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Abstract 

Shaping of the proteome by alternative translation is an important mechanism of post-

transcriptional gene regulation. It can lead to the expression of multiple protein isoforms 

originating from the same mRNA. Here we show that a novel, abundant and long isoform of 

the stress/p38MAPK-activated kinase MK2, a key regulator of transcription, migration, death 

signaling and post-transcriptional gene regulation, is constitutively translated from an 

alternative CUG translation initiation start site located in the 5’UTR of its mRNA. GC-rich 

sequences and putative G-quadruplex structures influence the usage of that codon as a 

translation initiation start site and the RNA helicase eIF4A1 is needed to ensure alternative 

isoform translation. We recapitulated the usage of the alternative start codon and determined 

the molecular properties of the short and a long MK2 isoforms. Phenotypically, only the short 

isoform phosphorylated Hsp27, supported migration and stress-induced immediate early gene 

(IEG) expression. Interaction profiling by quantitative mass-spectrometry revealed short 

isoform-specific binding partners that were associated with migration. In contrast, the long 

isoform contains additional putative phosphorylation sites in its unique N-terminus. In sum, 

our data reveal a longer and previously non-described isoform of MK2 with distinct 

physiological properties originating from alternative translation. 
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Introduction 

Post-transcriptional gene regulation (PTGR) constitutes an important toolbox used to shape 

gene expression upon intra- and extracellular cues. PTGR impacts on mRNA processing, 

localization, export, stability and translation. Canonical translation of mRNAs starts on AUG 

translation initiation sites (TIS) that are recognized by ribosomes through scanning of the 5’ 

UTR leader sequence and is dependent on the cap-structure. Translation initiation and the 

production of protein isoforms by alternative translation mechanisms are highly regulated. 

They are influenced by sequences in the 5’ untranslated region (5’UTR) bearing internal 

ribosomal entry sites (IRES), secondary structures, upstream open reading frames (uORFs) or 

by “leaky scanning” of sequences preceding the initiator AUG (Kozak sequence), leading to 

the usage of alternative start codons (1,2). Additionally, numerous translation events at non-

AUG start codons have been detected in mRNAs determining alternative translation initiation 

sites (aTIS) sequences (3,4). The mechanisms by which ribosomes select non-AUG codons 

for translation initiation might rely on uORFs, structured 5’UTRs (5) or translation initiation 

auxiliary factors and RNA helicases such as eIF4A1, eIF2A or Ddx3 (6-8). Taken together 

these features of translation explain in part how proteome diversity in cells can be generated 

from a limited number of transcripts. 

Protein kinases and associated signal transduction pathways play an important role in 

regulating transcriptional and post-transcriptional events. A well-characterized pathway is the 

p38MAPK-MK2-signaling module. The p38MAPK-activated kinase MK2 (or MAPKAPK2) 

phosphorylates substrates such as the RNA-binding protein and PTGR master regulator 

tristetraprolin (TTP) and the transcription factor serum response factor (SRF) (9). Numerous 

reports characterize the diverse functions of MK2 in inflammation and stress signaling (10), 

also suggesting its role as a checkpoint kinase in cancer (11). Powerful tools for these studies 

are the MK2 knockout (MK2 KO) (12) and the MK2/3 double knockout (MK2/3 DKO) (13) 
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mouse models and, consequently, many phenotypes could be detected with the help of these 

animals. These phenotypes range from defects in immediate early gene responses over 

impaired cytokine production and regulation of apoptosis/necroptosis to non-coding RNA 

regulation and defects in migration. The above mentioned phenotypes could be linked to 

specific substrates of MK2, such as the above mentioned TTP (14) and SRF (15), RIPK1 (16-

18) and RBM7 (19,20). 

Western blot detection of endogenous MK2 often gave two bands where only the lower band 

represented the apparent molecular mass of the kinase (21,22). Interestingly, ectopically 

expressed MK2 does not display the second, slower migrating band. To date, no information 

about the nature of this MK2 isoform expression is available. By exploiting RNA sequencing 

(RNASeq), ribosome footprinting (RiboSeq) and by conducting biochemical assays, we show 

that the long MK2 isoform constitutively arises from alternative translation of an in-frame 

upstream CUG alternative translation initiation site (aTIS) in the highly structured and 

conserved GC-rich 5’UTR. The CUG is surrounded by an alternative Kozak sequence, and 

the helicase eIF4A1 is needed to secure translation of both the CUG- and AUG-initiated 

isoforms. Mechanistically, the long and short MK2 isoforms engage in distinct protein-protein 

interactions and rescue MK2-deficiency phenotypes to different extents in vivo. Therefore, 

our results resolve the controversy surrounding an additional high molecular weight MK2 

band often noted since its discovery in the 1990s (21,22). 
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Results 

Translation of MK2 from an alternative start codon in the 5’UTR of its mRNA 

MK2 is a ubiquitously expressed p38MAPK-activated protein kinase (10). When analyzing its 

expression in different cell lines of murine and human origin or in mouse tissues by Western 

blotting, a multiple band pattern is detected (Fig. 1A,B, S1). Of note, the ratio of isoform 

expression is distinct and the intensities of the lower and upper band vary between tissues and 

cell lines. In murine cells and tissues, two predominant bands of approximately 50 and 60 kDa 

can be detected in Western Blot by using an anti-MK2 antibody directed towards the C-

Terminus of human MK2 (Fig. 1A,B). The low molecular weight isoform corresponds to the 

hitherto known open reading frame (ORF) of the gene, whereas the origin and function of the 

slower migrating isoform is obscure, and only one transcript existed in the NCBI database 

(NM_008551.2). Importantly, both bands were found to be absent in cells from MK2 

knockout (KO, described in (12)) and MK2/3 double knockout mice (DKO, described in (13)) 

(Fig. 1A, S1A). In human cell lines two dominating bands of around 55 kDa together with 

two less intense bands at around 65 kDa were detected (Fig. 1A, S1C,D). Two similar human 

MK2 transcripts (NM_004759.4 and NM_032960.3) can be found in the database and arise 

from alternative splicing. shRNA-mediated knockdown of human MK2 in HT29 cells 

removed all of these bands confirming that they were derived from the same gene (Fig. S1D). 

For the murine MK2-related protein kinase MK3 only one specific protein product is detected 

and this is absent in MK2/3 DKO cells (Fig. S1A,B). Taken together, we concluded that the 

different MK2 protein bands can be assigned to distinct protein isoforms that may originate 

from post-translational modifications of MK2, alternative splicing or alternative translation 

events.  

To test the hypothesis of the existence of alternative translation products, we exploited 

existing RNA sequencing (RNASeq) and ribosome footprinting (RiboSeq) data from different 
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cell lines. Initially, our own data from murine bone marrow-derived macrophages (BMDMs) 

(23) were reanalyzed and revealed the existence of an MK2 transcript with an extended 

5´UTR that also contained several ribosome footprints (RFPs) within this region (Fig. 1C). 

