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ABSTRACT 

Host factors of influenza virus replication are often found in key topological positions 

within protein-protein interaction networks. This work explores how protein states can 

be manipulated through controllability analysis: the determination of the minimum 

manipulation needed to drive the cell system to any desired state. Here, we complete a 

two-part controllability analysis of two protein networks: a host network representing the 

healthy cell state and an influenza A virus-host network representing the infected cell 

state. This knowledge can be utilized to understand disease dynamics and isolate 

proteins for study as drug target candidates. Both topological and controllability 

analyses provide evidence of wide-reaching network effects stemming from the addition 

of viral-host protein interactions. Virus interacting and driver host proteins are significant 

both topologically and in controllability, therefore playing important roles in cell behavior 

during infection. 24 proteins are identified as holding regulatory roles specific to the 

infected cell by measures of topology, controllability, and functional role. These proteins 

are recommended for further study as potential antiviral drug targets. 

Importance: Seasonal outbreaks of influenza A virus are a major cause of illness and 

death around the world each year, with a constant threat of pandemic infection. Even 

so, the FDA has only approved four treatments, two of which are unsuited for at risk 

groups such as children and those with breathing complications. This research aims to 

increase the efficiency of antiviral drug target discovery using existing protein-protein 

interaction data and network analysis methods. Controllability analyses identify key 

regulating host factors of the infected cell’s progression, findings which are supported 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted November 26, 2018. ; https://doi.org/10.1101/429712doi: bioRxiv preprint 

https://doi.org/10.1101/429712


by biological context. These results are beneficial to future studies of influenza virus, 

both experimental and computational.   

 

Introduction 

The development of computational methods to identify key host factors that allow 

viruses to interrupt and control healthy cell functions will greatly aid in the prediction of 

novel anti-viral drug targets1. Traditional systems biology approaches to understanding 

cell dynamics during infection include the creation of detailed kinetic models for 

intercellular signaling pathways. While these models are advantageous in 

understanding the disease state in a quantitative way, they require experimentally-

derived or estimated parameters and training data2–4, without which complications can 

arise and an accurate model can quickly become unattainable. Further, modeling 

studies are often limited to specific pathways which fails to consider the total cellular 

environment as an interdependent system. 

Alternatively, network analysis methods applied to protein-protein interaction (PPI) data 

have been used to model cell-wide systemic changes associated with disease, changes 

in cell function, or cell fate5. This strategy provides a holistic understanding of system 

behavior by viewing proteins as interdependent states, regardless of specific interaction 

mechanisms, and allows for the exploration of cell level relationships. The field of 

network theory is well established; basic network metrics like degree and betweenness6 

have repeatedly revealed the importance of specific proteins within biological processes 

that cannot be found from traditional modeling approaches7–11.  Disease networks have 

identified genes involved with cancer12–15, demonstrated that the genes responsible for 
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similar diseases are likely to interact with each other16,17, and predicted novel drug 

targets18,19.  

There is precedent for network studies of many common viruses including hepatitis 

C20,21, SARS16,22, HIV22–26,  and influenza virus16,27–30. Past work studying the effects of 

influenza virus in PPI networks has focused on identifying host factors involved in virus 

replication and improving the prediction of drug targets, but ends with an analysis of 

basic topological measurements. While this provides a general overview of the state of 

the network, it is a static snapshot of the cell and, therefore, fails to capture the dynamic 

nature of the cell. Therefore, the next logical step in analyzing biological networks lies in 

understanding how these dynamic systems can be manipulated and exploited to 

manage biological properties.   

In classic control theory, controllability is the idea that a deterministic system can be 

driven to any final state in finite time given an external input31. This is commonly applied 

to linear, time invariant dynamic systems, 

𝑑𝑥(𝑡)
𝑑𝑡

= 𝐴𝑥 𝑡 + 	𝐵𝑢(𝑡) 

where 𝐴 is an 𝑁𝑥𝑁 matrix of state coefficients that describes how 𝑁 molecule states, 

𝑥 𝑡 , interact within the system and 𝐵 is a matrix of input weights describing how 

external influences, 𝑢(𝑡), impact the system. In general, a system is controllable if the 

controllability matrix,  

𝐶 = [𝐵, 𝐴𝐵, 𝐴0𝐵,… , 𝐴234𝐵] 

is full rank, 𝑁. This means that the system can be manipulated to reach any desired 

combination of states within all of state space following the defined input, 𝐵. In total, a 
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controllability analysis identifies the key components of a system that must be 

manipulated to drive desired system outcomes32.  

An example PPI network in Fig. 1a, is transformed 

into its state space matrix representation in Fig. 

