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Abstract

Acute myeloid leukaemia (AML) is a blood cancer affecting the haematopoietic stem

cells of the myeloid cell line. AML is routinely treated with chemotherapy, and so

it is of great interest to develop optimal chemotherapy treatment strategies. In this

work, we incorporate an immune response into a stem cell model of AML, since we

find that previous models lacking an immune response are inappropriate for deriving

optimal control strategies. Using optimal control theory, we produce continuous con-

trols and bang-bang controls, corresponding to a range of objectives and parameter

choices. Through example calculations, we provide a practical approach to applying

optimal control using Pontryagin’s maximum principle. In particular, we describe

and explore factors that have a profound influence on numerical convergence. We

find that the convergence behaviour is sensitive to the method of control updating,

the nature of the control, and to the relative weighting of terms in the objective

function. All codes we use to implement optimal control are made available.
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1 Introduction1

Acute Myeloid Leukaemia (AML) is a blood cancer that is characterised by2

haematopoietic stem cells of the myeloid cell line, primarily in the bone mar-3

row, transforming into leukaemic blast cells [21,46]. These blast cells no longer4

undergo normal differentiation or maturation and stop responding to normal5

regulators of proliferation [22]; their presence in the bone marrow niche dis-6

rupts normal haematopoiesis [21]. AML has significant mortality rates, with7

a five-year survival rate of 24.5% [7], and challenges in treatment arise not8

only in eradication of the leukaemic cells but also prophylaxis and treatment9

of numerous life threatening complications that arise due to the absence of10

sufficient healthy blood cells [61]. Multiple interventions are employed in the11

management and treatment of AML, including: leukapheresis; haematopoi-12

etic stem cell transplants; radiotherapy; chemotherapy and immunotherapy13

[4,46,51].14

Mathematical models are widely used to gain insight into complex biologi-15

cal processes [28,47]. Mathematical models facilitate the development of novel16

hypotheses, allow us to test assumptions, improve our understanding of bio-17

logical interactions, interpret experimental data and assist in the generating18

parameter estimates. Furthermore, mathematical models provide a convenient,19

low-cost mechanism for investigating biological processes and interventions for20

which experimental data may be scarce, cost-prohibitive or difficult to obtain21

owing to ethical issues. Mathematical models are routinely used to interro-22

gate a variety of processes relating to cancer research including; incidence;23

development and metastasis; tumour growth; immune reaction and treatment24

[12,15,21,30,42,58]. Recently, mathematical models have been used to inves-25

tigate various aspects of AML, including: incidence [40]; pathogenesis [18];26
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interactions between cancer and healthy haematopoietic stem cells within the27

bone marrow niche [21]; and recurrence following remission [49].28

Determining how to apply optimally a treatment such as chemotherapy is of29

great practical and theoretical interest. Chemotherapy, a common treatment30

for AML [20], is associated with significant health costs related to the cyto-31

toxicity of chemotherapeutic agents [10,46], but also substantial economic cost32

[63]. Optimal control theory provides us with tools for determining the optimal33

way to apply a control to a model such that some desired quantities of interest34

are minimised or maximised. Optimal control has been applied to a range of35

medically motivated biological models recently; including vaccination, tumour36

therapy and drug scheduling [14,16,34,35,43].37

In this work we consider a recent haematopoietic stem cell model of AML38

[21]. After examining the steady state behaviour associated with this model,39

we make a biologically appropriate and mathematically convenient modifica-40

tion by incorporating an immune response in the form of a Michaelis-Menten41

kinetic function. Overall, in this work we pursue two broad aims:42

(1) Determine how to apply optimal control to the model, accounting for key43

clinical features such as the competition between the negative effects of44

the disease and the negative effects of the treatment;45

(2) Provide a concise and insightful discussion of the methodology and nu-46

merical implementation of optimal control, as we find that much of the47

existing literature is opaque with regard to practical implementation.48

In addressing these aims, we provide a brief introduction to the theory of49

optimal control and apply optimal control techniques to the modified model,50

identifying optimal treatment strategies under a variety of circumstances. This51

leads us to consider both continuous and discontinuous bang-bang optimal52

controls. Our work provides a comprehensive discussion of practical issues53

that can arise when applying optimal control, and we explore key factors54

3

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted September 28, 2018. ; https://doi.org/10.1101/429811doi: bioRxiv preprint 

https://doi.org/10.1101/429811


that influence numerical convergence when using a forward-backward sweep55

algorithm to solve two-point boundary value problems that arise. The codes we56

use to implement the algorithms associated with the optimal control solutions57

is freely available on GitHub.58

In Section 2 we present a haemotopoietic stem cell model of AML [21], and59

discuss the steady states. In Section 3 the importance of an immune response60

is outlined, and the model is modified to include such a response. In Section61

4, we present discussion and results of optimal control applied to the modified62