This supported the idea of the existence of alternative translation events in the 5´UTR. In fact, 

an extended MK2 transcript that corresponded to the transcript length we detected by 

RNASeq, was recently deposited at NCBI (NM_008551.2) and replaced the previously 

annotated transcript having only a very short 18 nt 5´UTR (NM_008551.1; Fig. 1C). The 

analysis of this transcript showed a potential in-frame extension of the hitherto known MK2 

ORF in the upstream direction (Fig. 1D). Within this extension we found two putative 

alternative translation initiation start sites (aTIS) at positions -141 and -309, coding for 

Leucine (CUG) and Valine (GUG), respectively. The CUG and GUG are surrounded by the 

alternative Kozak-sequences GCCGAGCCUGGAG and GCAGCCTGUGACG (3). 

Consistent with the Western blot results, RFPs and sequences analyses revealed an in-frame 

extension in the 5’UTR of the human MK2 transcript bearing the two alternative start codons 

CUG and GUG (Fig. S2A,B). Interestingly, in the human transcript, the CUG is in almost the 

same distance to the AUG (-144bp, -48Aa). Overall, more than 80% sequence identity within 

the first 200bp upstream of the start AUG codon exists between the murine and human 5’UTR 

(Fig. S2C). Further sequence analyses showed that the 5´UTR extension is evolutionary 

conserved among species, indicating a distant origin for alternative translation of MK2 

isoforms (Supplementary File S1). This observation was supported by analyzing published 

RiboSeq data sets of murine and human cells that were either treated with cycloheximide, 

harringtonine or lactimidomycin before sequencing of ribosome-protected mRNA fragments 

(8,24-29). Since mRNA bound ribosomes are frozen at translation initiation start sites by 

these treatments as previously exemplified in pioneering RiboSeq studies (30,31), the 

existence of footprints in the 5´UTR of MK2 strongly argues for alternative translation events. 
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Indeed, we could observe such footprints in murine and human cell lines in the 5’UTR of 

MK2 (Fig. S3 and 4).  

To validate the existence of an N-terminally extended MK2 isoform due to alternative 

translation initiation, we sought to purify endogenous MK2 from murine RAW264.7 cells that 

express almost equal levels of both MK2 isoforms (Fig. 1A,E). By using a MK2-Nanotrap 

(Chromotek, München, Germany) we were able to enrich and purify considerable amounts of 

endogenous MK2 from these cells and subsequently analyzed the purified protein by mass-

spectrometry (Fig. 1E,F). We readily identified peptides derived from the predicted in-frame 

5´UTR extension originating from the CUG aTIS at position -141 (Fig. 1F). The detection of 

peptides derived from sequences further upstream of this CUG indicates that also the GUG in 

position -309 or other codons may be used for alternative translation initiation. In sum, these 

results confirmed the existence of at least one aTIS at position -141 in the 5´UTR of the MK2 

transcript resulting in the translation of a minimum of two distinct MK2 isoforms in murine 

and human cells from one mRNA. 

 

Mechanistic insights into regulation of MK2 translation  

To further characterize the usage of the putative aTIS at position -141 of MK2 mRNA, we 

fused the extended endogenous murine 5´UTR with the known ORF sequence of murine MK2 

and expressed the construct in HeLa and U2OS cells. The high GC-content of the 5´UTR 

(>85%) prompted us to introduce a synthetic DNA flanked by restriction sites (Fig. S5A). 

Expression of the 5´UTR-MK2-ORF construct resulted in the two-band pattern seen for 

endogenous murine MK2 independent of the expressing cell line (Fig. 2A, S5B). Mutagenesis 

of the putative aTIS in positions -141 and -309 resulted in an altered band pattern and 

revealed that the triplet CUG at -141 is used for alternative translation initiation under these 
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conditions leading to expression of the long isoform (Fig. 2A). Of note, destroying the 

alternative Kozak-sequence surrounding this aTIS (mutation GAG to CAU) impaired the 

expression of the long isoform (Fig. 2A, lane 6). Interestingly, it was even possible to 

generate an extralong MK2 isoform (super-long) by mutating -309 GUG to AUG (Fig. 2A, 

lane 7).  

Next, we explored the underlying molecular mechanism responsible for differential MK2 

isoform translation in vivo. Human cells treated with the anti-cancer drug silvestrol respond 

with a decrease in the translation of a selective set of mRNAs due to inhibition of the RNA 

helicase eIF4A1 (32,33). Amongst them, MK2 mRNA is a major target (33). Additionally, it 

was shown that mRNAs commonly regulated by this mechanism, contain long and GC-rich 

5’UTRs with G-rich quadruplex structures (32,33). We were able to detect putative sequences 

that give rise to such structures within the 5’UTR of human and murine MK2, located within 

the coding and assumed non-coding region of the elongated 5’UTR (Table S1). We therefore 

speculated that the helicase eIF4A1 might play a role in selective MK2 isoform translation. 

Upon depletion of eIF4A1 in murine and human cells a marked decrease in translation of both 

MK2 isoforms was observed (Fig. 2B, S6A). Similar results were obtained in WT MEFs, 

NIH3T3 and HEK293T cells (data not shown). To additionally prove a role for the GC-rich 

clusters in isoform translation, we generated a mutant of the above-mentioned construct 

lacking the first three GC-rich clusters (positions 21, 96 and 128, see Table S1 and schematic 

representation of the constructs, Fig. S6B) upstream of CUG in -141 position (DGC 5’UTR). 

These deletions were accompanied by the almost complete abrogation of long isoform 

translation (Fig 2C). It was proposed that the translation initiation auxiliary factor eIF2A is 

important for non-AUG translation initiation (7) and expression of PTEN-alpha isoforms are 

dependent of this factor (34,35). However, we did not observe any effect of eIF2A depletion 

on MK2 isoform translation (Fig. S6C). Epigenetic markers of mRNAs, such as m6-adenosine 
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methylation, influence stability and translation of modified mRNAs (36). Human MK2 

mRNA is heavily methylated near the stop codon and translation of MK2 mRNA was 

reported to be strongly decreased upon depletion of the methyltransferase Mettl3 (37,38). 

However, we were not able to support these findings, as knockdown of Mettl3 in murine and 

human cell lines did not change the normal pattern of MK2 translation (Fig. S6D). In 

summary, we demonstrate a role for the RNA helicase eIF4A1 and putative G-rich 

quadruplex structures in the generation of distinct MK2 isoforms from a single mRNA species 

(cf. Fig. 2D).  

 

Functional characterization of MK2 isoforms 

In order to address the physiological consequences of MK2 isoform expression, we stably 

reconstituted MK2-deficient mouse embryonic fibroblasts (MEFs) cell lines (13) with the 

short, the long, the super-long isoform or with both (long and short) isoforms of MK2 (Fig. 

3A). First, we assessed the relative stability of the two MK2 isoforms after a cycloheximide-

induced block of de novo protein translation (Fig. 3B). As seen, the longer variant was 

considerably more stable than the short isoform in this assay. Both GFP-tagged isoforms 

localized similarly in non-stressed cells (Fig. S7A), and when we activated p38MAPK by 

anisomycin stress, we observed their similar redistribution to the cytosol confirming previous 

observations (summarized in (39)). Monitoring the redistribution of the super-long isoform 

was not possible since transfection of this construct was accompanied by short and long 

isoform expression (Fig. S7A). We then tested the ability of the isoforms to phosphorylate the 

known MK2 substrates Reticulon 4B/NOGO-B and Hsp27 (also HSBP1 or Hsp25 in mice) 

upon activation by anisomycin in cells (Fig. 3C, S7B). The specificity of phosphorylation was 

assessed with chemical inhibitors of p38MAPK- and MK2 (Fig. 3C). While NOGO-B was 

readily phosphorylated by both isoforms, phosphorylation of the small heat shock protein 
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Hsp27, a bona fide substrate of MK2, could only be detected for the short MK2 isoform, (Fig. 