1b. With the inclusion of two independent inputs 

(𝑢4 and 𝑢0), the controllability matrix in Fig. 1c is 

full rank. Therefore, the system is fully controllable 

and it is possible to drive the protein 

concentrations to any desired state. Applying the 

idea of controllability to a cell at the onset of viral 

infection, a virus aims to control cellular functions 

(the system of proteins), promote virus replication 

tasks, and reach a final infected cell state. While it 

would be advantageous to interpret the infection 

from this control perspective, mathematical limits 

due to large system dimensions prevent the direct 

application of traditional controllability methods to 

PPI networks.  

Advances in network theory have created 

alternative methods of network controllability 

evaluation which survey each node’s (protein’s) 

importance in the ability of an external set of 

inputs to fully control the network. Controllability classification is founded in “driver node” 
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Figure 1: (a) An example protein-protein interaction 
network with three proteins and two protein translation 
process inputs. The state space representation (b) of the 
same network demonstrates that the change in state of a 
protein’s concentration is a function of its current state 
and an input process.  A classic controllability analysis 
(c) demonstrates that this system is fully controllable and 
could, therefore, be driven to any possible state change 
in every protein.   
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calculations: identifying the network components which must be manipulated for the 

system to be fully controlled (analogous to determining the non-zero elements of the 𝐵 

matrix in classic controllability). Without manipulation, driver nodes will remain 

unaffected by changes to the rest of the system, rendering the total system 

uncontrollable. A set of driver nodes (size 𝑁6) that is capable of controlling the total 

network is called a minimum input set (MIS). The MIS is not unique and the number of 

possible MISs scales exponentially with the size of the network33. After a primary MIS is 

calculated, two methods of controllability node classification can be used.  

In the first method by Liu et al.34, the MIS is re-calculated (size 𝑁6′) after removing each node 

from the network. The node is then classified by its effect on the manipulation required 

to control the network, where an increase in the size of the MIS makes it more difficult to 

control the network and a decrease in the size of the MIS makes it easier to control the 

network. The absence of: an indispensable node increases the number of driver nodes 

(𝑁6′ > 𝑁6), a dispensable node decreases the number of driver nodes (𝑁6′ < 𝑁6), and a 

neutral node has no effect on the number of driver nodes (𝑁6′ = 𝑁6). This method has 

previously been applied to many network types such as gene regulatory networks, food 

webs, citation networks, and PPI networks to better understand what drives the 

dynamics of each system26,34. While it is useful to observe the structural changes to the 

network in the absence of singular nodes, this method only considers one possible MIS. 

In a second classification method by Jia et al.35, a node is classified by its role across all 

possible MISs. A critical node is included in all possible MISs, an intermittent node is 

included in some possible MISs, and a redundant node is not included in any possible 
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MISs. This method places each node in the broader context of all possible control 

configurations.  

In total, this study aims to determine key host factors with regulatory roles specific to the 

influenza virus-infected cell state for the prediction of novel antiviral targets. We have 

completed a two-part controllability analysis of a host PPI network (HIN) and a hybrid 

network of human host PPI data combined with influenza A virus-host protein interaction 

data (VIN). The controllability characteristics of influenza virus interacting host proteins 

and driver proteins are compared to the characteristics of the total network. A set of 24 

host factors that hold value topologically, in controllability, and functionally are identified 

as candidates for further study in drug development based on their specialized behavior 

during influenza infection.  

RESULTS 

Topology of the Host Interaction Network and Virus Integrated Network  

The directed PPI network from Vinayagam et al36 was restricted to confident interactions 

(see Methods), creating a network containing 6,281 proteins and 31,079 interactions. 

This network is referred to as the “Host Interaction Network” (HIN). Influenza A virus-

host interactions from Watanabe et al37 were narrowed to 2,592 directed interactions 

between 11 influenza A virus (IAV) proteins (HA, M1, M2, NA, NP, NS1, NS2, PA, PB1, 

PB2, and PB1-F2 proteins) and 752 “IAV interacting proteins” preexisting in the HIN. 

After integration into the HIN, the network contains 6,292 proteins and 33,671 

interactions. This network is referred to as the “Virus Integrated Network” (VIN).  

Degree and betweenness calculations were completed for the HIN and VIN. As 

expected, the only proteins with altered degree after the addition of virus interactions to 
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the network are the 752 IAV interacting proteins (Marked in blue in Fig. 2a). This shift is 

significant for the group of IAV interacting proteins as compared to all proteins in both 

the VIN (log scaled median of IAV interacting proteins: 1.04; log scaled median of all 

proteins: 0.70; student t-test of log scaled data p < 2.20x10-16) and the HIN (log scaled 

median of IAV interacting proteins: 0.85; log scaled median of all proteins: 0.70; Student 

t-test of log scaled data p: 5.97x10-12). The degree distributions of both networks are 

scale free (Fig. S1).  