AML model. Finally, concluding remarks are provided in Section 563

2 Acute myeloid leukaemia model64

Crowell, MacLean and Stumpf [21] propose a system of ordinary differential65

equations (ODEs) to model AML. Their model can be written as,66

dS

dt
= ρsS(K1 − Z1)− δSS,

dA

dt
= δSS + ρAA(K2 − Z2)− δAA,

dD

dt
= δAA− µDD,

dL

dt
= ρLL(K2 − Z2)− δLL,

dT

dt
= δLL− µTT. (1)

Here S(t), A(t), D(t), L(t) and T (t) represent haematopoietic stem cells, pro-67

genitor cells, terminally differentiated cells of S(t), leukaemia stem cells and68

fully differentiated leukaemia cells, respectively. Z1(t) = S(t) and Z2(t) =69

A(t) + L(t), where A(t) and L(t) are coupled as the proliferating leukaemia70

population (L(t)) competes with the haematopoietic progenitor cell popu-71
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lation (A(t)). This competition is motivated in [21] by the hypothesis that72

leukaemic stem cells and haematopoietic stem cells occupy the same niche73

within the bone marrow [25,57] and hence compete for resources. This niche74

interaction has been demonstrated as being crucial to similar haematopoietic75

and leukaemic cell models of chronic myeloid leukaemia [42]. Throughout this76

work we present numerical solutions to this model and other related mod-77

els. In all solutions presented the parameters are dimensionless, such that the78

time scale is arbitrary and cell population sizes within the bone marrow are79

expressed as a portion of the carrying capacities, such that K1 = K2 = 1. Set-80

ting these carrying capacities to be of equal size is a simplifying assumption81

in our analysis, though we note that this is not required, and could be relaxed82

if suitable alternative estimates of the carrying capacities were identified.83

Crowell, MacLean and Stumpf use numerical solutions of Equation (1) to iden-84

tify parameter values that lead to particular long time steady state solutions85

of the model. In this work we will use standard variables to denote time de-86

pendent quantities, such as S(t), and an overbar to denote long-time steady87

quantities, such as lim
t→∞

S(t) = S̄. The parameters we use are summarised in88

Table 1, and we note that the model supports three non-trivial steady states:89

(1) The healthy steady state consists of S̄, Ā, D̄ > 0 and L̄ = T̄ = 0, such90

that there is a population of each healthy cell species and no leukaemia91

is present.92

(2) The coexisting steady state requires S̄, Ā, D̄, L̄, T̄ > 0 simultaneously. In93

this work we are interested in modelling the optimal application of an94

intervention (or control) such as chemotherapy to the system that shifts95

it from the coexisting steady state towards the healthy steady state.96

(3) The third steady state is leukaemic, characterised by S̄ = Ā = D̄ = 097

and L̄, T̄ > 0, such that only leukaemic cells are present.98

The leukaemic steady state is less interesting from an intervention perspective99

5

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted September 28, 2018. ; https://doi.org/10.1101/429811doi: bioRxiv preprint 

https://doi.org/10.1101/429811


as it cannot be steered towards the healthy steady state via a control such as100

chemotherapy alone; requiring in addition a source of healthy cells.101

Table 1: Parameters values used in this work.