3C). This finding indicated the intriguing possibility that both isoforms differed in their 

substrate specificity. 

Taken together we were able to reconstitute MK2-deficient cells with individual isoforms. 

Both murine versions of MK2 share molecular properties such as the ability to translocate 

from the nucleus to the cytoplasm but differ in their stability and substrate specificity. 

 

Phenotypical consequences of MK2 isoform expression 

Expression of both isoforms differ markedly among mouse tissues (Fig. 1A,B). Therefore, we 

speculated on physiological relevant differences and attempted to explore the phenotypical 

consequences of isoform expression in MK2- and MK2/3-deficient MEFs. We initially tested 

proliferation of the differently rescued cell lines (Fig. S8). Cells grew to a similar extent 

independently of the isoform used for rescue. We then checked the induction of the IEGs 

early growth response 1 (Egr1), FBJ osteosarcoma oncogene (cFos) and tristetraprolin (TTP 

or Zfp36) upon anisomycin stimulation of MK2/3-deficient MEFs rescued with the different 

isoforms of MK2 (Fig. 4A). While expression of the short isoform markedly elevated the 

expression of all of these genes, the long isoform of MK2 was not able to induce IEGs. Of 

note, we were not able to detect differences in SRF phosphorylation by the isoforms (data not 

shown) indicating that other MK2-dependent mechanisms regulate IEG transcription under 

these conditions. Since it is known that the N-terminus of MK2 plays an important role in cell 

motility (40), we also assayed for cell migration in the rescue cell lines using a scratch assay 

(Fig. 4B). As seen, the MK2-associated migration phenotype could only be rescued by the 

short but not the long MK2 isoform, consistent with our observation that only the short 
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isoform of MK2 is competent for phosphorylation of the migration associated substrate Hsp27 

(Fig. 3C).  

Collectively these results highlighted differential functional properties of alternatively 

translated MK2 isoforms. 

 

MK2 isoform interaction profiling 

The phenotypic differences in our rescue cell lines suggested that the two MK2 isoforms 

could have overlapping as well as unique interaction partners. As a control for the proficiency 

of both proteins, we first immunoprecipitated the isoforms with MK2-Trap beads and 

confirmed their well-characterized interaction with the upstream activating kinase p38MAPK 

(Fig. 4C). We then used quantitative mass-spectrometry to analyze the interaction partners of 

both isoforms in cells that were left untreated or treated with combinations of anisomycin and 

MK2 inhibitor (MK2i: PF-3644022). This approach allowed us to compare MK2 activity-

dependent interactions partners of the two MK2 isoforms. While we detected only few 

isoform-specific interactions in resting cells, stress-induction by anisomycin, especially in the 

combination with MK2 inhibitor, revealed a strong bias towards the short MK2 isoform for 

interaction with proteins of the myosin family (Myh1, Myh4, Myh8, Myl1, Myl12a and 

Mylpf) and the transcriptional machinery (Med23, Cnot10) (Fig. 4D, Supplementary File S2). 

GO term analysis (data not shown) revealed more proteins, such as Smtn, Arpc2 or Ddx58, 

involved in migration to selectively interact with the short MK2 isoform (Fig. 4D). Given the 

fact that MK2-dependent migration is only rescued by the short isoform, which is also 

uniquely capable of phosphorylating Hsp27 upon stress (Fig. 3B), we speculate that these 

short isoform-specific interactions underlie the migration of MK2-proficient cells. In line with 

our biochemical experiment (Fig. 3C), our proteomics analysis confirmed that both MK2 
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isoforms readily interact with p38alpha/beta (Mapk11/14) in a stimulus-independent manner 

(Fig. 4D).  

Taken together, these results revealed that the two MK2 isoforms have both common and 

distinct interaction partners. The specific interactions of the short isoform with migration-

associated proteins and transcriptional regulators may explain why some MK2-dependent 

phenotypes are only rescued by this MK2 variant.  
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Discussion 

The p38MAPK-activated kinase MK2 is a central regulator of immediate early genes 

transcription and post-transcriptional gene regulation. Here we show through a combination 

of in silico and experimental methods that murine and human MK2 itself is regulated post-

transcriptionally at the level of translation. A long isoform of the protein is constitutively and 

alternatively translated from an in-frame CUG initiation site (aTIS) upstream of the known 

AUG initiation codon that gives rise to the known canonical short isoform of MK2. The 

conserved 5’UTR of the MK2 transcript has a high GC-content and the usage of the CUG 

aTIS is potentially dependent on surrounding G-rich quadruplex structures. Consequently, 

translation of both isoforms is dependent on the RNA helicase eIF4A1.  

By introducing point mutations in either the CUG or the AUG we were able to change the 

preference of translation initiation site. The aTIS CUG in position -141 is surrounded by an 

alternative Kozak-sequences (3). Importantly, translation starting from this CUG was 

abrogated when the adjacent downstream GAG triplet was mutated into CAU, confirming the 

need for the Kozak-sequence. Our initial in silico analyses of ribosome footprinting data 

prompted us to investigate alternative translation in the previously uncharacterized 5’UTR of 

the murine MK2 transcript. We identified ribosome footprints around the CUG triplet in the 

human and murine MK2 5’UTR in cells treated either with cycloheximide, lactimidomycin 

and harringtonine. This showed us that we not only detect translating, but also initiating 

ribosomes occupying these sites. Detection of endogenous peptides by mass-spectrometry that 

could be mapped to the potential in-frame sequence upstream of the AUG start codon 

supported the in silico analyses. 

Two reports identified MK2 as a target of eIF4A1 with G-rich quadruplex structures in its 

5’UTR, by either knocking down or inhibiting the RNA helicase with the anticancer drug 

silvestrol (32,33). RNA G-rich quadruplex structures in 5´UTRs are known to influence 
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translation (41). We found six potential sites within the full and extended 5´UTR (Table S1). 

The human MK2 sequence bears the optimal 12-mer G-rich quadruplex sequence and its 

translation efficiency is strongly decreased upon treatment with silvestrol (33). Indeed, our 

data confirms that eIF4A1 and GC-rich sequences that might form G-rich quadruplex 

structures regulate MK2 translation. More specifically, these sequences upstream of the AUG 

translation initiation site, lead to the usage of a CUG triplet as an alternative translation 

initiation site within the 5’UTR of the MK2 mRNA. By deleting the GC-rich sequences 

upstream of the CUG, translation of the high molecular weight MK2 isoform was abrogated. 

