elements (UCEs) to test the efficacy of unsupervised ML 36 

algorithms in successfully identifying a priori species, comparing results to commonly used 37 

genetic approaches. Finally, we use two validation methods to assess a priori species hypotheses 38 

using UCE data. We find that unsupervised ML approaches successfully cluster samples 39 

according to species level divergences and not to high levels of population structure, while 40 

standard model-based validation methods over-split species, in some instances suggesting that all 41 

sampled individuals are distinct species. Moreover, unsupervised ML approaches offer the 42 

benefits of better data visualization in two-dimensional space and the ability to accommodate 43 

various data types. We argue that ML methods may be better suited for species delimitation 44 
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relative to currently used model-based validation methods, and that species delimitation in a truly 45 

integrative framework provides more robust final species hypotheses relative to separating 46 

delimitation into distinct “discovery” and “validation” phases. Unsupervised ML is a powerful 47 

analytical approach that can be incorporated into many aspects of systematic biology, including 48 

species delimitation. Based on results of our empirical dataset, we make several taxonomic 49 

changes including description of a new species. 50 

 51 

 52 

Key Words: Random Forest, t-SNE, Variational Autoencoders, ultraconserved elements, 53 

integrative taxonomy, Opiliones  54 
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Modern species delimitation is becoming increasingly objective relying on, for example, 55 

statistical thresholds and/or clustering algorithms to identify species in multivariate 56 

morphological space (e.g., Ezard et al. 2010; Seifert et al. 2014), or using the multispecies 57 

coalescent to identify the boundary between population and species level divergences using 58 

genetic data (e.g., Yang and Rannala 2010). Similarly, species delimitation is becoming 59 

increasingly integrative, combining multiple data types in a reciprocally-illuminating framework 60 

providing more robust final species hypotheses (Dayrat 2005; Schlick-Steiner et al. 2010). The 61 

empirical process of delimiting species has been portrayed by some authors as occurring in two 62 

separate phases (Carstens et al. 2013): a discovery phase where a priori hypotheses are formed 63 

based on one or more data types, followed by a validation phase where species hypotheses are 64 

further tested using an independent dataset, typically nuclear genetic data. Of utmost interest in 65 

using genetic data in species delimitation, whether as validation or otherwise, is successfully 66 

distinguishing population structure from species level divergences. Recently, Sukumaran and 67 

Knowles (2017) demonstrated that the multispecies coalescent model will support population 68 

level divergences, an assertation previously demonstrated empirically (e.g., Niemiller et al. 2012; 69 

Hedin et al. 2015). 70 

Across many fields of science, a great deal of attention has been given to machine 71 

learning (ML) approaches, where an algorithm can be trained to make future decisions without 72 

user input. Recently, ML methods like random forest (RF; Breiman 2001) have been 73 

incorporated into systematics and evolutionary biology, with applications in barcoding (e.g., 74 

Austerlitz et al. 2010), environmental DNA metabarcoding (e.g., Cordier et al. 2018), population 75 

genetics (e.g., Schrider and Kern 2016; Schrider and Kern 2018), and predicting cryptic diversity 76 

(Espíndola et al. 2016). Most relevant here is the use of RF in phylogeographic model selection 77 
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(Pudlo et al. 2016; Smith et al. 2017) and speciation/species delimitation (Pei et al. 2018; Smith 78 

and Carstens 2018) where it can be used as a validation tool distinguishing among multiple user-79 

specified models given a priori information about the training data. Similarly, non-RF ML 80 

approaches have been used to model biogeographic processes (Sukumaran et al. 2015). In these 81 

examples a supervised ML approach is used, where simulated datasets based on user-specified 82 

priors are used as training data, and a classifier is built to choose among different models or 83 

species hypotheses given observed data. For example, the recently developed RF-based species 84 

delimitation program CLADES (Pei et al. 2018) approaches species delimitation as a 85 

classification issue. Here, a two-species model with varying divergence times and population 86 

sizes, with or without migration, is used to simulate the training datasets for classifier 87 

construction. Multiple population genetic summary statistics are computed for labeled training 88 

data and observed data with species hypotheses defined a priori. These statistics are used as 89 

variables to determine support for a priori species distinctiveness in the observed data.  90 

While supervised approaches are indeed powerful, unsupervised ML may also be a useful 91 

approach to aid in species delimitation using the inherent structure in the data to cluster samples. 92 

Unsupervised ML can be conducted without a priori hypotheses regarding the underlying 93 

evolutionary model, population parameters, number of species, species assignment, or levels of 94 

parameter divergence needed to classify samples as different species. In unsupervised RF, the 95 

training data is a synthetic dataset based on the observed data representing the null hypothesis of 96 

no structure, and a classifier is built to distinguish the synthetic and observed datasets, thus 97 

uncovering underlying structure (if present) in the observed data. Many unsupervised ML 98 

algorithms for high-dimensionality data intrinsically perform reduction to a lower dimensional 99 

space, where the underlying data structure can be visualized. For example, Oltaenu et al. (2013) 100 
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take an unsupervised ML approach to visualizing and clustering barcode data via nonlinear 101 

dimension reduction and projection methods using multidimensional scaling and self-organizing 102 

maps. They show that these approaches successfully clustered named and unnamed species and 103 

suggested the possibility of undescribed species. 104 

Many ML algorithms can be executed in an unsupervised manner, and while 105 

dimensionality reduction methods like principal components analyses and clustering algorithms 106 

like k-means are widely considered to be ML, we focus on three unsupervised ML approaches 107 

chosen to represent a diversity of ML algorithm types including one that has yet to be used in the 108 

field of systematics (Table 1): Random Forests (RF; Breiman 2001), Variational Autoencoders 109 

(VAE; Kingma and Welling 2013), and t-Distributed Stochastic Neighbor Embedding (t-SNE; 110 

van der Maaten and Hinton 2008). RF is an ensemble learning method that relies on 111 

classification trees and tree bagging (Breiman 1996; 2001). In RF most importantly, in a given 112 

classification tree if two samples appear at the same terminal node their “proximity score” is 113 

increased by one. Proximity scores for all pairs are averaged over bootstrap replicates to produce 114 

a final proximity matrix, which can be used in multidimensional scaling (MDS) and clustering. A 115 

Variational Autoencoder is a Bayesian approach that learns a distribution of the data using latent 116 

variables. It does so in two stages: 1) inference of the posterior distribution of latent variables 117 

and 2) generation of data sampled from a given set of latent values. Both stages are 118 

approximated by neural networks and optimized simultaneously via unsupervised learning. 119 

Widely-used in diverse fields (e.g., Bauer et al. 2015; Yoshida et al. 2016; Mallet et al. 2017), t-120 

SNE is a non-linear dimensionality reduction algorithm that attempts to preserve probability 121 

distributions of distances among samples within a cluster but repels samples that are in different 122 

clusters in lower-dimensional space.  123 
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Table 1. Comparison of unsupervised machine learning methods used in this study. 124 
Method Purpose Approach 

used 
General algorithm Relevant 

output 

Random 
Forest (RF) 

Classification 
and regression 

Supervised 
Unsupervised 

Ensemble method that grows many 
classification trees based on training 
data, runs input data down trees, and 
the classification with the most votes is 
chosen.  