Parameter description Value

Proliferation of S ρS = 0.5

Proliferation of A ρA = 0.43

Proliferation of L ρL = 0.27

Differentiation of S into A δS = 0.14

Differentiation of A into D δA = 0.44

Differentiation of L into T δL = 0.05

Migration of D into the blood stream µD = 0.275

Migration of T into the blood stream µT = 0.3

Carrying capacity of the compartment with S K1 = 1

Carrying capacity of the compartment with A and L K2 = 1

Characteristic rate of the immune response α = 0.015

Half saturation constant of the immune response γ = 0.01

102

Parameter values in Table 1 are used in all numerical solutions presented in this103

work, unless otherwise indicated. These values match those specified in [21]104

to produce a healthy steady state, noting that [21] included parameter sweeps105

over ρS, ρA, δS and δA, with the exception of δL. We have set δL = 0.05 to106

produce the coexisting steady state, although other values for δL also produce107

this coexisting steady state.108

Schematics showing the key features of the original model, a modified model109

that incorporates an immune response (Section 3), and the modified model110

subject to a control (Section 4) are presented in Figure 1. Typical numerical111

solutions of the original model are presented in Figure 2. All numerical results112

presented in this study are obtained using a fourth-order Runge-Kutta method113

[52] with a constant time step of δt = 0.001. We find that this choice is114
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sufficient to produce numerical solutions that are grid-independent. From the115

numerical results we observe that for the parameter values given in Table 1,116

provided that initially S(0) > 0 and L(0) > 0, the system will tend towards117

the coexisting steady state. In Section 3 we modify the model to incorporate118

an immune response, such that sufficiently small leukaemic populations will119

decay without intervention.120
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Fig. 1. Schematics present the interactions and associated parameters for the (a)
original model [21], (b) modified model with immune response and (c) modified
model subject to a control, u. In each schematic the additional response is high-
lighted in red.
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Fig. 2. Numerical solutions of Equations 1 for various initial conditions: (a) Co-
existing steady state solution with [S(0), A(0), D(0), L(0), T (0)] = [0.1, 0, 0, 0.1, 0].
(b) Coexisting steady state with [0.5, 0, 0, 10−3, 0]. (c) Healthy steady state with
[0.1, 0, 0, 0, 0]. (d) Leukaemic steady state with [0, 0, 0, 0.1, 0].

In Figure 2b we note that although the initial leukaemia stem cell population is121

small compared to the initial haematopoietic stem cell population, the system122

eventually evolves to the same coexisting steady state as in Figure 2a. However,123

this steady state condition requires a longer timescale to develop from the124

different initial conditions.125

3 Incorporating the immune response126

The immune system is known to play a critical role in the development, metas-127

tasis, treatment and recurrence of cancers [24,26]. This knowledge is supported128

by a range of clinical evidence, including a well-documented increased risk129

of cancer incidence in patients with immunodeficiency [17]. This is exempli-130
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fied by experimental mouse models where mice are typically immunocompro-131

mised to avoid transplanted cancers being destroyed by the immune response132

in xenograft studies [19]. Furthermore, tumours found in immunocompetent133

hosts are observed to exhibit mechanisms for avoiding immune response [45].134

The behaviour exhibited in Figure 2b indicates that the system cannot reach135

a healthy non-leukaemic steady state in the presence of even small leukaemic136

stem cell populations. It is reasonable to expect that under some circum-137

stances a small leukaemic population may be outcompeted by healthy cells138

occupying the same niche [41], without intervention. Therefore, we consider a139

modification to the model proposed by Crowell, MacLean and Stumpf to incor-140

porate an immune response. We expect this immune response to be effective141

for small L and ineffective for large L, and so we mimic this by introducing a142

Michaelis-Menten term to represent the immune response, giving,143

dS

dt
= ρsS(K1 − Z1)− δSS,

dA

dt
= δSS + ρAA(K2 − Z2)− δAA,

dD

dt
= δAA− µDD,

dL

dt
= ρLL(K2 − Z2)− δLL−

αL

γ + L
,︸ ︷︷ ︸

immune response

dT

dt
= δLL− µTT. (2)