The data could suggest that the scanning mechanism of the ribosome is slowed down and 

consequently a leaky scanning leads to the usage of the CUG for translation initiation. This 

mechanism appears evolutionarily conserved, yet murine cells produce relatively more of the 

long and alternative isoform compared to their human counterparts. This correlates with the 

fact that the human 5’UTR is shorter than in the murine transcript and the CUG is only 

surrounded by one putative upstream G-rich quadruplex structure. The resulting decrease in 

structural barriers is likely accompanied by less translation from the aTIS and, consequently, 

the production of relatively lower amounts of the long MK2 isoform in human cells. Of note, 

the balance between MK2 isoform production differs markedly between murine tissues and 

cell lines, suggesting that these proteins have some non-overlapping functions in vivo.  

mRNA adenosine methylation (N6-methyladenosine or m6-A, respectively) of the MK2 

mRNA near the stop codon by METTL3 was reported to lower translation without affecting 

the mRNA level, and this effect was independent of m6-A reader proteins such as YTHDF1,2 

and 3 (37,38). In the present study, we could not confirm an involvement of METTL3 in 

general or specific MK2 isoform translation. Examples of in-frame N-terminal protein 

extensions originating from alternative translation starting in the 5’UTR have previously been 

described i.e. for PTEN (34,35) or Thioredoxin/Glutathion (42). It was suggested that eIF2A 
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is a specificity factor for the translation of the long PTEN alpha isoform (34,35) and a general 

factor for non-AUG translation initiation (7,8). To this end we could not observe an 

involvement of eIF2A in elongated MK2 isoform translation. The model in Figure 2D 

summarizes our investigations on MK2 translation and it remains to be clarified whether the 

RNA helicase Ddx3 (6) is a regulatory factor for MK2 isoform translation alone or in 

cooperation with eIF4A (43).  

The two MK2 isoforms identified in this report are highly similar in terms of their activation 

by and interaction with the upstream kinase p38MAPK. The long MK2 isoforms had a 

decreased turnover as compared to its short counterpart, but it failed to phosphorylate the 

MK2 bona fide substrate Hsp27 upon anisomycin stimulation. This is similar to the different 

p38MAPK isoforms, that exhibit distinct substrate specificities although displaying a high 

degree of amino acid sequence identity (44). Testing potential phenotypical consequences of 

selective isoform expression in an MK2-deficient background revealed that only 

reintroduction of the short isoform or both isoforms in parallel (equal to the wildtype 

situation) can rescue migration defects and IEGs expression. By determining the interaction 

partners of MK2 isoforms, we were able to shed some light on these phenotypical differences. 

The preferred binding of the short MK2 isoform to proteins of the cytoskeleton and the 

transcription machinery correlates with the unique ability of this isoform to rescue migration 

and transcriptional defects. Both processes are well-established MK2-dependent responses 

(15,45) and the importance of the canonical MK2 N-terminus was confirmed here (40). 

Although not elucidated in this study, the long isoform of MK2 is likely to have unique 

functions as well, which are not supported by the canonical isoform. Of note, the unique N-

terminal extension of this protein contains putative proline-directed serine and threonine 

phosphorylation sites, that we could detect in their phosphorylated form in our mass-

spectrometry data set. Interestingly, the phosphorylation of these sites seems not induced by 
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anisomycin-stimulated p38MAPK activation. Such additional and isoform-specific 

modifications could potentially allow for the recruitment of unique substrates, and the 

assignment of unique functions of the long MK2 isoform clearly warrants future investigation. 

We therefore entertain the possibility that the extended N-terminus is targeted by other 

proline-directed kinases than p38MAPK such as cyclin-dependent kinases (CDKs) (46). We can 

only speculate on the consequences of extended N-terminus phosphorylation, but want to 

stress that expression of the short isoform alone was often accompanied by a “super-rescue” 

of MK2-deficiency compared to the rescue by expression of both isoforms together (see Fig. 

4A,B).  

Future phospho-proteomic studies could shed additional light on substrate specificities for the 

two MK2 isoforms and their consequences in vivo. In addition, the generation of gene-edited 

mice that exclusively express either MK2 isoform could help to resolve these outstanding 

issues. 

In conclusion, our work reveals the abundant alternative translation of a hitherto unrecognized 

MK2 isoform with distinct functional properties, highlighting that the biology of this 

important kinase is still not fully understood. Our work also resolves a long-standing mystery 

surrounding the presence of the additional high-molecular weight MK2 band often detected in 

Western blot (13,21,22).  
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Experimental Procedures 

Tissue culture, cell lines, treatments 

Cells were grown on plates in DMEM or in RPMI for suspension cells in the presence of 10 

% (v/v) FCS, 100 U penicillin G/mL, and 100 mg/mL streptomycin (all purchased from Life 

Technologies) in a humidified atmosphere at 37°C with 5% CO2 supplementation. Treatments 

with stimulators and inhibitors were done at the following final concentrations: Anisomycin, 

10 µg/ml, dissolved in DMSO, Sigma; BIRB796, 1 µM, dissolved in DMSO (Axon 

Medchem); MK2 inhibitor PF3644022 (10µM, Sigma) dissolved in DMSO; Cycloheximide, 

20 µg/ml, dissolved in water, Sigma. For gene expression experiments cells were starved in 

serum-free medium for a minimum of 8h. MK2-deficient and MK2/3 double-deficient MEFs 

were described before (13,15). All other standard laboratory cell lines were either kind gifts or 

obtained from ATCC. 

Isolation of mouse organs/bone marrow-derived macrophages 

Organs of a wildtype and bone-marrow of wildtype, MK2 KO and MK2/3 DKO animals 

(C57BL/6 background) (12)  were isolated after sacrificing them. Handling of mice complied 

with all relevant ethical regulations and was approved by the ethics committees of 

Hannover Medical School. Organs were flash-frozen in liquid nitrogen before lysis. To 

derive macrophages from bone marrow after the femurs of one mouse of each genotype were 

flushed. Cells were then grown in the presence of 10 ng/ml M-CSF for approximately 9-10 

days before using them for further experiments (14). 

Transfection of cell lines 

Cells were seeded the day before transfection to reach 50% density on the next day. The 

medium was then changed to penicillin/streptomycin-free. DNA was mixed in Opti-MEM 

(Life Technologies) and complexed with polyethylenimine (PEI, 1 µg/ml, pH 7.0, Sigma). 

After a minimal incubation of 10 min at room temperature the mix was added drop-wise to 
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the cells. Medium was changed to full medium 6 h and cells were treated 24 h post-

transfection and harvested. 

For microscopy experiments using U2OS cells transfections were carried out according to the 

manufacturer using FUGene6 (Promega). 

siRNA transfections 

All cell lines were transfected using HiPerFect (Qiagen), RNAiMAX (Thermo Fisher 

Scientific) or Lipofectamin 2000 (Thermo Fisher Scientific/Invitrogen) according to the 

manufacturer's instruction. The following siRNAs were used: 

AllStars Negative Control siRNA, Qiagen SI03650318, murine sieIF4A1: SMARTpool 

siGENOME (M-060466-01-0005), Dharmacon, human siEIF4A1: 

CUGGCCGUGUGUUUGAUAUdTdT (47), murine siMettl3 #1: 

AGCUACCGUAUGGGACAUUAA (Qiagen FlexiTube siRNA SI01304135 Mm_Mettl3_1), 

murine siMettl3 #2: CUGGACUGCGAUGUGAUUGUA (Qiagen FlexiTube siRNA 

SI01304142 Mm_Mettl3_2), human siMETTL3 #1: CAGGAGAUCCUAGAGCUAUUA 

(Qiagen FlexiTube siRNA SI04241265 Hs_METTL3_6), human siMETTL3 #2: 

CUGCAAGUAUGUUCACUAUGA (Qiagen FlexiTube siRNA SI04317096 

Hs_METTL3_7), murine sieIF2A #1: UGGAAAUCUUCGAGGACAAdTdT , murine 

sieIF2A #2: UGAAUUUGUUGGCAGGAAAdTdT, human siEF2A #1: 

AGAAAGUGCUGUAGUGCAAdTdT, human siEIF2A #2: 

UGUUAAACCCAUUGGUAUAdTdT. siRNAs were either synthesized by Eurofins/MWG 

or purchased from the indicated supplier. 