Proximity 
matrix 

Variational 
Autoencoder 
(VAE) 

Generative 
model 

Unsupervised Compresses data through multiple 
encoding layers into latent variables, 
then un-compresses latent variables 
through multiple decoder layers into 
reconstructed data. Learns the marginal 
likelihood distribution of the data using 
latent variables. 

Latent 
variables (two-
dimensional 
encoding) 

t-Distributed 
Stochastic 
Neighbor 
Embedding (t-
SNE) 

Data embedding 
and visualization 

Unsupervised Constructs probability distribution of 
sample pairs, then minimizes 
divergence between high dimensional 
space and low dimension embedding, 
such that similar pairs are embedded 
nearby while dissimilar pairs are 
repelled. 

Low 
dimensional 
embedding 

 125 

The purpose of this study was, in the context of integrative taxonomy, to explore and 126 

demonstrate the utility of unsupervised ML approaches in aiding species delimitation through 127 

successful identification of clusters corresponding to species, as corroborated by other traditional 128 

methods. First, in the discovery phase, we combine phylogenetic analysis of mitochondrial 129 

cytochrome oxidase subunit I (COI) and examination of morphology to generate a priori species 130 

hypotheses. Then, using single nucleotide polymorphisms (SNPs) derived from sequence capture 131 

of ultraconserved elements (UCEs) we demonstrate the ability of unsupervised ML approaches 132 

to successfully cluster identified a priori species, comparing three unsupervised ML approaches 133 

to commonly used methods. Finally, using UCE-derived SNPs and loci we validate species 134 

hypotheses using a standard delimitation method and a novel RF-based approach. We also 135 

demonstrate the utility of unsupervised ML on two previously published datasets. 136 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 28, 2018. ; https://doi.org/10.1101/429662doi: bioRxiv preprint 

https://doi.org/10.1101/429662
http://creativecommons.org/licenses/by-nc-nd/4.0/


 8 

MATERIALS AND METHODS 137 

Study System 138 

For this study we utilized a short-range endemic (SRE; Harvey 2002) arachnid taxon in 139 

the order Opiliones (commonly called harvestmen). SRE taxa tend to have low dispersal ability 140 

and high ecological constraints, which leads to high population genetic structure and allopatric 141 

distributions, likely driven by niche conservatism (Wiens and Graham 2005). These biological 142 

characteristics make SRE taxa ideal candidates for species delimitation analyses, with high 143 

probability for new species discovery. Studies in SRE harvestmen (and SRE taxa in general) tend 144 

to show a great deal of underestimated diversity with numerous harvestmen species still being 145 

described even from well-studied areas (e.g., Derkarabetian and Hedin 2014; DiDomenico and 146 

Hedin 2016; Starrett et al. 2016; Emata & Hedin 2016). 147 

 The Pacific Northwest endemic genus Metanonychus Briggs, 1971 is a cryophilic 148 

harvestman that prefers moist forests, typically found underneath rotting logs/bark and in leaf 149 

litter. The genus and all species/subspecies were described by Briggs (1971), and currently 150 

includes three species: M. idahoensis, M. setulus with five subspecies (setulus, mazamus, 151 

cascadus, navarrus, and obrieni), and M. oregonus with two subspecies (oregonus and 152 

nigricans) (Fig. 1). Metanonychus is an ancient lineage; in a recent phylogenomic analysis of the 153 

superfamily Travunioidea (which contains Metanonychus), more genetic divergence is seen 154 

between the two samples of Metanonychus than in divergences between the vast majority of 155 

pairs of sister genera across all Travunioidea (Derkarabetian et al. 2018). Despite the ancient 156 

origin of this group, relatively few species were described, even though all “subspecies” are 157 

easily differentiated based on apparently fixed differences in male genitalic morphology (Briggs 158 

1971). Recent systematic studies on related taxa corroborate the conservative nature of 159 
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 9 

subspecies in these SRE harvestmen (Derkarabetian and Hedin 2014). As such, and more 160 

importantly, we consider Metanonychus species limits relatively straightforward where the 161 

species are “obvious” making this an excellent system to test ML approaches. 162 

 163 

Figure 1. Geographic distribution of Metanonychus. Filled circles are collecting localities sampled for this study. 164 
Open circles are published records from Briggs (1971). Open circles with “T” indicate type localities. Live photo: 165 
Metanonychus s. navarrus. 166 

Species Delimitation Workflow 167 

We consider species as “separately evolving metapopulation lineages” (de Quieroz 168 

2007), that in practice are genetic clusters of samples corresponding to monophyletic lineages 169 

that show fixed morphological differences. For the discovery phase, our a priori species are 170 

based on inferred well supported COI clades and fixed differences in male genitalic morphology. 171 

We use two popular discovery-based genetic clustering approaches as “standards” to assess the 172 

utility and results of three ML methods. All SNP-based clustering analyses utilized the 173 
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adegenet/STRUCTURE formatted file (.str) as input, which allowed minimal file format 174 

conversion from “standard” to ML approaches. 175 

Species Discovery 176 

The COI gene was sequenced for at least one sample from every collecting locality, plus 177 

two outgroups from the sister genus Sclerobunus, using multiple primer combinations (online 178 

Appendix 1). DNA was extracted using the Qiagen DNeasy kit (Qiagen, Valencia, CA) using 2-3 179 

legs, PCR experiments followed Derkarabetian and Hedin (2014) and amplified fragments were 180 

Sanger sequenced at Macrogen USA. The Sanger-sequenced COI dataset was supplemented with 181 

COI sequences derived as “UCE-bycatch” (e.g., Zarza et al. 2017; Hedin et al. 2018) for all UCE 182 

samples (see below). COI sequences were manually aligned and a phylogeny was reconstructed 183 

using RAxML v.8 (Stamatakis 2014) with 500 bootstrap replicates and the GTRGAMMA 184 

model. COI divergence dating was conducted with BEAST 2.4.8 (Bouckaert et al. 2014) using 185 

two calibrations: a strict clock calibrated at 0.0178 (Papadopolou et al. 2010), and a date 186 

calibration for the outgroups S. nondimorphicus (from coastal Oregon/Washington) and S. 187 

idahoensis (from Idaho), a well-known biogeographic break typically dated to 2-5 MY 188 

(Brunsfeld et al. 2001, and references therein), which was set to a uniform distribution of (2, 5). 189 