Including an immune response in the model is not only mathematically con-144

venient in that it provides desirable steady states that we discuss later in this145

section, but also biologically relevant. Immune responses are widely studied146

in both the theoretical and experimental biology literature and acknowledged147

as an important contributor to pathogenesis and tumour dynamics in AML148

[6,31,60]. Additionally, immunotherapy is being investigated as an alternative149

to chemotherapy for treatment of AML and many other cancers [9,39,44].150
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Michaelis-Menten terms are commonly used to incorporate immune responses151

in other biologically motivated models [2,23,37]. However, it is unclear, simply152

by inspection, what parameter values are required to obtain two stable steady153

states: one coexisting and one healthy. For γ � α the Michaelis-Menten term154

behaves as exponential decay at a rate of α, while for γ � L it behaves as a155

linear sink term [55,56]. Intuitively, we expect setting γ = O(L) will produce156

the desired dynamics whereby the immune response is effective for small L157

and ineffective for large L.158

We investigate further by considering the potential steady states permitted159

by Equation (2). We note that S is governed by a logistic growth mechanism160

that does not depend on any of the other species so we have S̄ = 1 − δS/ρS.161

Similarly, D and T do not influence the other populations and hence can be162

neglected in the consideration of the steady states. Therefore, we consider a163

reduced system in terms of A, L with S̄ = 1−δS/ρS, recalling that Z2 = A+L,164

and through scaling K2 = 1,165

dA

dt
= f(A,L) = δS

(
1− δS

ρS

)
+ ρAA(1− A− L)− δAA, (3)

dL

dt
= g(A,L) = ρLL(1− A− L)− δLL−

αL

γ + L
. (4)

By inspection, there is a trivial L-nullcline at L̄ = 0. We can find the A-166

nullcline by setting f(A,L) = 0 in Equation (3),167

L̄ =
δSS̄

ρAA
+ 1− A− δA

ρA
. (5)

Similarly, we can find the non-trivial L-nullcline by setting g(A,L) = 0 in168

Equation (4),169

Ā = 1− L− δL
ρL
− α

ρL(γ + L)
. (6)
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Fig. 3. Nullclines using parameters for (a) a coexistence steady state;
[ρS , ρA, ρL, δS , δA, δL] = [0.5, 0.43, .027, 0.14, 0.44, 0.05], and (b) the same parame-
ters with application of a control of u ≡ 0.1, effectively increasing δL to 0.15 (a
control could be a treatment such as chemotherapy that increases the rate of de-
cay of leukaemic stem cells, this is discussed in Section 4). In (a), for particular
choices of the introduced parameters α and γ it is possible for the hyperbolas to
intersect twice within the physically realistic region (dashed triangle). These figures
are produced with α = 0.015, γ = 0.1.

The nullclines, given by Equations (5) and (6), are hyperbolas. In Figure 3170

we present phase planes showing dynamics of the A and L populations within171

the physically meaningful region, A+ L ≤ 1.172
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This system has the desired property that we outlined previously, namely173

that there is a stable steady state of coexistence that we aim to steer to the174

stable state with no leukaemia through applying optimal control. Numerical175

solutions of the modified model with no control are presented in Figure 4.176
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Fig. 4. Numerical solutions to the modified model with an immune response for
initial conditions corresponding to Figure 2. In (a) we observe coexistence, though
it takes longer for the solutions to approach steady state when compared with
the original model (Figure 2a). This result is presented over a larger time-scale.
With the introduction of the Michaelis-Menten style immune response to leukaemia,
we observe in (b) that a small leukaemia stem cell population does not survive
in the presence of a haematopoietic stem cell population. This is in contrast to
Figure 2b, where a minute population of leukaemic stem cells was sufficient to grow
to a coexisting steady state. These figures are produced with immune response
parameters α = 0.015, γ = 0.1.
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4 Results and discussion177

In this section we provide a concise overview of the theory of optimal control.178

Methods for solving optimal control problems are discussed. We determine179

optimal controls to the model presented in Section 3. Specifically, we consider180

continuous optimal controls corresponding to quadratic pay-off functions and181

discontinuous bang-bang optimal controls corresponding to linear pay-off func-182

tions. Numerical solutions are produced for several different pay-off weighting183

parameter combinations.184

4.1 Optimal control theory185

The basic principle of optimal control is to apply an external force, the control,186

to a system of differential equations, the state equations, to cause the solution,187

the state, to follow a new trajectory and/or arrive at a different final state.188

The goal of optimal control is to select a particular control that maximises or189

minimises a chosen objective functional, the pay-off ; typically a function of the190

state and the control. The pay-off is chosen such that the new trajectory/final191

state are preferred to that of the uncontrolled state, accounting for any cost192

associated with applying the control.193

A typical optimal control problem will introduce the state equations as func-194

tions of the state x(t) and the control u(t), with initial state x(0) = x0,195

dx

dt
= f(t,x(t), u(t)), x(t) ∈ Rn. (7)

