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Abstract 
Background: In public health research, there is currently a need to close the gap between care delivery and cohort 

identification. We need dedicated tagging staff to allocate a considerable amount of effort to assigning clinical codes 

after reading patient summaries. Machine learning automation can facilitate the classification of these clinical 

narratives, but sufficient availability of electronic medical records is still a bottleneck. Veterinary medical records 

represent a largely untapped data source that could be used to benefit both human and non-human patients. Very few 

approaches utilizing veterinary data sources currently exist. 

Methods: In this retrospective cross-sectional and chart review study, we trained separate long short-term memory 

(LSTM) Recurrent Neural Networks (RNNs) on 52,722 human records and 89,591 veterinary records, tested the 

models’ efficacy in a standard train-test split setup, and probed the portability of these models across species 

domains. We trained versions of our models using first the free-text clinical narratives, and then only using extracted 

clinically relevant terms from MetaMap Lite, a natural language processing tool intended for this purpose. 

Findings: We show that our LSTM approach correctly classifies across top-level codes in the veterinary records (F1 

score =0·83), and identifies top-level neoplasia records in veterinary records (F1 score = 0·93). The model trained 

with veterinary data can be ported over to identify neoplasia records in the human records (F1 score = 0·70). 

Interpretation: Our findings suggest that free-text clinical narratives can be used to learn classification models that 

allow the rapid identification of patient cohorts. Ultimately, this effort can lead to new insights that can address 

emerging public health concerns. Digitization of health information will continue to be a reality in both human and 

veterinary data; our approach serves as first proof-of-concept regarding how these two domains can learn from, and 

inform, one another. 
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Research in context 
 

Evidence before this study. We systematically reviewed PubMed using the Mesh terms “Clinical Coding” and 

“Electronic Health Records”, finding 50 publications in the last five years. The topics that arise from this body of 

literature include accuracy of clinical coding, challenges to cohort identification, estimation of disease incidence, 

evaluation of quality of care, and decision support systems. Furthermore, filtering our query to include the Mesh 

term “Machine Learning” revealed that only five studies have attempted to use automatic tagging of clinical codes 

from clinical narratives. However, these studies are still limited by the availability of training data, and are heavily 

relying on human input for data curation and harmonization. 

 

Added value of this study. In addition to rule-based and natural language processing strategies, the use of deep 

learning approaches to automatically classify clinical narratives could be a promising tool in accelerating public 

health research. Our analysis of non-traditional data sources (e.g. veterinary medical records) suggests that it is 

possible to grasp models circumventing the need for data preprocessing and harmonization. It is of critical 

importance to continue studying novel sources of information that can rapidly be used to generate classification 

models. 

 

Implications of all the available evidence.  

The costs for clinical coding could be reduced by implementing systems that automatically classify medical records. 

These automated systems have the benefit of accelerating public health research by quickly identifying cohorts of 

interest. The use of veterinary data offers a promising way to facilitate the identification of human cohorts, thus 

exponentially increasing the availability of research data. 
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1. Background 
Rapid identification of standardized cohorts, also known as electronic phenotyping, is an emerging field in public 

health that uses a combination of tools such as rule-based systems queries1, natural language processing (NLP), 

statistical analyses, data mining, and machine learning2. Currently, significant effort is still required to close the gap 

between care delivery and medical coding. In clinical practice, dedicated tagging staff assign clinical codes after 

reading patient summaries, a time-consuming and error-prone task. It is estimated that only 60–80% of the assigned 

codes reflect actual patient diagnoses3, resulting in over- and under-coding (and misjudging the severity of 

conditions, or omitting codes altogether). 

 

Automatic clinical coding technologies aim to reduce human interaction with unstructured narratives while 

capturing the majority of the critical information captured in data in a structured format. In general, these 

computational methods can be divided into three groups: a) rule-based and keyword-matching; b) traditional natural 

language processing; and c) natural language processing with deep learning. 

 

Rule-based and keyword-matching. These methods involve the use of single- or multiple- keyword matching from a 

dictionary and subsequently direct queries of the database. However, these methods require time and domain 

expertise to build the underlying dictionaries and manually craft rules that capture diverse lexical elements. In 

diseases with enough training cases (e.g. diabetes, influenza, and diarrhea), these models have been shown to 

achieve high classification accuracy in human4,5 and veterinary6 free-text narratives. 