The male genitalia in harvestmen tend to be species-specific and have been used in 190 

systematic studies across all taxonomic levels since the mid-1900s. We examined male genitalia 191 

for multiple samples of all described species/subspecies using standard scanning electron 192 

microscopy techniques. Images were taken using the FEI Quanta 450 FEG environmental SEM 193 

at the San Diego State University Electron Microscope Facility. 194 

Sequence Capture and SNPs 195 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 28, 2018. ; https://doi.org/10.1101/429662doi: bioRxiv preprint 

https://doi.org/10.1101/429662
http://creativecommons.org/licenses/by-nc-nd/4.0/


 11 

 The number of studies utilizing UCEs in species delimitation and SNP-based population 196 

level analyses are increasing (e.g., Smith et al. 2013; Blaimer et al. 2016; Harvey et al. 2016; 197 

McCormack et al. 2016; Newman and Austin 2016; Zarza et al. 2016; Starrett et al. 2017; Hedin 198 

et al. 2018). Extractions were conducted as above, except in most cases whole bodies were used 199 

in digestions. Sequence capture of UCE loci followed the protocols available from the 200 

ultraconserved.org website and as in Starrett et al. (2017) and Derkarabetian et al. (2018) using 201 

the Arachnida 1.1Kv1 myBaits kit (Arbor Biosciences) designed by Faircloth (2017). 202 

Sequencing was done at the Brigham Young University DNA Sequencing Center on a HiSeq 203 

2500 with 125 bp paired-end reads. 204 

Raw reads were processed using phyluce (Faircloth 2005), adapter removal and quality 205 

control was done with an illumiprocessor wrapper (Faircloth 2013), and contigs were assembled 206 

with Trinity version r2013-02-25 (Grabherr et al. 2011). When matching contigs to probes, 207 

conservative values of 82 and 80 were used for minimum coverage and minimum identity, 208 

respectively, to filter potential non-target contamination (Bossert and Danforth 2018). Loci were 209 

aligned using MAFFT (Katoh and Standley 2013) and trimmed using gblocks (Castresana 2000; 210 

Talavera and Castresana 2007) with settings --b1 0.5 --b2 0.5 --b3 10 --b4 4. All loci were 211 

manually inspected in Geneious (Kearse et al. 2012) to fix obvious alignment errors and filtered 212 

for obvious non-homologs. Contigs corresponding to COI were identified by a local BLAST 213 

search in Geneious against available Metanonychus COI sequences. Although not used in species 214 

delimitation, a concatenated matrix of UCE loci with 70% taxon coverage was used to 215 

reconstruct a phylogeny using RAxML with 500 bootstraps and the GTRGAMMA model. 216 

SNP datasets were created from sequence capture reads using published approaches (e.g., 217 

Zarza et al. 2017). The sample with the highest number of recovered UCE loci was used as a 218 
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reference genome (M. idahoensis, OP2432). After adapter removal and quality control, reads for 219 

all samples were aligned to the reference using bwa (Li and Durbin 2009), the resulting SAM 220 

files were sorted using samtools (Li et al. 2009), PCR duplicates were identified and removed 221 

using picard (http://broadinstitute.github.io/picard), and all BAM files were merged. The 222 

Genome Analysis Toolkit 3.2 (GATK; McKenna et al. 2010) was used to realign reads and 223 

remove indels and SNPs were then recalibrated using “best practices” (van der Auwera et al. 224 

2013). After recalibration SNPs were called and vcftools (Danecek et al. 2011) was used to 225 

create SNP datasets which varied in the percent of taxon coverage needed to include a SNP (50% 226 

and 70%). One random SNP from each locus was selected and the script adegenet_from_vcf.py 227 

(github.com/mgharvey/seqcap_pop) was used to create STRUCTURE-formatted (.str) files.  228 

Standard Genetic Clustering 229 

As a comparison for the efficacy of unsupervised ML methods in inferring structure and 230 

optimal clustering, we used two popular approaches. First, STRUCTURE version 2.3.4 231 

(Pritchard et al. 2000) was run for 1 million generations and 100,000 burnin on K values ranging 232 

from 2-10, with five replicates each. Structure Harvester (Earl and vonHoldt 2012) was used to 233 

determine optimal K via calculation of DK (Evanno et al. 2005) and Clumpak (Kopelman et al. 234 

2015) was used to visualize output (http://clumpak.tau.ac.il/). Second, we used the adegenet R 235 

package (Jombart 2008; Jombart and Ahmed 2011) to conduct principal components analysis 236 

(PCA; dudi.pca function) and determine the optimal number of clusters and cluster assignment 237 

with discriminant analysis of principal components (DAPC) on scaled data. 238 

Unsupervised ML Visualization 239 

Three unsupervised ML approaches were used for clustering (see Table 1). We executed 240 

RF through the randomForest R package (Liaw and Wiener 2002), extracting the scaled data 241 
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from DAPC to a separate matrix. There are two important parameters associated with RF. The 242 

ntree parameter, the number of classification trees to create, was set to 5000. The mtry, the 243 

number of splits in the classification tree, was left at default for a classification analysis, which is 244 

square root the number of variables. The resulting proximity matrix was then used in both classic 245 

MDS (cMDS) and isotonic MDS (isoMDS). cMDS was executed using the MDSplot function in 246 

the randomForest package and isotonic MDS was conducted using the isoMDS function in the 247 

MASS R package (Venables and Ripley 2002).  248 

VAE was implemented with a custom script utilizing the Keras python deep learning 249 

library (https://keras.io; Chollet 2015) and the TensorFlow machine learning framework 250 

(www.tensorflow.org; Abadi et al. 2015). As input for VAE we use SNP matrices converted via 251 

“one-hot encoding” where each nucleotide is transformed into four binary variables unique to 252 

each nucleotide (e.g., A = 1,0,0,0; C = 0,1,0,0; etc.) including ambiguities (e.g., M = 0.5,0.5,0,0) 253 

using a custom script. The VAE is composed of an encoder and a decoder. The encoder takes the 254 

one-hot encoded SNP data and infers the distribution of latent variables, given as a normal 255 

distribution with a mean (µ) and standard deviation (σ). The decoder then maps the latent 256 

distribution to a reconstruction of the one-hot encoded SNP data. As there are two latent 257 

variables, SNP data for each sample can be visualized as a reduced two-dimensional 258 

representation. Details of the VAE and the training procedure are in Supplementary File: Figure 259 

1. 260 

t-SNE was executed using the R package tsne (Donaldson 2016). After preliminary 261 

testing, several parameters were specified: maximum iterations (max_iter=5000), perplexity=5, 262 

initial dimensions (initial_dims=5), and number of dimensions for the resulting embedding 263 