It is also necessary to specify either a final time tf with the final state free, or196

a final state x(tf ), with the final time free.197

A pay-off function J is defined as a function of the final state, x(tf ), and a198
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cost function L(t,x(t), u(t)) integrated from initial time (t0) to final time (tf ).199

Through choosing an optimal control u∗(t) and solving for the corresponding200

optimal state x∗(t), we seek to maximise or minimise this objective function.201

Selecting the pay-off enables us to incorporate the context of our application202

and determine the meaning of optimality. In general, the pay-off function can203

be written as,204

J = φ(x(tf )) +
∫ tf

t0
L(t,x(t), u(t)) dt. (8)

Depending on the form of φ, it may be possible to incorporate φ into L by205

restating the final state constraint in terms of an integral expression using206

the Fundamental Theorem of Calculus, and noting that φ(x(t0)) is constant207

and hence does not impact the optimal control. The resulting unconstrained208

optimal control problem is often more straightforward to solve than the con-209

strained problem.210

The optimal control can be found by solving necessary conditions obtained211

through application of Pontryagin’s Maximum Principle (PMP) [50], or a nec-212

essary and sufficient condition by forming and solving the Hamilton-Jacobi-213

Bellman partial differential equation; a dynamic programming approach [8]. In214

this work we use the PMP and we construct the Hamiltonian, H(t,x, u,λ) =215

L(t,x, u) + λf , where λ = [λ1(t), λ2(t), ..., λn(t)] are the adjoint variables for216

an n-dimensional state. The adjoint is analogous to Lagrange multipliers for217

unconstrained optimisation problems. Through the Hamiltonian, the adjoint218

allows us to link our state to our pay-off function. The necessary conditions219

can be expressed in terms of the Hamiltonian,220

(1) The optimality condition is obtained by minimising the Hamiltonian,221222

∂H

∂u
= 0 gives

(
∂L
∂u

+ λ
∂f

∂u

)
= 0, (9)

(2) the adjoint, also referred to as co-state, is found by setting,223
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224

∂H

∂x
= −dλ

dt
, giving

dλ

dt
= −

(
∂L
∂x

+ λ
∂f

∂x

)
, and (10)

(3) satisfying the transversality condition,225226

λ(tf ) =
∂φ

∂x

∣∣∣∣
t=tf

. (11)

4.2 Continuous optimal control227

In this section we consider optimal control applied to the AML model pre-228

sented in Section 3. From this point we omit the implied time dependence of229

all control, state and co-state variables for notational convenience. Consider230

the steady states we observed for the coexistent parameter values of model231

1. Suppose we wish to apply an optimal control that steers the system from232

a steady state observed in Figure 4a towards a healthy steady state (Figure233

4b). This could be achieved by applying a drug u(t), the dosage of which may234

vary over time, that kills leukaemic stem cells,235

dS

dt
= ρSS(K1 − Z1)− δSS,

dA

dt
= δSS + ρAA(K2 − Z2)− δAA,

dD

dt
= δAA− µDD,

dL

dt
= ρLL(K2 − Z2)− δLL−

αL

γ + L
− uL,

dT

dt
= δLL− µTT. (12)

A potential pay-off function for this optimal control problem is to minimise,236
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J =
∫ tf

0

(
a1u

2 + a2L
2
)

dt, (13)

where the control problem is assumed to start at time zero and run until a237

fixed end time of tf . In defining a pay-off function there is significant scope238

for flexibility, and what constitutes an appropriate choice depends on the239

application. The parameters a1 > 0 and a2 > 0 are chosen to weight the240

importance of each term in the pay-off, and can be adjusted to best suit a241

particular application. Through scaling it can be seen that for this example242

only the relative weighting (a1/a2) is important, however we specify a1 and a2243

separately for clarity.244

Quadratic pay-off functions have several desirable mathematical properties245

that increase the ease of finding optimal solutions; they are smooth and have246

only a single extremum. Furthermore, Quadratic pay-off functions help to247

avoid non-physical controls that may otherwise be found. For example; if the248

pay-off was a cubic function of u, setting u to be large and negative may min-249