 

Natural language processing (NLP). NLP tools are capable of interpreting the semantics of human language through 

lemmatization, part-of-speech tagging, parsing, sentence breaking, word segmentation, and entity recognition. There 

are both general-purpose and medical NLP tools. Medical NLP tools are highly heterogeneous, with various 

frameworks, licensing conditions, source code availability, language support, and learning curves for 

implementation. These factors generally affect time-to-deployment in clinical settings. 

 

Deep learning (DL). These methods eliminate the need of feature engineering, harmonization, or rule creation. Deep 

learning approaches are able to learn hierarchical feature representations from raw data in an end-to-end fashion, 

requiring significantly less domain expertise than traditional machine-learning approaches7. Deep learning is slowly 

emerging in the literature as a viable alternative solution to the analysis of clinical narratives. For example, deep 

learning has been used to identify patients with chronic conditions8, achieving a classification accuracy equivalent 

to, or better than, using keyword matching or NLP approaches. The use of DL to analyze clinical narratives has also 

facilitated other relevant clinical tasks, such as in-hospital mortality, 30-day unplanned readmission, prolonged 

length of stay, and final discharge diagnosis9. 
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Veterinary records: a novel source of data 

Electronic veterinary medical records are being adopted at an increasing rate, with the general goal of emulating the 

policies of human medical records in terms of recording standardized information for patient visits. However, the 

vast majority of veterinary clinical data is stored as free-text fields with very low rates of formal data curation. 

Veterinary patients come from many different places, including hospitals10, practices11, zoos12, wildlife reserves13, 

army facilities14, research facilities15, breeders, dealers, exhibitors16, livestock farms, and ranches17. It is important to 

recognize at this time that, with the development of new wearable and sensing technology for animals18, the amount 

of data concerning animal health will continue to grow exponentially in coming years. 

 

The integration of these new data streams with those concerning humans has the potential to improve human quality 

of care, directly addressing emerging public health concerns. Applications of generating these cohorts include 

biosurveillance for zoonotic diseases (which represent 60–70% of all emerging diseases19), chronic disease 

management, and early detection of environmental pollution factors. Such cohorts could also prove useful in 

elucidating disease-specific patterns that are consistent across species or in isolating features of diseases specific to 

human variants, both of which would represent favorable outcomes for downstream translational applications. 

Learning on human and veterinary medical records 

The breadth and depth of data being generated in the form of clinical narratives largely outperforms our current 

ability to process them. Traditional NLP methods boast interpretability and flexibility, but come at the steep cost of 

data quality control, formatting, and normalization, as well as the cost of the domain knowledge and time needed to 

generate meaningful heuristics (which oftentimes are not even generalizable to other datasets). It is thus a logical 

choice to bypass these steps, classifying medical narratives from the electronic health record by leveraging 

supervised deep learning on big data. We expect that our efforts could facilitate cohort identification for 

biosurveillance, public health research, and quality improvement. 

 

2. Methods 

Study Design 

This is a retrospective cross-sectional and chart review study, using medical records collected routinely as part of 

clinical care from two clinical settings: the veterinary teaching hospital at Colorado State University (CSU); and the 

Medical Information Mart for Intensive Care (MIMIC-III20) from the Beth Israel Deaconess Medical Center in 

Boston, Massachusetts. The STROBE checklist is provided in Supplementary Material 1. 

 

A TensorFlow21 deep learning model of our design classified medical records into 17 categories with a 70-30 train-

test split. We built separate models for each database, using the train split of the free-text clinical narratives, and 
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used F1 score (a measure of a test's accuracy, considering a harmonic mean between precision and recall) per top-

level disease category as our evaluation metric on the test set. We also investigated the effect of using MetaMap22, 

an NLP tool that extracts only clinically-relevant terms, on the accuracy of our models. To explore the efficacy of 

model portability, we attempted to also test the MIMIC-trained model on the CSU test data, and vice versa (and ran 

separate tests for MetaMapped versions, as well). Figure 1 shows a diagram of our training, test, and evaluation 

design. More information on clinical coding, technologies, and a link to our code can be found in Supplementary 

Material 2. 

 
Figure 1. Diagram of the training, test, and evaluation design. 