(k=2). The maximum iterations value is relatively straightforward to determine as the KL 264 
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divergence (a measure of the difference between high and low dimensional representations) 265 

should stabilize at a minimum. Perplexity is a measure of the balance between the local and 266 

global elements of the data; essentially how many neighbors a particular sample can have. This is 267 

a somewhat subjective parameter, where lower perplexity will produce tight well separated 268 

clusters, and higher values will produce more diffuse less distinguishable clusters. However, 269 

results and clusters are typically robust across a wide range of perplexity values (Pedregosa et al. 270 

2011) and methods have been introduced to make perplexity selection automatic (Cao and Wang 271 

2017). With large datasets it is recommended to perform dimensionality reduction on the data via 272 

PCA or a similar algorithm prior to implementing t-SNE (Pedregosa et al. 2011). As such, we 273 

perform t-SNE using the results of the initial PCA as input. 274 

With RF and t-SNE, we also tested three different types of input format using the 70% 275 

SNP dataset. First, the SNPs were represented as raw nucleotides with ambiguities in standard 276 

IUPAC coding, extracted directly from .vcf files using the vcf2phylip script 277 

(github.com/edgardomortiz/vcf2phylip). Second, the raw SNPs were converted to haplotypes 278 

using the script SNPtoAFSready.py (github.com/jordansatler/SNPtoAFS). Third, the raw 279 

unphased nucleotides were converted into numerical format via one-hot encoding. For the first 280 

two datasets, the Ns were coded as blank, and PCA could not be conducted as the variables are 281 

categorical. As such, t-SNE was run using the cMDS output.  282 

Unsupervised ML Clustering 283 

To assess the performance of clustering based on ML results relative to widely used 284 

STRUCTURE and DAPC approaches, four sets of clustering analyses were conducted using RF, 285 

VAE, and t-SNE outputs. First, to confirm that cluster assignments are equivalent to DAPC and 286 

STRUCTURE assignments, PAM clustering was conducted using the cluster R package 287 
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(Maechler et al. 2018) with the optimal K selected from DAPC. The next three clustering 288 

methods test whether the optimal K can be inferred correctly relying solely on unsupervised ML 289 

results. PAM clustering was done on all output, including both the proximity matrix and cMDS 290 

for RF, across K of 2-10 with the optimal K having the highest average silhouette width 291 

(Rousseeuw 1987). Next, PAM clustering was conducted with the optimal K determined via the 292 

gap statistic using k-means clustering implemented in the factoextra R package (Kassambara and 293 

Mundt 2017). Finally, optimal K and clusters were determined via hierarchical clustering with 294 

the mclust R package (Scrucca et al. 2017) using only components retained via the broken stick 295 

algorithm implemented in the PCDimension R package (Coombes and Wang 2018).  296 

Species validation 297 

We implement the commonly used Bayes Factor delimitation approach (*BFD; Leaché et 298 

al. 2014) with SNAPP (Bryant et al. 2012) using a 70% UCE SNP matrix created by the phyluce 299 

script “phyluce_snp_convert_vcf_to_snapp”. Multiple species hypotheses were tested based on 300 

current taxonomy, a priori species, ML clustering results, and an analysis where each individual 301 

specimen was treated as a unique species. SNAPP analyses were run with default settings for 302 

100,000 generations, 10,000 burnin, and 48 steps. Each analysis was run twice to ensure 303 

consistency. Bayes Factors (Kass and Raftery 1995) were calculated (2 * log likelihood 304 

difference) to determine relative support of species hypotheses. 305 

Next, we use the RF-based program CLADES (Pei et al. 2018), which uses Support 306 

Vector Machines, a type of supervised ML, to build a classifier based on labeled samples where 307 

samples are classified as either the same or different species. Several population genetic statistics 308 

are calculated for the simulated training data and the observed data, which are then treated as 309 

variables. The classifier is then used to infer whether the observed a priori species are equivalent 310 
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to the same or different species. As input we use the UCE loci in two different analyses: 1) an 311 

analysis validating a priori species hypotheses (“spp” dataset); and 2) an analysis in which every 312 

individual was treated as a distinct species (“ind” dataset).   313 

Published Datasets 314 

 Uma notata complex. – Gottscho et al. (2017) explored lineage diversification and species 315 

limits in fringe-toed lizards of the Uma notata species complex, a group with a complicated 316 

taxonomic history. Using ddRAD data they find significant levels of gene flow between multiple 317 

species and determine that U. rufopunctata is a hybrid population. Several genetic clustering 318 

algorithms were used with differing results: DAPC favored an optimal K=5 (grouping the hybrid 319 

U. rufopunctata with U. cowlesi), while a model with admixture favored an optimal K=6 320 

(splitting U. scoparia and showing varying levels of admixture for U. rufopunctata samples 321 

between U. cowlesi and U. notata). We reanalyzed their data with the intention of assessing 322 

unsupervised ML clustering/visualization in the face of significant gene flow and known hybrids. 323 

The published dataset with 597 SNPs was downloaded from Dryad 324 

(https://doi.org/10.5061/dryad.8br5c).  325 

Phrynosoma coronatum complex. – The coast horned lizards of the genus Phrynosoma 326 

coronatum complex have received much attention with many species hypotheses put forth 327 

(summarized in Leaché et al. 2018). In an integrative approach Leaché et al. (2009) recover five 328 

well supported mtDNA clades that show little concordance with nuclear loci, ultimately 329 

integrating ecology and morphology to support three species (P. blainvillii, P. cerroense, and P. 330 

coronatum). More recently, Leaché et al. (2018) use SNP data coupled with *BFD testing all 331 

hypotheses derived from previous research, ranging from one to six species. A five species 332 

model is given the highest support, reflecting mtDNA and splitting P. blainvillii into three 333 
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groups. Here, we use unsupervised ML methods for clustering, but more importantly to 334 

demonstrate their utility as a data visualization tool in a dataset showing high uncertainty in 335 

cluster probability assignments (fig. 1 of Leaché et al. 2018). Data were downloaded from dryad 336 

(https://doi.org/10.5061/dryad.k7k4m), and the SNP dataset in the .xml file was manually 337 

extracted and converted to .csv format for import into R.  338 

RESULTS 339 

Species Discovery 340 

Metanonychus specimens were collected from 79 different collecting localities. A total of 341 

117 sequences were included in COI analyses (alignment length of 1182 bp); all new COI 342 

sequences have been deposited to GenBank (XXXX -XXXX). Seventy-seven sequences were 343 

acquired via Sanger sequencing and 38 were sequenced as UCE bycatch, with five samples being 344 

sequenced by both approaches, for a total of 110 Metanonychus specimens (plus two outgroups). 345 