 

Because betweenness is sensitive to the information flow through all proteins instead of 

only neighboring proteins, 2,735 proteins exhibit an increase in betweenness after the 

addition of IAV interactions. Of these proteins, 207 proteins’ log betweenness exhibits 

an increase of 2 or more in the VIN compared to the HIN (Fig. 2b). This suggests that 

the addition of IAV interactions has an effect on network topology that reaches over 3.5 

times the number of host proteins that are directly interacting with IAV proteins. The 

betweenness shift in the group of IAV interacting host proteins is significant as 

compared to all proteins in both the VIN (Log scaled median of IAV interacting proteins: 
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Figure 2: (a) Degree of the VIN vs degree of the HIN where the IAV interacting proteins are marked in blue. The degree 
distributions of the networks are scale free. (b) Difference in betweenness between the VIN and HIN for proteins which exhibit 
a difference greater than one.  
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3.23; Log scaled median of all proteins: 2.82; Student t-test of log scaled data p < 

2.20x10-16) and the HIN (Log scaled median of IAV interacting proteins 3.22; Log scaled 

median of all proteins: 2.82; Student t-test of log scaled data p: 2.13x10-15). This is a 

result of being the limited protein set responsible for information flow from the viral 

proteins to the rest of the network.  

Driver proteins  

Driver proteins (nodes) are the foundation of both types of controllability calculations, 

representing the protein set which must be manipulated for the system to be fully 

controlled. The proteins are identified through maximum matching algorithms38. The HIN 

and VIN both require 𝑁6 = 2,463 driver proteins to achieve controllability, suggesting 

that the magnitude of network control is unchanged by the influence of the IAV 

interactions. However, the identity of driver proteins shifts slightly as the 11 viral 

proteins replace 11 host proteins within the primary MIS as drivers in the VIN. Table 1 

lists their identities along with the shortest distance to an IAV protein in the network, 

degree, and betweenness. Of these 11 proteins, only five are directly interacting with 

IAV proteins. One of the remaining proteins is two steps (two interactions and one 

connecting protein) from any IAV protein, and the remaining five proteins are three 

steps from any IAV protein. The number of paths between viral proteins and these 

proteins are reflective of the number of paths between viral proteins and all host 

proteins (Fisher test p: 0.99). This supports the idea that viral interactions have lasting 

effects on the system’s control structure, affecting proteins that are multiple paths away.  
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Entrez ID Gene Name 

Shortest 
Distance 

to IAV 
Protein 

Degree Betweenness 

10658 CUGBP, Elav-Like Family Member 1 (CELF1) 1 4 (4) 81 (81) 

1969 EPH Receptor A2 (EPHA2) 1 14 (13) 93 (0) 

6733 SRSF Protein Kinase 2 (SRPK2) 1 6 (2) 6023 (6023) 

10318 TNFAIP3 Interacting Protein 1 (TNIP1) 1 7 (7) 115 (115) 

2997 Glycogen Synthase 1 (GYS1) 3 4 (4) 384 (384) 

10949 
Heterogeneous Nuclear Ribonucleoprotein A0 

(HNRNPA0) 
2 9 (2) 5 (0) 

64112 Modulator of Apoptosis 1 (MOAP1) 1 8 (8) 6942 (6931) 

10419 Protein Arginine Methyltransferase 5 (PRMT5) 3 26 (17) 6996 (4743) 

10262 Splicing Factor 3b Subunit 4 (SF3B4) 3 13 (7) 82 (44) 

23321 Tripartite Motif Containing 2 (TRIM2) 3 2 (2) 15 (15) 

81603 Tripartite Motif Containing 8 (TRIM8) 3 3 (3) 0 (0) 

 

Lastly, analysis finds that 8.9% of all driver proteins are also IAV interacting proteins, 

meaning the intersection of the two protein groups of interest comprise only 3.5% of the 

total network. There is a significant increase in the betweenness of driver proteins 

depending on their status as IAV interacting or IAV non-interacting proteins (Fisher test 

p < 2.2x10-16) where there is no significant difference in degree of the same groups 

(Fisher test p: 0.7161). This is further evidence that the addition of virus interactions to 

the network magnifies information flow through the proteins most involved in controlling 

network behavior.  

Liu Controllability  

Table 1: Identities of the proteins that are drivers in the HIN but not the VIN with the shortest number of paths to an 
Influenza A viral protein. Degree and betweenness of the proteins of the VIN is provided (with the values from the HIN in 
parenthesis).  Only 45% of these proteins are directly interacting with the viral proteins, demonstrating the cascade effect 
caused by the inclusion of viral interactions.   
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Liu controllability was calculated (see Methods) for all proteins of the HIN and VIN (as 

shown in Table 2 with and without parentheses, respectively). The addition of IAV 

interactions to the network has no effect on the distribution of Liu classifications of host 

proteins, and consequently, the IAV Interacting proteins. Upon entry to the VIN, the 11 

IAV proteins are classified as neutral, meaning their removal does not alter the number 

of driver proteins required to control the VIN (ND = ND’). This reveals that the absence of 

singular proteins from the system is not enough to disturb the existing control structure 

under Liu controllability.  