Generation of stable shRNA knockdown cell lines 

Stable HT29 cells were previously described (48). Two different lentiviral particles (Mission 

shRNA lentiviral particles (Sigma), #TRCN0000002282 and # TRCN0000002283) together 

and a control lentiviral particle (Non-Target shRNA Control) were used. After transduction, 
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cells were selected with puromycin (2 µg/mL) for 2 weeks and consequently tested for MK2 

expression by Western Blot. 

Cloning  

A detailed description of the cloning strategy to express MK2 with its full-length 5’UTR is 

shown in Fig. S5A. The indicated 441 bp 5’UTR-MK2 fragment having NheI and PstI sites 

was synthesized by GENEART GmbH (Thermo Fisher Scientific). The peGFP-C1-MK2 and 

pMMP-MK2-IRES-eGFP constructs for expression in mammalian cells and for retroviral 

transduction were described before (13,49). 

SDS-PAGE and Western Blot 

If not stated differently proteins were separated on 10% SDS acrylamide gels and transferred 

to nitrocellulose membrane by semi-dry transfer. For Western Blot developments blocking 

and secondary antibody incubations were done for 1h at room temperature in 5% dry-milk 

powder dissolved in PBS containing 0.1% Tween 20 (PBS/T). Primary antibodies were 

usually incubated overnight at 4°C and diluted in 5% BSA dissolved in PBS/T. Antibodies to 

detect specific proteins: anti-MK2 (CST, #3042 and #12155), anti-pMK2T222 (CST, #3316), 

anti-pMK2T334 (CST, #3041), anti-MK3 (CST, #3034), anti-p38 (CST, #9012), anti-

pp38T180/Y182 (CST, #4511), anti-NOGO-B (R+D Systems, AF6034), anti-Hsp27S82 (CST, 

#9709), anti-GAPDH (EMD Millipore, #MAB374), anti-Tubulin (Sigma, #T6199), anti-eEF2 

(SCBT, sc-13004), anti-p150 (BD Biosciences, #610473), anti-Mettl3 (CST, #96391), anti-

eIF4A1 (CST, #2490T), anti-eIF2A (Proteintech, 11233-1-AP), anti-GFP (SCBT, sc-9996) 

and anti-TTP (N-Term) (Sigma T5327) HRP-coupled secondary antibodies were used for 

ECL-based detection of proteins on either a LAS3000 FujiFilm or a Bio-Rad ChemiDoc 

Imaging System.  

MK2 precipitation and LC-MS for the identification of MK2 peptides 
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Precipitation MK2 was done with the help of an agarose MK2-Trap (Chromotek) following 

the manufacturer’s protocol. After final washing of the agarose beads, proteins were eluted 

using 2x SDS loading buffer and incubated for 5 min at 95°C. Eluted proteins were then 

alkylated by addition of acrylamide up to a concentration of 2% and incubation at room 

temperature for 30 min. Samples were then separated on a 10% SDS acrylamide gel. After 

electrophoresis proteins were stained with Coomassie Brilliant Blue (CBB) for 15 min and 

background staining was reduced with water. Specific MK2 lanes were excised and minced to 

1 mm³ gel pieces. Further sample processing was done as described (50). Briefly, gel pieces 

were destained two times with 200 µL 50% acetonitrile (ACN), 50 mM ammonium 

bicarbonate (ABC) at 37°C for 30 min and then dehydrated with 100% ACN. Solvent was 

removed in a vacuum centrifuge and 100 µL 10 ng/µL sequencing grade Trypsin (Promega) 

in 10% ACN, 40 mM ABC were added. Gels were rehydrated in trypsin solution for 1 hour 

on ice and then covered with 10% ACN, 40 mM ABC. Digestion was performed overnight at 

37°C and was stopped by adding 100 µL of 50% ACN, 0,1% trilfluoroacetic acid (TFA). 

After incubation at 37°C for 1 hour the solution was transferred to a fresh sample vial. This 

step was repeated twice and extracts were combined and dried in a vacuum centrifuge. Dried 

peptide extracts were redissolved in 30 µL 2% ACN, 0.1% TFA with shaking at 800 rpm for 

20 min. After centrifugation at 20,000 x g aliquots of 12.5 µL each were stored at -20°C. 

Peptide samples were separated with a nano-flow ultra-high pressure liquid chromatography 

system (RSLC, Thermo Scientific) equipped with a trapping column (3 µm C18 particle, 2 cm 

length, 75 µm ID, Acclaim PepMap, Thermo Scientific) and a 50 cm long separation column 

(2 µm C18 particle, 75 µm ID, Acclaim PepMap, Thermo Scientific). Peptide mixtures were 

injected, enriched and desalted on the trapping column at a flow rate of 6 µL/min with 0.1% 

TFA for 5 min. The trapping column was switched online with the separating column and 

peptides were eluted with a multi-step binary gradient: linear gradient of buffer B (80% ACN, 

0.1% formic acid) in buffer A (0.1% formic acid) from 4% to 25% in 30 min, 25% to 50% in 
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10 min, 50% to 90% in 5 min and 10 min at 90% B. The column was reconditioned to 4% B 

in 15 min. The flow rate was 250 nL/min and the column temperature was set to 45°C. The 

RSLC system was coupled online via a Nano Spray Flex Ion Soure II (Thermo Fisher 

Scientific) to an LTQ-Orbitrap Velos mass spectrometer. Metal-coated fused-silica emitters 

(SilicaTip, 10 µm i.d., New Objectives) and a voltage of 1.3 kV were used for the 

electrospray. Overview scans were acquired at a resolution of 60k in a mass range of m/z 300-

1600 in the orbitrap analyzer and stored in profile mode. The top 10 most intensive ions of 

charges two or three and a minimum intensity of 2000 counts were selected for CID 

fragmentation with a normalized collision energy of 38.0, an activation time of 10 ms and an 

activation Q of 0.250 in the LTQ. Fragment ion mass spectra were recorded in the LTQ at 

normal scan rate and stored as centroid m/z value and intensity pairs. Active exclusion was 

activated so that ions fragmented once were excluded from further fragmentation for 70 s 

within a mass window of 10 ppm of the specific m/z value. Raw data were processed using 

Proteome discoverer (Thermo Fisher Scientific) and murine uniprot/swissprot data bases 

containing common contaminants. Proteins were stated identified by a false discovery rate of 

0.01 on protein and peptide level and quantified by extracted ion chromatograms of all 

peptides. 

MK2 interaction profiling by label-free mass-spectrometry 

Per sample 3 to 4 confluent 15 cm dishes of the corresponding MK2 MEFs were either 

mock-treated (DMSO), pre-treated with the MK2 inhibitor PF3644022 (10µM, Sigma) for 

60 minutes or stimulated with Anisomycin (1µg/ml, Sigma) for 30 minutes before lysis. 