UCE bycatch sequences possessed no stop codons, and for those samples sequenced via Sanger 346 

and as UCE bycatch, sequences were identical. COI divergence dating supports the ancient 347 

origin of this genus dating to ~25 Ma (Supplementary File: Fig. 2). The RAxML phylogeny 348 

recovers a deep split between the “nigricans group” containing both subspecies of M. nigricans 349 

and the “setulus group” containing M. idahoensis and M. setulus with all subspecies. Each 350 

currently named taxon is monophyletic with bootstrap support values of 100 (Supplementary 351 

File: Fig. 3), except the setulus subspecies is polyphyletic separated into geographically cohesive 352 

northern and southern clades, although support for relevant internal nodes are weak.  353 

Male genitalic morphology show clear differences between all species/subspecies, 354 

including northern and southern clades of the setulus subspecies (Supplementary File: Fig. 4). 355 
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Taken together, the discovery phase identified eight a priori species corresponding to the 356 

currently named species/subspecies (except obrieni, Appendix 1) with the setulus subspecies 357 

split into two genetically divergent, geographically cohesive clades with fixed differences in 358 

genitalic morphology. 359 

Sequence Capture and SNPs 360 

A total of 38 Metanonychus samples were included in UCE analyses, 36 of which were 361 

newly sequenced (online Appendix 1). Raw reads for sequence capture data have been deposited 362 

to SRA (XXXX). The 70% matrix included 185 loci (average of 158 per sample) with a mean 363 

locus length of 411 bp and a total length of 75,944 bp. The UCE phylogeny similarly confirms 364 

the monophyly of the nigricans and setulus groups and recovered the same clades as COI, but all 365 

internal nodes were fully supported (Supplementary File: Fig. 3). The setulus subspecies is 366 

recovered as monophyletic, albeit with reciprocally monophyletic northern and southern 367 

lineages. A 50% UCE matrix (278 loci, mean locus length of 384 bp, total length of 106,786 bp), 368 

produced an identical topology (not shown).  369 

Due to the relatively high levels of divergence in Metanonychus, preliminary exploration 370 

of SNP datasets including all 38 samples resulted in datasets with too few loci or too sparse a 371 

matrix, with M. nigricans samples missing an average of ~60% of SNPs (~11% average samples 372 

in the setulus group). For the purposes of demonstrating ML clustering in Metanonychus, we 373 

focus on the monophyletic setulus group with six a priori species identified in the discovery 374 

phase. The setulus group included 30 samples and the 70% SNP dataset contained 316 SNPs 375 

(average of 250 per sample), while the 50% dataset contained 1263 SNPs (average of 774 per 376 

sample).  377 

Standard Genetic Clustering 378 
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For the 70% and 50% SNP datasets, both STRUCTURE (DK) and DAPC favored an 379 

optimal K=6 (Fig. 2 a, b; Fig. 3; Supplementary File: Fig. 5 and Fig. 6), recovering all six a 380 

priori setulus group species as distinct clusters, including the separate clades of the setulus 381 

subspecies. 382 

 383 

Figure 2. Clustering results for the Metanonychus 70% SNP dataset. a) STRUCTURE plot. b) PCA plot with DAPC 384 
clusters. c) random forest cMDS plot, all clustering algorithms favored K=6, except hierarchical clustering with K=7 385 
(seventh cluster indicated with black outline). d) random forest isoMDS plot, all clustering algorithms favored K=6, 386 
except PAM clustering of RF output with K=4 (lumped clusters are indicated with grey shading). e) VAE plot, all 387 
clustering algorithms favored K=6, except hierarchical clustering with K=7 (seventh cluster indicated with black 388 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 28, 2018. ; https://doi.org/10.1101/429662doi: bioRxiv preprint 

https://doi.org/10.1101/429662
http://creativecommons.org/licenses/by-nc-nd/4.0/


 20 

outline). f) t-SNE plot, all clustering algorithms favored K=6. cMDS = classic multidimensional scaling, isoMDS = 389 
isotonic multidimensional scaling. 390 

Unsupervised ML 391 

 Unsupervised ML analyses were relatively quick and computationally inexpensive taking 392 

1-3 minutes for each of the three algorithms when run locally. All ML analyses were run 393 

multiple times producing identical clustering results. For the 70% dataset, all clustering 394 

approaches for RF (cMDS and isoMDS), VAE, and t-SNE resulted in an optimal of K=6, with 395 

the exception of the cMDS with hierarchical clustering resulting in an optimal of K=7 splitting 396 

the southern clade of the setulus subspecies, and hierarchical clustering of VAE with an optimal 397 

of K=7 splitting mazamus (Fig. 2, Fig. 3). Importantly, all K=6 clustering assignments were 398 

identical to those from DAPC and STRUCTURE. For the 50% dataset, an optimal of K=6 was 399 

found for the majority of analyses (Supplementary File: Fig. 5 and Fig. 6). However, the cMDS 400 

using hierarchical clustering resulted in K=7, splitting the northern clade of the setulus 401 

subspecies, and hierarchical clustering of VAE resulted in K=7, splitting mazamus. Clustering of 402 

the 50% dataset based on isoMDS was more variable, with an optimal K=4 for hierarchical 403 

clustering and K=1 for the gap statistic. All VAE and t-SNE clusters were obvious. VAE clusters 404 

were robust, being recovered identically across five replicate analyses, and clear separation 405 

between clusters is seen when σ (standard deviation) is included (Supplementary File: Fig. 7). t-406 

SNE clusters were robust to perplexity values from 5-25, after which samples became randomly 407 

dispersed (Supplementary File: Fig. 8). The unsupervised ML approaches produced plots with 408 

easier interpretability relative to PCA, with species clusters showing more separation in two-409 

dimensional space. Similar plots for RF and t-SNE were obtained using input where SNPs were 410 

coded in multiple ways (Supplementary File: Fig. 9).  411 
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 412 

 413 

Figure 3. Integrative species delimitation results for the Metanonychus 70% SNP dataset. Species tree at left 414 
adapted from RAxML analysis of 70% UCE dataset. GS = gap statistic, HC = hierarchical clustering. 415 

Species Validation 416 

*BFD showed increasing likelihood with increasing species (Table 2), with Bayes 417 

Factors heavily favoring the analysis in which all individual specimens were treated as distinct 418 

species (K=30). Only considering hypotheses recovered in the discovery phase, the “7N” species 419 

hypothesis was favored, recognizing all six a priori species plus two species in the northern clade 420 

of the setulus subspecies. CLADES requires that each locus have data for at least one sample 421 

within every a priori species. As a result, the “spp” dataset had 177 loci and the “ind” dataset had 422 

12 loci. CLADES supported the species status of all six a priori species. However, species status 423 

was also supported when each sample was treated as a distinct species (Fig. 3).  424 
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Table 2. Results of *BFD hypothesis testing. 425 
Species Justification A B Bayes Factor 