Table 2: Liu types of all proteins, driver proteins, and virus interacting proteins in the VIN (HIN in 

parenthesis). 

 All Proteins Driver Proteins IAV Interacting Proteins 

Indispensable 1,169 (1,169) 0 (0) 186 (186) 

Neutral 2,669 (2,658) 803 (799) 312 (312) 

Dispensable 2,454 (2,454) 1,660 (1,664) 254 (254) 

 

While none of the proteins change Liu classification between networks, the 

aforementioned replacement of 11 host driver proteins with viral proteins after the 

addition of virus interactions creates a small change in Liu type distribution for driver 

proteins. Of the displaced host proteins (deemed “Liu proteins”, found in Table 1), seven 

are neutral and four are redundant in the HIN, meaning that their removal from the 

network does not change the number of driver proteins and their removal reduces the 

number of driver proteins needed, respectively. Of the five Liu proteins that are both 

driver and IAV interacting proteins, four are neutral and one is redundant. The most 

notable change in degree and betweenness between the HIN and VIN is PRMT5, with 

an increase of 9 and 2,250, respectively. Overall, Liu controllability results suggest that 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted November 26, 2018. ; https://doi.org/10.1101/429712doi: bioRxiv preprint 

https://doi.org/10.1101/429712


the HIN is stable against potential changes in the control structure that could be caused 

by the addition of IAV interactions.  

We developed an analysis to test if IAV is selectively targeting host proteins based on 

controllability characteristics. 10,000 random sets of 752 proteins (the number of IAV 

interacting proteins) were pulled from the host proteins of the VIN. Their Liu type 

distributions were plotted against the classification results of IAV interacting proteins, 

driver proteins, and all proteins in the VIN (Fig. 3a-c). The randomly sampled sets 

closely resemble all proteins of the network, not the true interacting protein set, 

suggesting that Liu controllability behavior of interacting proteins is not a coincidence of 

network construction (one-sided p = 0.51, 0.49, and 0.50 for indispensable, neutral, and 

dispensable, respectively). IAV interacting proteins tend to be indispensable compared 

to the percentage of all proteins that are indispensable (Fig. 3a). This suggests that 

viruses prefer to interact with proteins that are vital to cellular control. Driver proteins are 

very likely to be dispensable proteins compared to the percent of all proteins that are 

dispensable (Fig. 3c). Further, the mean and median log degree and betweenness of 

the randomly sampled protein sets is significantly lower than the same measurements 

of the true IAV interacting set (p < 2.2x10-16, 2.2x10-16, Fig. 4), signifying that virus 

interacting proteins are in positions of network significance. Overall, the Liu 

controllability results of IAV interacting proteins suggest that the virus may be selectively 

targeting host proteins based on controllability characteristics. 
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Figure 4: Density plots of a) mean (blue) and median (green) log degree of random IAV interacting protein 

sets and b) mean (blue) and median (green) log betweenness of random IAV interacting protein. Values 

for the true IAV interaction set shown as vertical lines, evidence that host proteins that directly interact 

with viral proteins are in positions of network significance.  

a) c)b)

d) f)e)

a)

b)

Figure 3: a-c) Density plots of distribution of Liu type for 10,000 random pulls of 752 proteins (number of virus interacting 
proteins in network). d-f) Density plots of distribution of Jia type for 10,000 random pulls of 752 proteins (number of virus 
interacting proteins in network). Values for IAV interacting proteins (blue), driver proteins (green), and all proteins (gold) 
are pictured for all figures.  
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Jia Controllability  

Jia controllability was calculated (see Methods) for all proteins of the HIN and VIN (as 

shown in Table 3 with and without parentheses, respectively). Unlike in Liu 

controllability, there is a small disturbance to Jia type distributions of host proteins after 

the addition of virus interactions. 24 host proteins shift from being classified as critical (a 

member of all MISs) to intermittent (a member of some MISs) proteins. Identities of 

these proteins (deemed “Jia proteins”) can be found in Table 4 along with the shortest 

distance to an IAV protein in the network and protein degree and betweenness. The two 

most notable changes in degree and betweenness between the HIN and VIN are EPH 

receptor A2 (EPHA2) with an increase of 1 and 93, respectively, and transferrin receptor 

(TFRC), with an increase of 3 and 164, respectively. All 24 Jia proteins are driver and 

IAV interacting proteins which, as mentioned, only comprises 3.5% of the total network. 

There are only two proteins (EPHA2 and HNRNPA0) that are also members of the Liu 

protein set. 45% of IAV interacting proteins are never drivers, suggesting that they are 

always manipulated by neighboring host proteins within any possible control 

configuration. IAV interacting proteins are not enriched for driver proteins (Fisher test p: 

0.14).  