imise the pay-off but be physically unrealisable. Quadratic pay-off functions250

also have some desirable physical properties; a quadratic term will apply a251

harsher penalty to large amounts of control than small amounts [5], which in252

many treatments, such as chemotherapy, is desirable [29]. In control engineer-253

ing applications, the control, u, is thought to be proportional to a voltage or254

current, in which case a quadratic pay-off has a convenient interpretation, as255

u2 is proportional to power, and the integral of this power over an interval is256

proportional to the energy expended [5]. Pay-off functions that are quadratic257

in the control variable are used in many biological [38,53] and engineering258

applications [3,48].259

We can construct the Hamiltonian as H = L+ λf ; where f is the right hand260

side of Equation (12), λ = [λ1, λ2, λ3, λ4, λ5], and from Equation (13), we have261
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L = a1u
2 + a2L

2, giving,262

H = a2L
2 + a1u

2 + λ1[ρSS(1− S)− δSS]

+ λ2[δSS + ρAA(1− A− L)− δAA]

+ λ3(δAA− µDD)

+ λ4[ρLL(1− A− L)− δLL− αL/(γ + L)− uL]

+ λ5(δLL− µTT ). (14)

From Equation (9), we find the optimal control by setting ∂H/∂u = 0, giving263

u∗ = λ4L/2a1. Following Equation (10), the co-state equations for λ are found264

by setting dλ/dt = −∂H/∂x,265

dλ1
dt

= 2Sλ1ρS + δSλ1 − δSλ2 − λ1ρS,
dλ2
dt

= 2Aλ2ρA + Lλ2ρA + Lλ4ρL + δAλ2 − λ2ρA,
dλ3
dt

= µDλ3,

dλ4
dt

= −2a2L+ ρAAλ2 + λ4ρLA+ 2ρLLλ4 − λ4ρL,

+ λ4δL +
αγλ4

(γ + L)2
+ λ4u− γLλ5,

dλ5
dt

= µTλ5. (15)

The transversality condition, Equation (11), gives final time conditions on266

the co-state, Equation (15); λ(tf ) = [0, 0, 0, 0, 0]. Assuming that the initial267

state is known; [S(0), A(0), D(0), L(0), T (0)], it is now possible to determine268

the optimal control and corresponding state and co-state through solving a269

two-point boundary value problem (BVP).270

We solve Equation (2) numerically to reach the stable coexistence steady state271
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of the uncontrolled model. These steady state values in the absence of the272

control are used as the initial state conditions to solve the BVP to find the273

optimal control solution. The initial condition for the optimal control prob-274

lem is [S(0), A(0), D(0), L(0), T (0)] = [0.7200, 0.3255, 0.5207, 0.3715, 0.0619].275

Initialising the optimal control solution from the uncontrolled steady state is276

not necessary, however it helps to illustrate the role of the control.277

There are a range analytical methods available for solving some forms of BVP278

under certain restrictions conditions [1,62]. However, in this work we focus on279

numerical solutions with a view to identifying and discussing typical issues280

that may arise in implementation. Common numerical solution techniques281

include shooting and forward backward sweep methods (FBSM) [27,36]. The282

most effective numerical method depends on the particular BVP. The single283

shooting method is relatively straightforward, but can be sensitive to the initial284

guess of the co-state. Forming a suitable guess for the initial values of the co-285

state is challenging, as the co-state does not have a straightforward physical286

interpretation. Although the FBSM calls for an initial guess for the control287

over the entire interval, this can often be straightforward to determine, as we288

will demonstrate.289

We apply the FBSM using an initial guess for the control, u(t) ≡ 0, to solve290

for the state variables forward in time. The co-state is then solved backward291

in time. In each case a fixed step fourth order Runge-Kutta method is applied292

to solve the relevant system of ODEs. Using these solutions, the control is up-293

dated and the process is repeated until convergence is achieved. The algorithm294

for the forward-backward sweep method is given in Algorithm 1.295
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Algorithm 1: Forward-backward sweep

i. Make an initial guess of u(t).