 

Clinical Settings 

Veterinary Medical Hospital at Colorado State University (CSU). This is a tertiary care referral teaching hospital 

with inpatient and outpatient facilities, serving all specialties of veterinary medicine. After consultation, a 
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veterinarian or veterinary student enters information about the patient into the custom-built veterinary electronic 

health record (VEHR), including structured fields, such as open and discharge dates, patient signalment (species, 

breed, age, sex, reproductive status), and codes applied to the visit. There are also options to input unstructured free-

text clinical narratives with various sections, including history, assessment, diagnosis, prognosis, and medications. 

These records are subsequently coded by trained medical coders and veterinarians, where the final diagnostic codes 

may consist of a single concept code representing a specific diagnosis or a set of codes referencing multiple 

diagnoses or post-coordinated expressions. 

 

Medical Information Mart for Intensive Care (MIMIC-III). The Beth Israel Deaconess Medical Center is a tertiary 

care teaching hospital at Harvard Medical School in Boston, Massachusetts. The MIMIC-III database20, a publicly 

available dataset which we utilize in this study, comprises information relating to patients admitted to the critical 

care unit at the Beth Israel Deaconess Medical Center. We were interested in the unstructured free-text notes in this 

database, with special attention given to provider progress notes and hospital discharge summaries. These records 

are coded for billing purposes, and have relatively complete diagnoses per patient (the database is publicly available, 

and thus represents the best possible medical coding annotation scenario for a hospital). Protected health information 

was removed from free-text fields. 

 

Patients 

The CSU dataset contains medical records from 33,124 patients and 89,591 hospital visits between February 2007 

and July 2017. Patients encompassed seven mammalian species, including dogs (80·8% Canis Lupus), cats (11·4% 

Felis Silvestris), horses (6·5% Equus Caballus), cattle (0·7% Bos Taurus), pigs (0·3% Sus Scrofa), goats (0·2% 

Capra hircus), sheep (0·1% Ovis Aries), and other unspecified mammals (0·1%). In contrast, the MIMIC-III 

database contains medical records from 38,597 distinct adult patients (aged 16 years or above) and 7,870 neonates 

admitted between 2001 and 2008, encompassing 52,722 unique hospital admissions to the critical care unit between 

2001 and 2012. Table 1 summarizes the characteristics and category breakdown of both databases. Only those 

patients with a diagnosis in their record were considered. 

 

Table 1. Database statistics of patients, records, and species (records with diagnosis). 
 

  CSU  MIMIC 

Medical Records  N = 89,591  N = 52,722 
   Patients  33,124  41,126 
   Hospital Visits  89,591  49,785 

Species 
    

   Humans (Homo Sapiens)  n.a.  52,722 
   Dogs (Canis Lupus)  72,420  n.a. 
   Cats (Felis Silvestris)  10,205  n.a. 
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   Horses (Equus Caballus)  5,819  n.a. 
   Other mammals  1,147  n.a. 

Category     

   1. Infectious  11,454  10,074 
   2. Neoplasia  36,108  6,223 
   3. Endo-Immune  17,295  24,762 
   4. Blood  10,171  13,481 
   5. Mental  511  10,989 
   6. Nervous  7,488  9,168 
   7. Sense organs  15,085  2,688 
   8. Circulatory  8,733  30,054 
   9. Respiratory  11,322  17,667 
   10. Digestive  22,776  14,646 
   11. Genitourinary  8,892  14,932 
   12. Pregnancy  136  133 
   13. Skin  21,147  4,241 
   14. Musculoskeletal  22,921  6,739 
   15. Congenital  3,347  2,334 
   16. Perinatal  54  3,661 
   17. Injury  9,873  16,121 

Deep learning models 

We used a long short-term memory (LSTM) recurrent neural network (RNN) architecture, which is able to handle 

variable-length sequences while using previous inputs to inform current time steps23. The LSTM shares parameters 

across time steps as it unrolls, which allows it to handle sequences of variable length. In this case, these sequences 

are a series of word “embeddings” (created by mapping specific words to corresponding numeric vectors) from 

clinical narratives. LSTMs have proven to be flexible enough to be used in many different tasks, such as machine 

translation, image captioning, medication prescription, and forecasting disease diagnosis using structured data23. Our 

assumption was that, due to this flexibility, this structure would be ideal for extracting clinically relevant 

information from across institutions.  