 

Table 3: Jia types of all proteins, driver proteins, and virus interacting proteins in the VIN (HIN in 

parenthesis) 

 All Proteins Driver Proteins IAV Interacting Proteins 
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Critical 512 (525) 512 (525) 0 (24) 

Intermittent 3,342 (3,318) 1,951 (1,938) 411 (387) 

Redundant 2,438 (2,438) 0 (0)  341 (341) 

 

Again, a randomized protein set was created to test if IAV may be selectively interacting 

with host proteins based on their controllability characteristics. 10,000 random sets of 

752 proteins (the number of IAV interacting proteins) were sampled from the host 

proteins of the VIN. Their Jia type distributions were plotted against the classification 

results of IAV interacting proteins, driver proteins, and all proteins in the VIN (Fig. 3d-f). 

As with the Liu classification, the random sets closely resemble the total network (one-

sided p = 0.50, 0.51, and 0.50 for critical, intermittent, and redundant, respectively). 

While there are no redundant driver proteins by definition, driver proteins are more likely 

to be intermittent proteins than critical proteins (Fig. 3d-e), where more than 75% of all 

driver proteins are missing from at least one possible MIS. This means the majority of 

possible driver proteins are able to be controlled by a neighboring protein in at least one 

MIS. IAV interacting proteins tend to be redundant compared to the total number of 

proteins that are redundant (Fig. 3f). This suggests that viruses prefer to interact with 

proteins that are part of existing control structures to receive input from neighboring 

proteins.  
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Figure 5: a) Degree and b) betweenness of Liu (blue) and Jia (green) protein sets between the HIN and 

VIN.While proteins identified in the Liu controllability analysis do not show significant deviation in degree 

or betweenness, proteins identified in the Jia controllability analysis show a shift in both measures after 

the addition of viral interactions.  

Overall, Jia calculations identify a set of proteins for consideration that are more 

important within the VIN than the HIN. This is demonstrated through a comparison of 

degree and betweenness for the identified Liu and Jia driver sets in Fig. 5. Proteins 

identified in the Liu analysis show little deviation in both degree (Fig. 5a) and 

betweenness (Fig. 5b) measures after the addition of virus-host interactions to the 

network. In contrast, proteins identified in the Jia analysis show much larger deviations 

in degree (Fig. 5a) and betweenness (Fig. 5b) with all proteins having a betweenness of 

0 in the HIN with an up to two log unit increase in the VIN (Table 4). Because the 

identified proteins were not responsible for information flow until the addition of virus-

host interactions to the network, this suggests that the Jia protein set may identify key 

regulators of host immune response to infection.  

Table 4: Identities of Jia Proteins (proteins that shift Jia classification between the HIN and VIN). All 

identified proteins are directly interacting with viral proteins. Degree and betweenness of the proteins of 

the VIN is provided (with the values from the HIN in parenthesis). 

0.0

0.5

1.0

1.5

0.0 0.5 1.0 1.5
Log Degree VIN

Lo
g 

D
eg

re
e 

H
IN

Jia Liu

0

1

2

3

4

0 1 2 3 4
Log Betweenness VIN

Lo
g 

Be
tw

ee
nn

es
s 

H
IN

Jia Liu

a) b)

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted November 26, 2018. ; https://doi.org/10.1101/429712doi: bioRxiv preprint 

https://doi.org/10.1101/429712


Entrez 
ID 

Gene Name 

Shortest 
Distance to IAV 

Protein 
Degree Betweenness 

56655 
DNA Polymerase Epsilon 4, Accessory 

Subunit (POLE4) 
1 2 (1) 1 (0) 

30846 EH Domain Containing 2 (EHD2) 1 3 (1) 1 (0) 

1969 EPH Receptor A2 (EPHA2) 1 14 (13) 93 (0) 

2665 GDP Dissociation Inhibitor 2 (GDI2) 1 3 (1) 2 (0) 

51552 
RAB14, Member RAS Oncogene Family 

(RAB14) 
1 2 (1) 1 (0) 

2091 Fibrillarin (FBL) 1 9 (4) 19 (0) 

10949 
Heterogeneous Nuclear Ribonucleoprotein 

A0 (HNRNPA0) 
1 9 (2) 5 (0) 

3032 

Hydroxyacyl-Coa Dehydrogenase/3-

Ketoacyl-Coa Thiolase/Enoyl-Coa 

Hydratase (Trifunctional Protein), Beta 

Subunit (HADHB) 

1 9 (5) 26 (0) 

3419 
Isocitrate Dehydrogenase 3 (NAD(+)) Alpha 

(IDH3A) 
1 3 (1) 2 (0) 

4191 Malate Dehydrogenase 2 (MDH2) 1 3(1) 1 (0) 

64949 
Mitochondrial Ribosomal Protein S26 

(MRPS26) 
1 2 (1) 0 (0) 