Approximately 5 mg of lysate was administered to MK2-immunoprecpitations using an 

agarose MK2-Trap binding resin (Chromotek). Beads were eluted in 2x Laemmli buffer and 

the resulting supernatants were loaded onto a 4-12% NuPAGE Bis-Tris Gel (Novex, Thermo 

Fisher Scientific). Gels were then fixed and stained using the colloidal blue staining kit (Life 

Technologies/Invitrogen). Gel lanes were sliced into five pieces and proteins were digested 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 29, 2018. ; https://doi.org/10.1101/429696doi: bioRxiv preprint 

https://doi.org/10.1101/429696
http://creativecommons.org/licenses/by-nc-nd/4.0/


 22 

in-gel using standard methods (51). Peptides were reconstituted in 5% CAN 0.1% TFA and 

analyzed with an Easy-nLC 1200 system (Thermo Scientific) connected to a Fusion Lumos 

Orbitrap mass spectrometer (Thermo Scientific) through a nanoelectrospray ion source. 

Peptides were separated on a 15 cm (75 µm inner diameter) in-house column packed with 1.9 

µm reversed-phase C18 beads (Reprosil-Pur AQ, Dr. Maisch), with 45 min gradients. Spray 

voltage was set to 2kV, capillary temperature to 275˚C and RF level to 30%. A full scan was 

performed at a resolution of 60,000, with a scan range of 350-1400 m/z, a maximum injection 

time of 20 ms and with an AGC target of 500,000. Precursors were isolated with a width of 

1.3 m/z and precursor fragmentation was accomplished using higher collision dissociation 

(HCD). Only precursors with charge state 2-5 were considered. MS/MS spectra were acquired 

in the Orbitrap, and settings included a loop count of 7, a maximum injection time of 118 ms 

and a resolution of 60,000. Raw MS data were analyzed using MaxQuant software (version 

1.6.0.17). Proteins were identified with parameters previously described (52) and quantified 

using the LFQ algorithm integrated in MaxQuant (53). Match between runs function was 

used. Data analysis was performed using Perseus software (54). Missing values were imputed 

in all samples using Perseus default settings. Volcano plots were generated by plotting the –

log10 transformed FDR-adjusted p-values derived from a two-sided t-test versus log2 

transformed fold changed. Significance was determined based on a hyperbolic curve threshold 

of s0=0.1 using Perseus. 

Migration Assay 

Fibroblast migration was  analyzed by a fluorescence-based scratch wound-healing assay as 

described previously (45). 

WST-1 Assay 

Cell viability assays using WST-1 (water soluble tetrazolium, Roche # 11 644 807 001) were 

performed as described before (14).  
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RNA extraction and qPCR 

Total RNA from stimulated cells was extracted using Trizol (Thermo Fisher 

Scientific/Invitrogen) according to the instructions. 500 ng RNA were then reverse 

transcribed to cDNA using random hexameric primers and Reverse Transcriptase (Thermo 

Fisher Scientific) in the presence of RNase inhibitors. Quantitative PCRs (qPCRs) were 

performed on One Step-Plus real-time PCR systems (Applied Biosystems/Thermo Fisher 

Scientific) using a 2x SYBR Green no ROX qPCR mix (Bioline) in a two-step cycling 

program. The following specific qPCR primer were used to detect mRNA level: 

cFos-fwd: CTACTGTGTTCCTGGCAATAG, cFos-rev: AACATTGACGCTGAAGGACTA, 

Egr1-fwd: ACAGAAGGACAAGAAAGCAGAC, Egr1-rev: 

CCAGGAGAGGAGTAGGAAGTG, TTP-fwd:  CATCTACGAGAGCCTCCAGTC, TTP-

rev: ACGGGATGGAGTCCGAGTTTA. Specific signals were normalized to GAPDH or 

beta-Actin mRNA level using the following qPCR primers: GAPDH-fwd: 

ACTCCACTCACGGCAAATTCAACG, GAPDH-rev: 

AAGACACCAGTAGACTCCACGACA, beta-Actin-fwd: 

AGAGGGAAATCGTGCGTGAC, beta-Actin-rev: AACCGCTCGTTGCCAATAGT 

Microscopy 

Cells were seeded on coverslips and transfected the next day using FuGENE6 (Promega) 

according to standard settings. The following day, cells were treated and immediately fixed 

with 4% PFA for 15 minutes at room temperature after washing twice with 1x PBS. 

Afterwards, cells on coverslips were washed three times with 1x PBS before dipping them in 

MilliQ water and drying them. After complete drying coverslips were mounted on a glass 

slide in 2.5µl DAPI-containing Vector Shield (Vector Laboratories) mounting medium and 

fixed on the slide to avoid dissolution. Glass slides were then kept at -20°C until use. Pictures 

were taken on a Leica DM4 B device using the LasX Software (Leica Microsystems).  
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Bioinformatic analyses 

The indicated data sets were analyzed using the Galaxy Suite (usegalaxy.org) (55). In brief, 

raw reads were downloaded from the GEO repository, demultiplexed and converted to the 

FASTQ format and groomed using “FASTQ Groomer“. After adapter- and quality-trimming 

using “Trim Galore!”, the reads were mapped against human hg19 or murine mm10 using 

“Bowtie2“. Aligned reads were then visualized in the Integrative Genomics Viewer (IGV) 

(56,57).  

Accession numbers 

Nucleotide sequence data reported in this work is available in the Third Party Annotation 

(TPA) Section of the DDBJ/ENA/GenBank databases. 
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Figure Legends 

 

Figure 1 

Translation of MK2 from an alternative start codon in its 5’UTR 

A. Expression profiling of MK2 in different murine and human cell lines. Lysates from the 

indicated cell lines were subjected to Western Blot analysis using an anti-MK2 antibody 

(D1E11, Cell Signaling) and an anti-GAPDH as loading control. 

B. Expression of MK2 in several mouse organs as detected by Western Blot analyses using a 

MK2-specific and a MK3-specific antibody. The GAPDH development served as a loading 

control.  

C. Genomic tracks of RNASeq and RiboSeq data sets (GSE81250) for the old murine MK2 

transcripts NM_008551.1 and its newest annotated transcript version NM_008551.2. The 

position of potential alternative translation initiation sites (aTIS) within the 5’UTR of MK2 

and the AUG initiation sites are indicated. The length of both 5’UTR are given (18 and 318 

nucleotides, respectively). 

D. The murine MK2 5’UTR nucleotide sequence and its putative extended in-frame N-

terminal amino acid sequence. The aTIS are marked in bold and in italics within both 

nucleotide and the amino acid sequence.  

E. Purification of endogenous MK2 isoforms form RAW264.7 cells. Endogenous MK2 was 

purified from 1 x 108 RAW264.7 cells using an agarose MK2-Trap (Chromotek). Input 

(lysate), column flow-through and precipitates (beads, eluted using 2x SDS loading buffer) 

were separated on a 10% SDS gel that was Coomassie blue stained afterwards. Bands were 

excised and further processed for mass-spectrometry analysis.  
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F. Identification of MK2 peptides from mass-spectrometry (1E.). The three translation 

initiation sites are marked in bold and italics. Red sequences depict detected peptides and 

black ones the non-detected. 