2 Briggs’ species -3674.33 -3885.74 ~6924 

4 70% isoMDS PAM, 50% isoMDS HC -2917.94 -2910.14 ~5192 
5 Briggs’ species + subspecies -2384.94 -2386.83 ~4135 

6 a priori species -2210.48 -2211.17 ~3785 
7 M split s. mazamus: VAE HC -2135.1 -2136.23 ~3635 

7 N split s setulus N: 50% cMDS HC -1797.95 -1798.71 ~2960 
7 S split s. setulus S: 70% cMDS HC -2165.62 -2166.25 ~3695 

30 all individuals -320.3 -316.24 - 

  426 

Supplementary Material 427 

 All Metanonychus input matrices (COI, UCE SNPs, UCE loci, and .csv files) are 428 

available from the Dryad Digital Repository: http://dx.doi.org/10.5061/dryad.[NNNN]. Resulting 429 

phylogenies are available via TreeBASE (XXXX). Two custom scripts were created to run ML 430 

analyses: an R script to run random forest, t-SNE, and all clustering algorithms 431 

(github.com/shahanderkarabetian/uml_species_delim), and a python script to run VAE 432 

(github.com/sokrypton/sp_deli). 433 

Published Datasets 434 

 Uma notata complex. – All clustering based on RF with cMDS favored a K=5 scenario, 435 

with cluster assignment identical to DAPC results, with the exception of hierarchical clustering 436 

favoring an optimal K=6 (Fig. 4). In this case, a distinct cluster was identified for all U. 437 

rufopunctata and two samples of U. notata. The optimal of K=6 recovered in Gottscho et al. 438 

(2017) does not differentiate U. rufopunctata, instead splitting U. scoparia. The cMDS plots do 439 

show two somewhat distinct samples of U. scoparia, which correspond to samples placed in the 440 

sixth cluster. Clustering results ranged from K=4 in PAM, lumping U. cowlesi, U. notata, and U. 441 
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rufopunctata, to K=7 in some replicates of t-SNE clustered with gap statistic splitting U. 442 

scoparius. The t-SNE and VAE plots recover the hybrid species U. rufopunctata as a linear 443 

“grade” between the parental species U. cowlesi and U. notata, and assignment uncertainty of the 444 

hybrid samples are seen when σ is also visualized (Supplementary File: Fig. 7). 445 

 446 

Figure 4. Clustering results for Uma dataset. a) STRUCTURE plot adapted from Gottscho et al. (2017). b) PCA 447 
with DAPC clusters. c) random forest cMDS plot with clusters identified via DAPC, PAM, and gap statistic. d) 448 
random forest cMDS plot with clusters identified via hierarchical clustering. e) VAE plot with K=6 a priori species. 449 
f) t-SNE plot with K=6 a priori species. Species are color coded as in Gottscho et al. (2017). Note: algorithmic 450 
clustering was only conducted on random forest output. 451 

Phrynosoma coronatum complex. – As expected, clustering via DAPC, RF, VAE, and t-452 

SNE with nuclear SNP data did produce groups congruent with mitochondrial clades, with the 453 

exception of P. coronatum (Fig. 5). DAPC favored K=4 (P. coronatum, southern P. cerroense, 454 
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northern CA P. blainvillii, and northern P. cerroense + the rest of P. blainvillii), while PAM 455 

clustering favored K=2. The differing cluster assignments of P. cerroense lineages reflects their 456 

polyphyly in the SNP phylogeny of Leaché et al. (2018). While all plots arrange samples in a 457 

way reflective of their genetic similarity, the more diffuse spatial arrangement of samples in the 458 

t-SNE embedding and the σ of the VAE are particularly informative and reflective of cluster 459 

probability assignments for P. blainvillii samples (Fig. 5d and Supplementary File: Fig. 7). 460 

 461 

Figure 5. Clustering results for Phrynosoma dataset. a) PCA plot. b) random forest cMDS plot. c) VAE plot. For 462 
parts a-c) samples are colored by mtDNA clades recovered in Leaché et al. (2009), and grey boxes indicate optimal 463 
clustering of K=4 recovered via DAPC. d) t-SNE embedding, with corresponding assignment uncertainty for each 464 
sample adapted from Leaché et al. (2018). Samples are color coded as in Leaché et al. (2018). 465 
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DISCUSSION 466 

Reconsidering (SRE) Species Delimitation 467 

Commonly used validation approaches relying on genomic-scale data have the potential 468 

to identify population structure and oversplit taxa (e.g., Sukumaran and Knowles 2017), a 469 

problem that can be exacerbated when studying SRE taxa with inherently high levels of 470 

population structure. Model-based validation analyses relying on the multispecies coalescent as 471 

currently implemented (e.g., BPP, SNAPP) seek to identify separate panmictic gene pools. This 472 

approach may not be suitable for all taxa given the diversity of biological characteristics unique 473 

to particular groups or organismal types with differing degrees of population structure and 474 

isolation, etc. (Sukumaran and Knowles 2017). While the issue of population structure in species 475 

delimitation has recently come under focus from a methodological perspective, the potential 476 

misinterpretation of population structure as species level divergences in empirical data has been 477 

a concern for taxonomists focusing on SRE taxa for a relatively long time (e.g., Hedin 1997), and 478 

continues to be so (e.g., Boyer et al. 2007; Bond and Stockman 2008; Niemiller et al. 2012; 479 

Barley et al. 2013; Satler et al. 2013; Fernández and Giribet 2014; Hedin 2015; Hedin et al. 480 

2015).  481 

Unsupervised ML clustering of SNP data provided reasonable species hypotheses that 482 

were largely identical to commonly used discovery-based analyses. However, when used with 483 

validation methods, the same data supported unrealistic results severely overestimating the 484 

number of species. Most importantly, clusters identified in unsupervised ML approaches 485 

obviously correspond to species, implying that cluster separation was dominated by species-level 486 

divergences and not population structure. If validation analyses show increasing support for 487 

more complex species delimitation models, up to the most unrealistically complex model 488 
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possible given the data (i.e., each individual specimen as a distinct species), those analyses do 489 

not contribute useful information to the final species hypotheses. Similarly, the possibility of the 490 

most complex model being favored, whether actually tested or not, makes “support” for any less 491 

complex alternative models meaningless. If we did not run the K=30 SNAPP analysis or the 492 

“ind” analysis in CLADES, a more realistic 6-7 species hypothesis would be favored validating 493 

all a priori species, without any consideration of more complex hypotheses that are actually more 494 

likely. For Metanonychus, validation analyses were effectively ignored in the formation of final 495 

species hypotheses, and the information content of the SNP dataset was squandered, not being 496 

used to its full potential. While *BFD/SNAPP is useful for testing alternative assignment 497 

hypotheses, its use as a validation tool to determine the number of species is certainly 498 

problematic for SRE taxa, and more broadly for any taxon with significant population structure. 499 