 

The RNN can efficiently capture sequential information and theoretically model long-range dependencies, but 

empirical evidence has shown this is difficult to do in practice24. Because clinical notes average a length of 430 

words in the CSU database, and 910 words in the MIMIC database, it is important to use an architecture with an 

improved capability to store information over many time steps. LSTMs have memory cells that can maintain 

information for over a longer period of time and that consist of a set of gates that control when information enters 

and exits memory, making them an ideal candidate architecture. 
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MetaMap Feature Extraction 

We used MetaMap Lite25, an NLP tool which leverages the Unified Medical Language System (UMLS) 

Metathesaurus to identify SNOMED26 and ICD27 codes from clinical narratives. MetaMap’s algorithm includes five 

steps: 1) parsing of text into simple noun phrases; 2) variant generation of phrases to include all derivations of words 

(i.e. synonyms, acronyms, meaningful spelling variants, combinations, etc.); 3) candidate retrieval of all UMLS 

strings that contains at least one variant from the previous step; 4) evaluation and ranking of each candidate, 

mapping between matched term and the Metathesaurus concept using metrics of centrality, variation, coverage, and 

cohesiveness; 5) construction of complete mappings to include those mappings that are involved in disjointed parts 

of the phrase (e.g. ‘ocular’ and ‘complication’ can together be mapped to a single term, ‘ocular complication’). 

MetaMap incorporates the use of ConText28, an algorithm for the identification of negation in clinical narratives. 

Statistical analysis 

Evaluation metric. We used the same evaluation metrics previously reported for MetaMap Lite25: a) precision, 

defined as the proportion of documents which were assigned the correct category; b) recall, defined as the 

proportion of documents from a given category that were correctly identified; and c) F1 score, defined as the 

harmonic average of precision and recall. Formulas for these metrics are provided below: 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 Eq. 1 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑒	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒	𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 Eq. 2 

𝐹6 = 2 ∙
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∙ 𝑟𝑒𝑐𝑎𝑙𝑙
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙 Eq. 3 

Our classification task is a multi-label classification problem, given that clinical narratives can describe multiple 

top-level categories. We calculated evaluation metrics independently for every top-level category, as if each were a 

binary classification problem. We obtained global estimates for performance of the models by calculating both the 

average (macro F1 score) and the weighted average (micro F1 score) of the individual F1 scores, across all classes.  

 

Portability. The portability of trained algorithms on independent datasets has previously been used as a metric of 

model robustness in systems that leverage NLP and machine learning 29. We evaluate the ability of our trained 

LSTM models to be used in a cross-species context. We utilized the MIMIC-trained model to classify the medical 

records in the CSU database, and vice versa, assessing performance as before. 

Role of the funding source 

The funder had no role in the data analysis, data interpretation, or writing of this paper. 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 4, 2018. ; https://doi.org/10.1101/429720doi: bioRxiv preprint 

https://doi.org/10.1101/429720
http://creativecommons.org/licenses/by-nc-nd/4.0/


 10 

3. Results 
We investigated the application of deep learning to free-text unstructured clinical narratives on two cohorts, 

veterinary (CSU) and human (MIMIC). First, we present an evaluation of the NLP tool, MetaMap, applied to 

veterinary records, and then we show the evaluation of the deep learning models built using human and veterinary 

records, as well as the portability between them. 

 

Evaluation of NLP on veterinary records. MetaMap Lite, a software typically used to extract clinical terms from 

free-text narratives, has not previously been applied to veterinary data. As such, we endeavored to verify that the 

software works as expected when applied in this context. Two board-certified veterinarians trained in clinical coding 

independently evaluated the MetaMap-extracted terms from 19 randomly selected records. Disagreements were 

resolved via in-depth discussion and consensus. This process resulted in a weighted-average precision of 0·62, recall 

of 0·82, and F1 score of 0·71 for the CSU data, as compared to a previously reported weighted-average precision of 

0·67, recall of 0·53, and F1 score of 0·58 for human clinical narratives25. Figure 2 shows an example of one free-text 

clinical narrative processed with MetaMap. 