9180 Oncostatin M Receptor (OSMR) 1 6 (5) 18 (0) 

5052 Peroxiredoxin 1 (PRDX1) 1 11 (4) 44 (0) 

5213 Phosphofructokinase, Muscle (PFKM) 1 6 (5) 17 (0) 

26227 
Phosphoglycerate Dehydrogenase 

(PHGDH) 
1 4 (2) 9 (0) 

5817 Poliovirus Receptor (PVR) 1 7 (6) 42 (0) 

5686 Proteasome Subunit Alpha 5 (PSMA5) 1 6 (5) 11 (0) 

5464 Pyrophosphatase (Inorganic) 1 (PPA1) 1 6 (5) 5 (0) 

113174 Serum Amyloid A Like 1 (SAAL1) 1 2 (1) 1 (0) 

6745 
Signal Sequence Receptor Subunit 1 

(SSR1) 
1 4 (2) 12 (0) 

7037 Transferrin Receptor (TFRC) 1 11 (8) 164 (0) 

8834 Transmembrane Protein 11 (TMEM11) 1 4 (3) 20 (0) 

30000 Transportin 2 (TNPO2) 1 2 (1) 1 (0) 
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7407 Valyl-Trna Synthetase (VARS) 1 3 (1) 0 (0) 

 

Validation of controllability significant host factors 

All proteins were checked against 6 siRNA screens for host factors involved in influenza 

replication (Brass et al39, Hao et al40, Karlas et al41, König et al42, Shapira et al43, and 

Watanabe et al37), grouped by both Liu and Jia controllability classifications. Less than 

5% of all classifications of both types are validated by any of the 6 screens (Fig. 6), 

suggesting that no controllability classification is more enriched for host factors than 

another. This is likely due to the low agreement observed across siRNA studies44. 

However, the driver proteins that change Liu and Jia classification have higher hit rates 

in siRNA screens, with 2 of 11 changing MIS proteins (SF3B4, SRPK2, 18% validation) 

and 5 of 24 Jia-identified proteins (OSMR, PPA1, PSMA5, POLE4, GDI2, 21% 

validation), though neither are statistically significant results (Fisher p-values of 0.685 

and 0.252, respectively).  

 
Figure 6: Percent of each a) Liu classification type and b) Jia classification type confirmed in 6 siRNA 

screens (Brass, Karlas, Shapira, Hao, Konig, Watanabe). None of the 6 possible classifications are more 

than 5% validated in the screenings, suggesting that experimental findings do not favor certain protein 

controllability types.  
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An analysis of both protein sets of interest was performed using Ingenuity Pathway 

Analysis (IPA)45. The network created for the Liu protein set identified cellular 

compromise, cell death, and cell cycle functions. The network created for the Jia protein 

set identified protein synthesis functions, all centered around NF-kB. The Jia network 

notably recognizes six proteins (EPHA2, FBL, PFKM, PSMA5, SSR1, and TFRC) for 

their involvement in the infection of cells (p: 9.58x10-4). Four proteins in the Liu network 

(CELF1, SF384, SRPK2, and HNRNPA0, the last of which appears in both protein sets) 

were identified for their involvement in mRNA processing (p-value: 3.33x10-6).  

Lastly, Interferome v2.0146 was used to determine if the 11 Liu proteins and 24 Jia 

proteins are interferon regulated genes (IRGs). All 11 Liu proteins are identified as IRGs 

and exhibit a 2-fold change in expression when treated with interferon in at least one 

experimental dataset. 20 of 24 Jia proteins are identified as IRGs and exhibit a 2-fold 

change in expression in at least one experimental dataset. 6 Jia proteins are identified 

in more than 10 studies. In particular, HNRNPA0 and PPA1 are significantly down 

regulated in 20 and 63 datasets, respectively. These results point toward the 

involvement of the predicted protein subsets in immune response events.  

DISCUSSION 

In total, this two-part network controllability analysis for a host protein-protein interaction 

network (HIN) and an integrated influenza virus-host protein-protein interaction network 

(VIN) aims to enhance the prediction of antiviral drug targets for influenza A virus. While 

Liu controllability methods have previously been applied to study PPI networks26, past 

analysis focuses only on the classification of virus interacting proteins and does not 

evaluate before and after the addition of virus-host interactions to the network. A Jia 
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controllability analysis has never been applied to PPI networks. The unique construction 

of the VIN includes experimentally-derived virus-host interaction data37 which 

represents opportunities for the virus to manipulate host intracellular machinery using 

protein-protein interactions. Here, analysis of the transition between the healthy and 

infected network states and further investigation of virus interacting and driver proteins 

has identified 24 proteins as regulatory markers of the infected state. This protein set is 

noted for its characteristics in topology, controllability, and functional roles within the 

infected cell: results that are summarized in Table 5. Our workflow observes both the 

effect of structural changes to the network in the case of potential protein knock outs, as 

well as each protein’s role in all MISs, representing all possible ways of controlling the 

system. In combination, network approach and results provide deeper understanding of 

how changes to cell behavior at the onset of infection are able to occur through the work 

of a small set of viral proteins. Through understanding the system in this way, we 

present the possibility to “outsmart” viral attack by dismantling the control structure 

which allows the viral infection to take hold.  