Because model-based validation analyses have the potential to delimit population level 500 

divergences, that does not mean they only identify population-level divergences. However, the 501 

confirmation that validation analyses are operating at the species level can only be assessed when 502 

species delimitation is conducted in an integrative framework, and we reiterate the statement by 503 

Sukumaran and Knowles (2017) that external information (i.e., different data types) are needed 504 

to confirm delimitations made based on genetic-only analyses. Ultimately, we argue that the 505 

separation of empirical species delimitation into two distinct phases (discovery and validation) 506 

limits the potential utility of the “validation” data type in informing species hypotheses in a truly 507 

integrative manner. Data types used in the discovery phase inform the a priori species hypotheses 508 

used as input for the validation phase, but the data type used in validation does not reciprocally 509 

inform the other data types. Ideal integrative taxonomy as described by Schlick-Steiner et al. 510 
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(2010) utilizes multiple data types in a reciprocally illuminating framework where discordance 511 

between datasets requires consideration of the underlying biological processes.  512 

Machine Learning in Species Delimitation 513 

The goal of this study was to explore how well unsupervised ML methods can 514 

successfully identify clusters equivalent to species and correctly infer the expected number of 515 

clusters. We argue that species delimitation in Metanonychus was relatively “simple” showing 516 

essentially no discordance between datasets and provided an excellent study system to explore 517 

novel approaches. In an integrative framework, our results suggest that the expected number of 518 

species, determined via mitochondrial and morphological analyses, can be correctly inferred 519 

across multiple clustering algorithms using the RF distances, the latent variables of VAE, and the 520 

t-SNE embeddings. Most importantly, unsupervised ML approaches coupled with standard 521 

clustering algorithms did not oversplit the data by distinguishing samples based on population-522 

level structure, but instead formed clear clusters equivalent to species-level divergences. While 523 

these unsupervised approaches seemingly work well with relatively clear species, their ability to 524 

correctly cluster samples in more difficult speciation scenarios (e.g., rapid and recent divergence, 525 

divergence with gene flow, etc.) remains to be tested, although results in Uma are promising.  526 

For unsupervised RF, more consistent and “accurate” clustering was achieved using the 527 

cMDS output. Like DAPC, multiple dimensions are used to inform the optimal clustering 528 

strategy. Conversely, isoMDS by default only outputs two dimensions for clustering. isoMDS 529 

may be suitable for significantly diverged taxa, in which case it can sometimes produce a better 530 

two-dimensional visualization of the data relative to cMDS. VAE and t-SNE clusters were 531 

exceedingly obvious regardless of data type, and robust across multiple iterations and varying 532 

parameters. t-SNE was designed purely for the visualization of high dimensional data, although 533 
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given a low dimensional embedding as output, clustering is an obvious application. It has been 534 

noted that t-SNE clusters, cluster size, and distances between clusters may not have any relevant 535 

meaning (Wattenberg et al. 2016) and clusters should be interpreted with caution. As t-SNE does 536 

not preserve the density of actual clusters completely, density-based clustering algorithms (Ester 537 

et al. 1996; Campello et al. 2013) may offer an improvement relative to other clustering 538 

approaches. Regardless, in the datasets used here, inferred clusters have obvious biological 539 

meaning corresponding to species which were corroborated by other analyses and data types. 540 

More consistent and accurate clustering results were obtained with the 70% taxon coverage 541 

dataset. Samples with a higher percentage of missing data might be reconstructed in closer 542 

proximity by unsupervised ML methods, regardless of phylogenetic proximity, simply because 543 

they share high levels of missing data. This is particularly the case with data converted to one-544 

hot format where a missing SNP was coded as “0,0,0,0”, although we designed our VAE to mask 545 

missing data.  546 

Neural networks have mostly been designed/used for identifying the latent space of 547 

images, the most relevant examples including the citizen science natural history observational 548 

platform iNaturalist (www.inaturalist.org) and classification of ants (Boer and Vos 2018). Here 549 

we show that VAEs, which leverage neural networks to learn a probability distribution of the 550 

data, can learn phylogenetic structure with the latent variables. In contrast to t-SNE, VAEs are 551 

nicely derived from formal Bayesian probability theory, and can hence be used to score the 552 

probability that the new data belongs to a trained set of data or is a new species. The standard 553 

deviation around samples/clusters is an inherent result of a VAE analysis and visualization 554 

makes the assessment of cluster distinctiveness or uncertainty relatively straightforward. One 555 

drawback is that it is not straightforward when to stop training a VAE. Overtraining a VAE can 556 
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lead to overfitting the data, which results in clusters that are still present, but the probability 557 

distribution over the data is less general, and hence cannot be used reliably for downstream 558 

analysis. One solution is to partition a small fraction of the training data as a validation set, 559 

which can be used to determine when training should be stopped, a technique in ML known as 560 

early stopping (Goodfellow et al. 2016), although we use a “dropout” approach to prevent 561 

overfitting. Given results presented here, the robustness of output to parameter variation, and its 562 

Bayesian nature, VAEs are very promising for future incorporation into systematic applications. 563 

Data visualization is an important aspect of empirical research. With genetic data, 564 

whether used as loci or SNPs, this can be in the form of a phylogeny or via a dimensionality 565 

reduction method. Regardless of whether downstream clustering is performed, unsupervised ML 566 

methods like t-SNE and VAE offer excellent options for relatively quick and informative data 567 

visualization that can help examine uncertainty in a priori groupings or recognize 568 

misidentifications and paraphyly, both of which are problematic for species hypotheses if data 569 

are destined for downstream model-based analyses. The placement of hybrid populations of Uma 570 

and the arrangement of assignment uncertainty in Phrynosoma are displayed in low-dimensional 571 

space in spatially meaningful ways. The recently developed Uniform Manifold Approximation 572 

and Projection method (McInnes and Healy 2018) is a dimensionality reduction technique 573 

similar to t-SNE but with numerous benefits including better preservation of global structure and 574 

potential embedding in larger dimensional space benefitting downstream clustering. 575 

Unsupervised ML methods do not make assumptions about data type (e.g., genetic versus 576 

morphological, etc.); data are merely treated as data. If approaches that are not specifically 577 

designed for a particular data type successfully identify/corroborate a priori species, the resulting 578 

species decisions are more robust. However, the underlying assumption is that the analyses are 579 
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operating at the species level. As with many dimensionality reduction techniques, unsupervised 580 

ML methods will uncover any underlying structure regardless of the taxonomic level or type of 581 

data. As such, integrative taxonomy with multiple data types and analytical approaches is ideal. 582 