 

Figure 2 

Mechanistic insights into regulation of MK2 translation  

A. Expression of murine MK2 5’UTR isoforms in HeLa cells through introduction of point 

mutations. After cloning the entire 5’UTR of murine MK2 into peGFP-C1 based vector, 

different point mutations were introduced into the 5’UTR (see Figure S5). HeLa cells were 

transfected with these plasmids and lysates were analyzed by Western Blot with an anti-MK2 

antibody and an anti-p150 antibody to control equal loading. Arrows indicate for the different 

MK2 isoforms resulting from point mutations within the 5’UTR. 

B. RAW264.7 and HeLa cells were transfected with an siRNA targeting eIF4A1. Lysates 

were then analyzed by Western Blot against eIF4A1 to monitor knockdown efficacy and MK2 

to detect the endogenous levels of MK2. GAPDH as loading control was used to normalize 

the signals for quantification (see graph next Western Blot panels). The * indicated for the 

eIF4A1 band.  

C. Translation of murine MK2 isoforms upon deletion GC-rich sequences upstream of the 

CUG aTIS in HeLa and U2OS cells. HeLa and U2OS were either mock-transfected or 

transfected with the constructs represented next to the Western Blot panels. Lysates were 

analyzed by Western Blot using an anti-MK2 antibody and an anto-p150 as a loading control. 

The * indicates for the weak band of the short endogenous human MK2 isoform. 
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D. Schematic representation of the factors that can influence MK2 translation. We confirmed 

the need of eIF4A1 to promote translation from the CUG aTIS in the 5’UTR of MK2. 

Adenosine Methylation near the stop codon, as shown indirectly by the knockdown of the 

methyltransferase Mettl3, and depletion of eIF2A had no effect on MK2 translation in our 

hands. 

 

Figure 3 

Functional characterization of MK2 isoforms 

A. Complementation of MK2 KO and MK2/3 DO mouse embryonic fibroblasts (MEFs) by 

retroviral transduction. Subcloning of 5’UTR mutants into pMMP-MK2-IRES-eGFP based 

vectors (13) and subsequent viral transduction of MK2-deficient and MK2/3 double-deficient 

MEFs resulted in expression of either the short or the long MK2 isoform only, both isoforms 

in parallel (both) or a super-long (super) isoform. Empty vector transduced cells served as 

controls and non-transduced murine cell lines (RAW264.7, NIH3T3 and wildtype (WT) 

MEFs) indicated the position of endogenous MK2 isoforms and expression levels in 

transduced cell lines. 

B. The stability of MK2 isoforms in MK2 KO or MK2/3 DKO complemented MEFs was 

analyzed after incubating cells with 20 µg/ml cycloheximide (CHX) for the indicated times. A 

quantification of the band intensities can be found in Figure S6A. The GAPDH development 

served as a loading control.  

C. The differentially complemented MK2/3 DKO MEFs from Fig. 3A were analyzed for the 

phosphorylation of known MK2 substrates (NOGO-B and Hsp27) upon Anisomycin 

stimulation. Phosphorylation of the MK2 upstream p38MAPK (pp38T180/Y182) and MK2 

(pMK2T334) itself was used as a readout for activation of the pathway. To control activity, 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 29, 2018. ; https://doi.org/10.1101/429696doi: bioRxiv preprint 

https://doi.org/10.1101/429696
http://creativecommons.org/licenses/by-nc-nd/4.0/


 29 

cells were either pre-incubated with an p38MAPK inhibitor (Birb796) or a MK2 inhibitor (PF-

3644022). p150 development served as loading control. 

 

Figure 4 

Phenotypical consequences of MK2 isoform expression  

A. Analysis of TTP, cFos and Egr1 expression upon Anisomycin stimulation for the indicated 

times in differentially rescued MK2-deficient MEFs. Each data point represents a biological 

replicate that was measured in duplicates. Error bars represent the mean of three independent 

experiments (n = 3) +/- the standard deviation. P-values were retrieved from one-way 

ANOVA testing using the PRISM 7 software and are related to GFP/EV-rescued MEFs.  

B. Fluorescence-based scratch wound healing assay for differentially rescued MK2-deficient 

MEFs as shown before (34). Each individual data point represents a biological replicate (n > 

18) of the analysis and the mean of all replicates is shown with its standard deviations. P-

values were retrieved from one-way ANOVA testing using the PRISM 7 software and are 

related to GFP/EV-transduced MK2-deficient MEFs.  

C. The interaction of MK2 isoforms with their endogenous upstream activating kinase 

p38MAPK was detected by co-immunoprecipitation experiments. Non-stimulated and 

Anisomycin-stimulated MK2/3 DKO complemented MEFs were analyzed. A MK2-Trap was 

used to precipitate MK2 effectively. Beads were eluted using 2x SDS loading buffer and 

samples were analyzed by Western Blot development for MK2 and p38MAPK. eEF2 

development served as a control.  
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D. Volcano plots of significantly MK2 short and MK2 long interacting proteins at the 

indicated conditions. Selected proteins are highlighted in red. The black lines define the 

border of significantly and non-significantly interacting proteins.  
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Supplementary Figures 

Figure S1 

MK2 and MK3 expression and deletion in different murine and human cell lines 

A. Detection of MK2, its phosporylated form (pMK2T222) and MK3 in MK2 KO and MK2/3 

DKO bone marrow-derived macrophages (BMDMs) upon LPS-stimulation. The star indicates 

for a cross-reactive non-specific band detected by the MK2 antibody. Loading control: 

GAPDH 

B. Confirmation of the MK3-specific band in MK2 versus MK2/3 DKO MEFs by analyzing 

lysates of the indicted cells by Western Blot with a MK3-specific antibody. 

C. Detection of MK2 isoforms and MK3 in Jurkat-E6 and HCT116 cells by Western Blot 

using specific anti-MK2 and anit-MK3 antibodies. Loading control: GAPDH 

D. shRNA-mediated knockdown of MK2 in HT29 cells using different shRNAs raised against 

human MK2 (Particle #TRCN0000002282 and # TRCN0000002283) as well as a control 

shRNA (shCtrl) and magnitudes of infection (MOIs) were used. The efficiency of knockdown 

was analyzed by Western Blot of lysates probed with an MK2 antibody. Anti-GAPDH 

development served as a loading control. 

 

Figure S2 

Analysis of the human MK2 5’UTR sequence and its comparison to the mouse MK2 

5’UTR 
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A. Genomic tracks for MK2 transcripts NM_004759.4 and NM_032960.3 in Ribosome 

Footprinting analyses derived from two different HEK293 data sets (GSE70804 and 

GSE37744).  

B. Human MK2 5’UTR nucleotide sequence and its putative extended in-frame N-terminal 

amino acid sequence. The aTIS are marked in bold and in italics within both nucleotide and 

the amino acid sequence. 

C. Alignment of the murine and human MK2 5’UTR nucleotide (lower) and amino acid 

(upper panel) sequences. The positions of putative aTIS are marked by red arrows within the 

amino acid sequence alignments. 

 

Figure S3 

Ribosome Footprinting analyses of murine bone marrow-derived dendritic cells 

(BMDCs) and keratinocytes  

Upper panel (GSE74139): BMDCs were treated with cycloheximide (CHX), Lactimidomycin 

(LTM) or Harringtonine (Har) to freeze ribosomes on the mRNAs at different positions.  

Lower panel (GSE83332): Keatinocytes were either treated with cycloheximide (CHX) or 

Harringtonine (Har) to freeze ribosome on mRNAs in order to detect their positions form 

sequencing results.  