Table 5: Summary of results for proteins identified in the Jia controllability analysis.  

Quality Frequency in Jia Protein Set 
Driver protein 100% 
IAV interacting protein  100% 
Identified in Liu protein set  8% 
Validated in at least one siRNA screen  21% 
Cell infection – functional enrichment 25% 
mRNA processing – functional 
enrichment 

17% 

Interferon regulating gene  83% 
 

A network representation of the cellular environment demonstrates that the effects of 

infection (represented by the addition of virus-host interactions) cascade through the 
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system, demonstrated by the alteration of basic topology measures. The betweenness 

shift between the two networks, particularly in IAV interacting proteins, supplies 

evidence that the topological effect of viral infection is wide reaching (Tables 1 and 4). 

Further, a comparison of driver protein betweenness for those that are also IAV 

interacting proteins in comparison to those that are not shows a significant difference. 

By definition, driver proteins that are IAV interacting are not receiving control influence 

from viral proteins and require additional external influence to achieve network control. 

However, the increased betweenness of proteins that are both driver and IAV 

interacting proteins suggests that this group is still of great importance to information 

flow through the network. This is one example where differences in network topology 

measures can emphasize the importance of select proteins that are overlooked by 

controllability principles.  

Controllability analyses confirm that IAV interacting proteins are in positions of 

significance for both types of classification. The increased population of indispensable 

IAV interacting proteins (Liu controllability: 𝑁6′ > 𝑁6, Fig. 3a) compared to what would 

be expected by random chance suggests that it would be more difficult for an outside 

influence (such as viral infection) to control the network in the absence of IAV 

interacting proteins opposed to a randomly selected protein. This is logical as IAV 

interacting proteins act as the connection between viral proteins and the host network 

where control is initiated. The increased population of redundant IAV interacting 

proteins (Jia controllability: never a driver protein, Fig. 3f) when compared to the 

random expectation indicates that more IAV interacting proteins are always being 

manipulated internally than would be expected by chance. This means that they are 
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fully incorporated into the control structure of the VIN.  From these two results, one can 

conclude that IAV interacting proteins contribute to both the “gate” (the ease of entering 

the system) and the “heart” (the proteins responsible for propagating control through the 

system) of the network control structure during infection. These findings support the 

idea that viruses are likely to interact with proteins which offer an advantage to total 

network control.  

Similarly, both sets of controllability results demonstrate that driver proteins play 

interesting roles in the network control structure. The large population of dispensable 

driver proteins (Liu controllability:	𝑁6′ < 𝑁6, Table 2) signifies that the majority of driver 

proteins are making it more difficult to control the network by requiring more external 

inputs to control system behavior. In their absence, the number of driver proteins would 

decrease and it would theoretically be easier for a viral attack to compromise the 

network control structure. As such, a possible strategy for drug development could be to 

protect these proteins from drastic changes to abundance. Over 75% of driver proteins 

are classified as intermittent (Jia controllability: sometimes a driver protein, Table 3), 

meaning there is at least one MIS where these driver proteins are not drivers, and 

receive control influence through internal propagation. This lends itself to the idea of 

viral escape routes: under pressure, virus proteins could utilize alternative pathways to 

maintain system control and reach the goal of hijacking cellular function.  

The method of controllability implementation used identifies protein sets of interest 

through changes to classification between the HIN and VIN. Unfortunately, Liu 

classification methods do not detect a change between the two networks in this study. 

As it is a measure of the robustness of the network to structural changes in the absence 
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of each protein, this suggests that the HIN upholds its typical control structure during 

IAV infection. This could be a consequence of the interaction data used or it may be that 

the strategy applied here cannot distinguish between the behavior of healthy and 

diseased states. Knowing the extent of changes to cell behavior within immune 

response pathways47–49, apoptosis signaling50,51, and transcriptional processes52–54 

during infection, the IAV infected cell can be interpreted as a different system. The 

failure to see this distinction may be a shortcoming of the Liu controllability calculation, 

especially knowing that the 11 Liu proteins are not unique due to the method’s use of a 

single MIS. Overall, the Liu analysis should be applied to additional virus-host networks 

in the fashion described within this study to further evaluate the method.  