 
Figure 2. Example of free-text and MetaMap-extracted veterinary record. A 2-year old female dog patient with 

recurrent otitis (marked in yellow), and allergic dermatitis (marked in blue). The narrative shows that the treatment 

given included prednisone (marked in green). For the purpose of this manuscript, the pet and owner’s name (marked 

in gray) were manually de-identified. 
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Evaluation of Deep Learning models. We trained one deep-learning model for each of the veterinary and human 

datasets. Both models were used to test on their own domain (veterinary to veterinary, and human to human), as well 

as ported over to the other domain (veterinary to human, and human to veterinary). In Figure 3, we provide the 

classification performance, using the original clinical narratives and the narratives with MetaMap-extracted features. 

 

 
Figure 3. F1 scores by category in each training-validation model. A) training model with CSU data, validation with 

CSU data; B) training model with MIMIC data, validation with MIMIC data; C) training model with CSU data, 

validation with MIMIC data; D) training model with MIMIC data, validation with CSU data. The color of the square 

represents the type of narrative used, either full free-text (green) or the MetaMap version (purple). The color of the 

category text is highlighted (blue) if it surpasses the threshold of at least 0.70 F1 score (dotted horizontal line). 

4. Discussion 
Applying deep learning to unstructured free-text clinical narratives in electronic health records offers a relatively 

simple, low-effort means to bypass the traditional bottlenecks in electronic phenotyping. Besides assigning ground-

truth labels to the CSU veterinary data for the purpose of illustrating the efficacy of our model, none of our efforts 

involved any manual curation, feature generation, or data harmonization, all of which are time-consuming tasks.  

 

Circumventing the need for data harmonization was very important for the datasets, which contained a plethora of 

domain- and setting-specific misspellings, abbreviations, and jargon. These issues greatly impact the performance of 
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the LSTM’s vector selection and the NLP’s entity recognition. MetaMap was useful in this regard, given its ability 

to parse clinical data. 

 

The databases that we selected, MIMIC and CSU, represent vastly different clinical settings. The clinical narratives 

that arise in a critical care unit, like those in MIMIC, do not necessarily compare to those from a tertiary referral 

veterinary care facility, like those in CSU. Moreover, the records were not coded in the same way, the clinicians did 

not receive the same training, and the documents apply to different species altogether. Despite these differences, 

however, our LSTM model was able to accurately classify medical narratives at the top level of depth in both 

datasets, without loss of generality in the method. However, the variability in classification performance across 

categories could be explained by larger number of training cases. There was a direct classification increase in those 

categories with more training samples. 

 

The usefulness of even top-level characterizations in the veterinary setting cannot be understated; usually, a 

veterinarian must read the full, unstructured text in order to get any information about the patient they are treating. 

Having any sort of data (e.g. top-level ICDs) on the patient beforehand could be extremely useful in more rapid 

triage. One can also imagine that more granular characterizations (in any dataset) could arise given sufficient data in 

each target tag (our models seemed to have high classification accuracies when there were more than approximately 

5,000 records in the category of interest). The repeated use of a series of LSTM models for subsequent, increasingly-

specific classifications thus represents a scalable, hierarchical tagging structure that could prove extremely useful in 

bucketing patients into specific departments, severities, and protocols. 

 

Our study has several limitations, including sample size, number of databases investigated, and focus on top-level, 

rather than downstream, categories. In the future, the increased availability of data from both the human and 

veterinary domains will facilitate more research in this field. Using a deep learning approach, can facilitate the 

categorization of unstructured clinical narratives, which are often a bottleneck to the identification of research 

cohorts, as well as facilitating sharing capabilities across institutions. 

 

Public Health Implications. In this era of rapid digital health and deployment of health records, it is important to 

provide tools that facilitate cohort identification. Our deep learning approach (LSTM model) was able to 

automatically classify medical narratives without having any domain knowledge or manual curation of features. The 

accuracy of classification (F1 score) was 0·83 for veterinary data, and 0·67 in the human data. With more training 

data it is possible to foresee a scenario in which these training models can benefit every clinical domain. As an 

example, in the neoplasia top-level category, the veterinary data had 36,108 clinical notes, which were used to train 

an LSTM model that correctly identified those clinical narratives in the human clinical notes, with F1 scores of 0·93 

and 0·70, respectively. The expansion of veterinary data availability and the subsequently enormous potential of 

model portability could prove to be exciting chapters in reducing bottlenecks in biosurveillance and public health 

research at large. 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 4, 2018. ; https://doi.org/10.1101/429720doi: bioRxiv preprint 

https://doi.org/10.1101/429720
http://creativecommons.org/licenses/by-nc-nd/4.0/


 13 

Declarations 

Ethics approval 

This research was reviewed and approved by Stanford’s Institutional Review Board (IRB), which provided a non-

human subject determination under eProtocol 46979. Consent was not required. 