Conversely, this insensitivity to taxonomic scale makes unsupervised ML relevant to population 583 

level analyses and phylogeography as well as species delimitation in taxa across varying 584 

divergence times, for example, divergences of ~20 Ma in the Metanonychus setulus group down 585 

to much more recent species divergences of <1 Ma reported for Uma (Gottscho et al. 2017).  586 

An additional appeal of some ML approaches is their ability to be conducted in a “semi-587 

supervised” manner, where some samples can be labeled (e.g., assigned to a species) while 588 

others are left unassigned. For example, semi-supervised analyses could be used for species 589 

assignment of samples with unknown determination, like females of Metanonychus, or in taxa 590 

where the vast majority of specimens are known from juveniles that cannot be identified to 591 

species (e.g., Hedin et al. 2018). While fully supervised approaches have been used for this same 592 

reason, for example with COI barcoding (e.g., Weitschek et al. 2014; Archer et al. 2017), 593 

utilizing a semi-supervised ML approach (e.g., McInnes and Healy 2018) saves the need for 594 

creating a training dataset and associated assumptions. In either case, given the increasing 595 

incorporation of museum specimens in genomic analyses (McCormack et al. 2016; Blaimer et al. 596 

2016; Ruane and Austin 2017; Sproul and Maddison 2017) it is now feasible to directly include 597 

type specimens in species delimitation. In the case of semi-supervised methods, type specimens 598 

(or specimens from type localities, etc.) can be included in analyses as labeled data while all 599 

other samples are left unlabeled, or in a supervised approach, data from type specimens could be 600 

used in training dataset construction.  601 
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If model testing is integral to the study it seems more logical, particularly in cases where 602 

genetic data is the only reliable way to assess species limits (i.e., cryptic species), to rely on 603 

algorithms that utilize prior information in the form of training data based on parameters 604 

associated with the particular biological characteristics of a given organismal type, thus taking 605 

the biology of the organism more directly into account. For potential future analyses of SRE 606 

harvestmen using supervised ML methods, training data could consist of multiple “curated” SRE 607 

datasets where species are known and well-supported, which would then be used for SRE taxa 608 

with unknown or uncertain numbers of species. While CLADES oversplit Metanonychus 609 

supporting every individual as a species, we do not see this as a negative for the approach, but 610 

rather as imperative to create and use curated training datasets reflecting the biological 611 

characteristics of the study organism to fully leverage the power of this approach. More recently, 612 

Smith and Carstens (2018) developed delimitR, a supervised ML approach that treats species 613 

delimitation as a classification problem, using the binned multidimensional Site Frequency 614 

Spectrum as the predictor variable to build an RF classifier that can distinguish among different 615 

speciation models, the response variables, selecting the model with the most votes. Training data 616 

is simulated based on specification of several priors (guide tree, population size, divergence time, 617 

migration) either known or estimated for the particular study system. DelimitR is a promising 618 

approach as priors are used to create the simulated data for classifier construction, making the 619 

analysis more specific to the biology of the focal taxon. 620 

In general, unsupervised ML approaches offer the benefits of better data visualization in 621 

two-dimensional space and the ability to accommodate various data types. Like current methods 622 

combining multiple data types into a single analysis (e.g., Guillot et al. 2012; Solis-Lemus et al. 623 

2015), it may be feasible to do an integrative unsupervised ML analysis where various data types 624 
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(e.g., morphological, genetic, chemical profiles, etc.) are combined into a single dataset for 625 

downstream clustering. Many ML algorithms are well-suited for species delimitation, providing 626 

promising avenues of incorporation into standard systematics protocols and excellent resources 627 

are available for implementation (e.g., http://scikit-learn.org, https://keras.io, 628 

www.tensorflow.org). ML algorithms, even those designed for image analysis or pattern and text 629 

recognition, all seek to identify and learn the underlying structure of input data via 630 

dimensionality reduction of some form. This can be leveraged for all data types in diverse ways, 631 

for example, representing a multidimensional vector of population genetic statistics as an image 632 

to be analyzed via neural networks (Kern and Schrider 2018). As recently discussed in regard to 633 

population genetics (Schrider and Kern 2018), with a basic understanding of the types of ML 634 

algorithms, the applications to species delimitation become obvious and exciting with the 635 

potential to aid in all aspects of systematic biology. 636 

Learning from Metanonychus 637 

Multiple data types and analytical approaches favor six species in the setulus group, 638 

providing robust final species hypotheses. Although some analyses favored more than six 639 

species, we prefer more conservative species hypotheses that are robust to data and analysis type 640 

(e.g., Carstens et al. 2013). As a result of integrative species delimitation, we elevate all 641 

subspecies of the setulus group to full species, now consisting of M. idahoensis, M. navarrus 642 

new comb., M. cascadus new comb., M. mazamus new comb., and M. setulus. In addition, all 643 

analyses supported the northern clade of the setulus subspecies as a distinct species, which we 644 

describe as M. xxxx n. sp. Derkarabetian and Hedin (Appendix 1). Based on examination of type 645 

specimens, M. obrieni is synonomized with M. navarrus (Appendix 1). The nigricans group had 646 

too few samples for reliable clustering when analyzed alone. However, both the morphological 647 
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divergence seen in male genitalia and nuclear divergence supports elevating the M. nigricans 648 

subspecies to full species: M. nigricans, and M. oregonus n. comb. Based on our results, we 649 

reiterate that the subspecies rank common in several groups of SRE harvestmen are conservative 650 

estimates considering these “subspecies” also show fixed morphological differences that were 651 

used for the initial diagnosis.  652 

Metanonychus is a relatively ancient genus, persisting in mesic forests of the Pacific 653 

Northwest since the late Oligocene, and its species are relatively old dating up to ~10 Ma with 654 

extremely high levels of population divergence. From a biogeographical perspective, it is 655 

interesting to note that M. idahoensis from northern Idaho is recovered as sister to M. navarrus 656 

from northern California, to the exclusion of all taxa from Oregon and Washington. The break 657 

between mesic forests of Idaho and coastal Oregon/Washington is found in numerous taxa 658 

typically attributed to the formation of the Cascades dating to 2-5 Ma (Brunsfeld et al. 2001, and 659 

references therein). Divergence dating analyses here estimate that the split between M. 660 

idahoensis and M. navarrus is much older, dating to ~12 Ma (average K2P-corrected COI 661 

divergence of 16.8%) suggesting the possibility of an older connection and divergence between 662 

these regions. Further exploration of this result in the context of Pacific Northwest biogeography 663 

is needed (e.g., Brunsfeld et al. 2001, Steele et al. 2005; Carstens and Richards 2007). These 664 

results reaffirm the importance of SRE taxa and their inclusion in exploring and elucidating, 665 

sometimes unexpected, patterns of regional biogeography and geologic history (e.g., Boyer and 666 

Giribet 2009; Hedin et al. 2013; Emata and Hedin 2016). 667 
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