The 24 proteins identified by the Jia controllability analysis show promise as indicators 

of regulatory roles specific to the infected state. All Jia proteins are IAV interacting and 

driver proteins, a high distinction which demonstrates a significant importance to 

network information flow marked by significantly higher betweenness in the VIN than 

even driver proteins that are not IAV interacting. Additionally, all Jia proteins have no 

importance to network flow in the HIN (betweenness = 0) (Table 4), suggesting their role 

in network structure “turns on” after the onset of infection. It is noteworthy that PRDX1 

has been implicated in respiratory syncytial virus (RSV)55, a lower respiratory tract 

infection that is often associated with influenza virus56. Though the number of Jia 

proteins identified in existing siRNA screening data is not statistically significant, it 

should be noted that siRNA screens cover only the partial genome. As such, this type of 

analysis could be used to direct future experimental studies to save time, money, and 

effort. IPA analysis reveals that some of the identified proteins hold roles in mRNA 
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processing, an integral part of the influenza virus’ ability to spread through processing 

its own RNA using host machinery57. The Jia protein network is centered around NF-kB, 

which is implicated in host immunity with evidence that the virus directly inhibits NF-kB 

activity58,59. The interferon regulating roles of proteins in a high number of both identified 

sets (all 11 changing MIS proteins and 20 of 24 Jia-identified proteins) speak to their 

responsibility in controlling infection. PPA1 appears as downregulated in 63 studies and 

HNRNPA0 appears as downregulated in 20 studies when treated with interferon 

compared to a control, solidifying their involvement in the host immune response. In 

total, this evidence suggests that controllability analyses hold power as predictors for 

important regulators of the host response to influenza infection and, therefore, hold 

power for drug target prediction.  

Existing influenza virus studies using PPI networks require additional data such as 

differentially expressed gene information60 or protein context27 to construct host 

response networks. Alternative methods such as DeltaNet61,62 and ProTINA63 utilize 

gene transcription profiles to infer protein drug targets, but rely on the accurate 

deduction of gene regulatory networks. More recent PPI studies have used network 

growing functions such as GeneMANIA, STRING, and IPA64 to predict IAV host factors 

and studied infected cell systems through the integration of screening data with network 

methods30,65. Approaches incorporating time course data into network analysis have 

also been explored66. While these methods (which include basic network metrics such 

as degree and betweenness of PPI networks) have been successful at identifying 

disease host factors and in drug target development in the existing body of work, this 

dual controllability study offers a novel, in-depth analysis of the role of individual 
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proteins in the context of total system function and how possible changes to the system 

can be interpreted. 

Lastly, though this study has used experimental data from Influenza A studies, this 

analysis can be used to improve the prediction of drug targets for any pathogen-host 

interaction given available protein interaction data because of the generality of the 

method. The limits of these methods lie in limited availability of large-scale, dependable 

databases of protein-protein interactions. Foundational maximum matching algorithms 

for the calculation of driver proteins must be performed with directed networks. While 

larger directed networks than the network from Vinayagam et al.36 are available67, the 

network used here contains only experimentally derived data opposed to 

computationally predicted interactions, assuring biological confidence in the results 

within this study. A Liu controllability analysis of the computationally predicted network 

presented in Uhart et al.67 finds that 29% of proteins are categorized as indispensable 

where approximately 20% of proteins in the Vinayagam network are classified as the 

same, though there is 89% overlap in directed edges between the two networks. This 

suggests that methods for predicting protein interactions may over represent these key 

proteins within the analysis, even in combination with experimental results.  However, 

larger networks will move towards a more complete analysis of infected cell behavior 

and possibly reveal further proteins of interest. Therefore, the future of this field 

depends on continued establishment of large, confident, directed PPI networks.    

METHODS   

Protein-protein interaction network  
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The host protein-protein interaction network used was downloaded from Vinayagam et 

al36. A confidence level cutoff of 0.7 was used, creating the HIN. Influenza A virus-host 

interactions from Watanabe et al37 were narrowed to interactions which contained host 

proteins already found in host network interactions to avoid skewing degree and 

betweenness network metrics. These interactions were directly integrated into the host 

network, creating the VIN. All analysis was completed in R 3.4.3 using the igraph 

package.  

Liu classification  

Calculations for Liu classification were adopted from Liu et al34. For a network of n 

nodes, a set of driver nodes for the bipartite representation of the network, 𝑁6, is found 

using a maximum matching algorithm such as Hopcroft-Karp38. Each node of the 

network is iteratively removed (𝑁8 = 𝑁 − 1) and maximum matching, ND’, is reevaluated. 

Nodes are classified as indispensable (𝑁6′ > 𝑁6), neutral (𝑁6′ = 𝑁6), or dispensable 

(𝑁6′ < 𝑁6).  

Jia classification 

Calculations for Jia classification were adopted from Jia et al35. For a network of n 

nodes, a set of driver nodes for the bipartite representation of the network, 𝑁6, is found 

using a maximum matching algorithm such as Hopcroft-Karp38. For all 𝑁6, control 

adjacent nodes were identified iteratively and an input graph was created as dictated in 

Zhang et al68. The input graph was used to classify nodes as critical (in all minimum 

input sets), neutral (in some minimum input sets), or redundant (in no minimum input 

sets).  
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Fig. S1: Degree distribution of network with IAV interactions (blue solid) and without IAV interactions (dotted black) 

show that both networks demonstrate scale free topology  
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