 

Availability of data 

Veterinary data presented here belongs to the Colorado State University, which may grant access to this data on a 

case-by-case basis to researchers who obtain the necessary IRB approvals. 

 

Human data presented here belongs to the Beth Israel Deaconess Medical Center in Boston, Massachusetts, which 

can be accessed after signing a data usage agreement in the MIT Lab for Computational Physiology at 

https://mimic.physionet.org/ 

 

Competing interests 

CDB is Principal and Chairman of CDB Consulting LTD. He has advised Imprimed, Embark Vet and Etalon DX as 

a member of their respective Scientific Advisory Boards, and is a Director of Etalon DX. 

The remaining authors declare no conflicts of interest. 

 

Funding 

Research reported in this publication was partially supported via institutional funds from Stanford University. CDB 

is a Chan Zuckerberg Biohub Investigator. The funders had no role in study design, data collection and analysis, 

decision to publish, or preparation of the manuscript. 

 

Authors’ contributions 

ALP, OJBDW, GRV, and AMZ designed the study. RLP provided access to the veterinary data. OJBDW, GRV, 

ALP, AMZ, and SA extracted, formatted, and performed analysis of the data. AMZ, RLP, CDB and MAR provided 

interpretation of the results. ALP drafted the manuscript, and all authors contributed critically, read, revised and 

approved the final version. 

 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 4, 2018. ; https://doi.org/10.1101/429720doi: bioRxiv preprint 

https://doi.org/10.1101/429720
http://creativecommons.org/licenses/by-nc-nd/4.0/


 14 

Acknowledgments 

The authors wish to acknowledge Dr. Katie Kanagawa, for her valuable support in editing this manuscript. Also, 

Devin Johnson, DVM, MS, for her contribution to clinical coding and comparison with coding from the MetaMap 

tool. 

 

Bibliography 
1 Gundlapalli AV, Redd D, Gibson BS, et al. Maximizing clinical cohort size using free text queries. Comput 

Biol Med 2015; 60: 1–7. 

2 Shivade C, Raghavan P, Fosler-Lussier E, et al. A review of approaches to identifying patient phenotype 
cohorts using electronic health records. J Am Med Inform Assoc 2014; 21: 221–30. 

3 Benesch C, Witter DM, Wilder AL, Duncan PW, Samsa GP, Matchar DB. Inaccuracy of the International 
Classification of Diseases (ICD-9-CM) in identifying the diagnosis of ischemic cerebrovascular disease. 
Neurology 1997; 49: 660–4. 

4 Koopman B, Karimi S, Nguyen A, et al. Automatic classification of diseases from free-text death certificates 
for real-time surveillance. BMC Med Inform Decis Mak 2015; 15: 53. 

5 Berndorfer S, Henriksson A. Automated Diagnosis Coding with Combined Text Representations. Stud Health 
Technol Inform 2017; 235: 201–5. 

6 Anholt RM, Berezowski J, Jamal I, Ribble C, Stephen C. Mining free-text medical records for companion 
animal enteric syndrome surveillance. Preventive Veterinary Medicine 2014; 113: 417–22. 

7 Goodfellow I, Bengio Y, Courville A, Bengio Y. Deep learning. 2016. 

8 Gehrmann S, Dernoncourt F, Li Y, et al. Comparing deep learning and concept extraction based methods for 
patient phenotyping from clinical narratives. PLoS One 2018; 13: e0192360. 

9 Rajkomar A, Oren E, Chen K, et al. Scalable and accurate deep learning with electronic health records. npj 
Digital Medicine 2018 1:1 2018; 1: 18. 

10 Cummings KJ, Rodriguez-Rivera LD, Mitchell KJ, et al. Salmonella enterica serovar Oranienburg outbreak in 
a veterinary medical teaching hospital with evidence of nosocomial and on-farm transmission. Vector Borne 
Zoonotic Dis 2014; 14: 496–502. 