In both analyses the position of ribosomal footprints is shown for the 5’UTR of the murine 

MK2 transcript NM_008551.2. 
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Figure S4 

Ribosome Footprinting analyses of HEK293, Jurkat and HCT116 cells  

Upper panel: HEK293 (GSE37744) cells were treated with cycloheximide (CHX) or 

Harringtonine (Har; GSE59095) to freeze ribosomes on the mRNAs at different positions.  

Middle panel (GSE74279): Jurkat were either treated with cycloheximide (CHX) or 

Lactimidomycin (LTM) to freeze ribosome on mRNAs in order to detect their positions form 

sequencing results.  

Lower panel (GSE87328): HCT116 cells were treated with cycloheximide (CHX) or 

Lactimidomycin (LTM) to freeze ribosomes on mRNAs on specific positions. 

In all analyses the position of ribosomal footprints is shown for the 5’UTR of the human MK2 

transcripts NM_004759.4 and NM_032960.3 

 

Figure S5  

MK2 5’UTR cloning strategy, introduction of mutation and their consequences after 

transfection in cells 

A. Schematic representation of the MK2 5’UTR cloning strategy. The hitherto known murine 

MK2 coding sequence was cloned into peGFP-C1 allowing its expression in mammalian cells 

with a N-terminal GFP-fusion. By cutting with NheI (right after the CMV promotor of 

peGFP-C1) and PstI (within the known MK2 coding sequence), this part was replaced with a 

synthesized 5’UTR sequence containing the same sites at the 3’ and 5’ ends. This resulted in 

the elimination of the GFP-tag, but CMV-promotor driven expression of the complete 5’UTR 

in fusion with the MK2 coding sequence. This construct then contained the natural AUG 

translation initiation site and the other two potential aTIS CUG and GUG in position -141 and 

-309, respectively. The table below shows the different mutants that were derived from the 
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initial construct #1 that contained the wildtype 5’UTR sequence. The predicted consequences 

of the mutations are given in the last column of the table.  

B. Expression of MK2 mutants in U2OS cells after transient transfection. The same plasmids 

as in Figure 2A were transfected into U2OS cells to prove effect the predicted consequences 

from the given in S5A. Lysates of transfected cells were analyzed by Western Blot with a 

MK2-specific antibody. Loading control: anti-p150. 

 

Figure S6 

MK2 translation mechanisms 

A. Quantifications of band intensities from Fig. 2B using ImageJ. MK2 protein level were 

calculated in relation to GAPDH protein level. The line at 0.5 determines the approximate 

half-life of the MK2 isoforms in both genetic backgrounds.  

B. Schematic models of the MK2 truncation constructs used to analyze 5’UTR-dependent 

MK2 translation in Fig. 2C. 

C. Endogenous MK2 isoform translation upon eIF2A knockdown in RAW264.7, wildtype 

MEFs, HeLa and HEK293T cells. Cells were siRNA transfected with two different specific 

siRNAs or a control siRNA and lysates were subsequently analyzed by Western Blot for 

eIF2A to analyze knockdown efficiency and for MK2 to detect translation of isoforms. p150 

served as loading control. 

D. Endogenous MK2 isoform translation upon Mettl3 knockdown in RAW264.7, wildtype 

MEFs, HeLa and HEK293T cells. Cells were siRNA transfected with two different Mettl3-

specific siRNAs or a control siRNA and lysates were subsequently analyzed by Western Blot 
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for Mettl3 to analyze knockdown efficiency and for MK2 to detect translation of isoforms. 

Tubulin served as loading control.  

 

Figure S7 

Expression of C-terminal GFP-tagged MK2 isoforms in HeLa cells 

A. Transfected HeLa cells were analyzed for the expression GFP-tagged MK2 isoforms. The 

initial N-terminal tagged GFP-MK2 construct (peGFP-C1-MK2, see Fig. S5A) was used as a 

control as well as the peGFP-N1 vector used to clone the C-terminally tagged construct used 

in fluorescence microscopy. Western Blots were developed with anti-MK2- and anti-GFP-

specific antibodies. Loading control: GAPDH. The translocation of MK2 isoforms from the 

nucleus to the cytosol after exposition to Anisomycin for 60 minutes was analyzed by 

fluorescence microscopy. U2OS cells were transfected with plasmids coding for C-terminal 

tagged isoforms of murine MK2. For this the mutant (construct #3 and #4, see Figure 2A and 

Figure S5) were subcloned into peGFP-N1 vectors that allow C-terminal GFP-tagging of 

inserted coding sequences.  

B. MEFs were analyzed for the phosphorylation of known MK2 substrates (NOGO-B and 

Hsp27) upon Anisomycin stimulation. Phosphorylation of the MK2 upstream p38MAPK 

(pp38T180/Y182) and MK2 (pMK2T334) itself was used as a readout for pathway activation. To 

control activity, cells were either pre-incubated with an p38MAPK inhibitor (Birb796) or a 

MK2 inhibitor (PF-3644022). p150 development served as loading control. 

 

Figure S8  

Functions of MK2 isoforms in vivo 
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A. Determining the growth of complemented MK2/3 DKO MEFs by a WST-1 assays. 1 x 104 

cells of every genotype were seeded in triplicates for each timepoint in a 96-well plate format. 

At the indicated times WST-1 was added to the cells and after 30 minutes of incubation at 

37°C, densiometric measurements were performed in a multi-well plate reader. Relative 

OD600nm are plotted against the time [days].  

B. Rescued MK2 MEFs were starved for 24h in serum-free DMEM and afterwards stimulated 

with 10% FCS-containing DMEM for 1 and 2h. Lysates were consequently analyzed for the 

expression of the indicated proteins. 

C. Expression of TTP mRNA in rescued MK2 MEFs after starvation as in Fig. S9B and 

stimulation with 10% FCS-containing DMEM for 0, 2 and 4h. Error bars represent the mean 

of three independent experiments (n = 3) +/- the standard deviation. P-values were retrieved 

from one-way ANOVA testing using the PRISM 7 software and are related to GFP/EV-

rescued MEFs. 
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Supplementary Tables 

 

Table S1 

G-rich quadruplexes in GC-rich sequences in the MK2 5’UTR 

Analysis of putative G-rich quadruplex forming sequences within the 5’UTR of murine and 

human MK2 using the QGRS online tool (1). High G-scores indicate for potential quadruplex 

structures. Under default settings, the highest possible G-score is 100. 

 

 

 

 

 

 

 

 

 

 

 

 

 

mMK2    
Position Length (nt) QGRS G-Score 
21 22 GGGCTGGTACTTCTCGGCGCGG 16 
96 25 GGGGGGAGGGAGCAGGGCTGGTGGG 41 
128 23 GGCGCACAGCGGGACCCACGGGG 13 
171 20 GGAGCCGGGCCGGGGCGGGG 21 
225 25 GGGCGGGGCGTGGCGGGGACCCGGG 38 
258 11 GGAGGAGGGGG 21 
    

hMK2    
Position Length (nt) QGRS G-Score 
17 30 GGAGCCAGCGGCGCGCGGTGGGACCCACGG 20 
69 20 GGAGCCGGGCCGGGTCGGGG 21 
127 20 GGGGGGCGGCGGGGAGGGGG 38 
156 11 GGAGGAGGGGG 21 
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