11 Krone LM, Brown CM, Lindenmayer JM. Survey of electronic veterinary medical record adoption and use by 
independent small animal veterinary medical practices in Massachusetts. J Am Vet Med Assoc 2014; 245: 324–
32. 

12 Witte CL, Lamberski N, Rideout BA, et al. Development of a case definition for clinical feline herpesvirus 
infection in cheetahs (Acinonyx jubatus) housed in zoos. J Zoo Wildl Med 2013; 44: 634–44. 

13 Griffith JE, Higgins DP. Diagnosis, treatment and outcomes for koala chlamydiosis at a rehabilitation facility 
(1995-2005). Aust Vet J 2012; 90: 457–63. 

14 Poppe JL. The US Army Veterinary Service 2020: knowledge and integrity. US Army Med Dep J 2013; : 5–
11. 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 4, 2018. ; https://doi.org/10.1101/429720doi: bioRxiv preprint 

https://doi.org/10.1101/429720
http://creativecommons.org/licenses/by-nc-nd/4.0/


 15 

15 Field K, Bailey M, Foresman LL, et al. Medical records for animals used in research, teaching, and testing: 
public statement from the American College of Laboratory Animal Medicine. ILAR J 2007; 48: 37–41. 

16 Shalev M. USDA to require research facilities, dealers, and exhibitors to keep veterinary medical records. Lab 
Anim (NY). 2003; 32: 16. 

17 Robinson TP, Wint GRW, Conchedda G, et al. Mapping the global distribution of livestock. PLoS One 2014; 
9: e96084. 

18 Smith K, Martinez A, Craddolph R, Erickson H, Andresen D, Warren S. An integrated cattle health 
monitoring system. Conf Proc IEEE Eng Med Biol Soc 2006; 1: 4659–62. 

19 Gates MC, Holmstrom LK, Biggers KE, Beckham TR. Integrating novel data streams to support 
biosurveillance in commercial livestock production systems in developed countries: challenges and 
opportunities. Front Public Health 2015; 3: 74. 

20 Johnson AEW, Pollard TJ, Shen L, et al. MIMIC-III, a freely accessible critical care database. Sci Data 2016; 
3: 160035. 

21 Abadi M, Agarwal A, Barham P, et al. TensorFlow: Large-Scale Machine Learning on Heterogeneous 
Distributed Systems. arXiv. 2016; cs.DC. 

22 Aronson AR. Effective mapping of biomedical text to the UMLS Metathesaurus: the MetaMap program. Proc 
AMIA Symp 2001; : 17–21. 

23 Pham T, Tran T, Phung D, Venkatesh S. DeepCare: A Deep Dynamic Memory Model for Predictive 
Medicine. In: Advances in Knowledge Discovery and Data Mining. Springer, Cham, 2016: 30–41. 

24 Pascanu R, Mikolov T, Bengio Y. On the difficulty of training Recurrent Neural Networks. arXiv. 2012; 
cs.LG. 

25 Demner-Fushman D, Rogers WJ, Aronson AR. MetaMap Lite: an evaluation of a new Java implementation of 
MetaMap. J Am Med Inform Assoc 2017; 24: 841–4. 

26 Barros JM, Duggan J, Rebholz-Schuhmann D. Disease mentions in airport and hospital geolocations expose 
dominance of news events for disease concerns. J Biomed Semantics 2018; 9: 18. 

27 Hanauer DA, Saeed M, Zheng K, et al. Applying MetaMap to Medline for identifying novel associations in a 
large clinical dataset: a feasibility analysis. J Am Med Inform Assoc 2014; 21: 925–37. 

28 Harkema H, Dowling JN, Thornblade T, Chapman WW. ConText: an algorithm for determining negation, 
experiencer, and temporal status from clinical reports. J Biomed Inform 2009; 42: 839–51. 

29 Ye Y, Wagner MM, Cooper GF, et al. A study of the transferability of influenza case detection systems 
between two large healthcare systems. PLoS One 2017; 12: e0174970. 

 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 4, 2018. ; https://doi.org/10.1101/429720doi: bioRxiv preprint 

https://doi.org/10.1101/429720
http://creativecommons.org/licenses/by-nc-nd/4.0/