Typically u(t) ≡ 0 is sufficient, though a more thoughtful choice may

result in fewer iterations required for convergence.

ii. Using the initial condition x(0) = x0, solve for x(t) forward in time

using the initial guess of u(t).

iii. Using the transversality condition λ(tf ), solve for λ(t) backwards in

time, using the values for u(t) and x(t).

iv. Calculate unew(t) by evaluating the expression for the optimal control

u∗(t) using the updated x(t) and λ(t) values.

v. Update u(t) based on a combination of unew(t) and the previous u(t).

For continuous controls applied to relatively simple systems, it may

be possible to use unew(t) directly (u(t) = unew(t)), however this is not

sufficient to achieve convergence in general. We discuss this further

in Section 4.4.

vi. Check for convergence.

If x(t), λ(t) and u(t) are within a specified absolute or relative tol-

erance of the previous iteration, accept x(t), λ(t) and u(t) as having

converged, otherwise return to Step ii. and repeat the process using the

updated u(t).

Solutions are provided in Figure 5 for various weighting on the control param-296

eters. As expected, when a1 > a2, placing a greater weighting on the negative297

impact of the control than the negative impact of the leukaemic stem cells we298

observe that the control is applied at a lower level than when a1 < a2. When299

the pay-off weightings are equal, as shown in Figure 5b, the continuous control300

is applied at an amount similar to the level of the leukaemic stem cell popula-301

tion. Similarly, when the amount of control applied is larger, we observe that302

the leukaemic stem cell population declines at a faster rate. With a1 > a2, as303

in Figure 5c, we observe that the leukaemic population is effectively eradicated304
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by tf , whereas when a1 < a2 we see, in Figure 5d, that a leukaemic population305

remains at tf . A limitation of specifying a fixed final time, as opposed to a306

fixed final state, is that the optimal outcome is dependent on the specified final307

time, and there is no consideration for what may happen after tf . In many308

applications, the notion of what happens beyond the control interval is not of309

interest, though in some instances specifying a final state may be more sensi-310

ble. In this work we consider fixed final time problems for ease of comparison311

between controls under different parameter regimes, though we acknowledge312

that specifying a final state, such as no leukaemic stem cells, may be more313

biologically appropriate.314

For each of the optimal controls presented in Figure 5, we include an estimate315

of J , calculated by evaluating Equation (13) with the trapezoid rule. It is316

critical to note that these pay-offs should not be directly compared with each317

another. This kind of comparison would be meaningless as each result corre-318

sponds to different choices of a1 and a2, and these values explicitly contribute319

to J . For example; suppose an optimal control with pay-off weightings a1 and320

a2 is computed to have a pay-off of J1. Recomputing the optimal control with321

weightings 2a1 and 2a2 would produce a near identical optimal control and322

corresponding state, with slight deviation due to floating-point error. However,323

the corresponding pay-off J2 would be twice as large.324

No pay-off is calculated for the uncontrolled steady state solution (Figure 5a)325

as the choice of a1 and a2 would be arbitrary. In this sense, computed pay-offs326

are not useful for comparing the outcome of treatment versus no treatment as327

there is no meaningful pay-off associated with no treatment. Rather, computed328

pay-offs can be used for comparison with other controls applied to a system329

with identical parameters to check whether or not they are comparable in330

outcome to the optimal control, noting that the response of the state will also331

change if the control changes.332
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Fig. 5. Application of a continuous optimal control (black dashed line) for var-
ious pay-off weightings a1 and a2. The corresponding pay-off, J , is also given.
(a) Coexisting steady state solution with no control applied. (b) Equal weighting
[a1, a2] = [1, 1], J = 0.7167. (c) Leukaemia weighted more heavily [a1, a2] = [0.1, 1],
J = 0.2288. (d) Control weighted more heavily [a1, a2] = [1, 0.1], J = 0.2262. These
figures are produced with immune response parameters α = 0.015, γ = 0.1.
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4.3 Bang-bang optimal control333

In addition to considering continuous controls, it is also relevant to con-334

sider discontinuous bang-bang controls as this kind of on-off control could335

be thought to be more clinically relevant than a continuous setting. Bang-336

bang control problems require a specified bound on the control variable. A337

bang-bang optimal control takes the value of either the upper or lower bound338

with finitely many switching points over an interval. As a starting point we339

re-consider Equation (12) and note that a control will be either bang-bang op-340

timal or singular if the pay-off function is linear in the control term. A pay-off341

that should produce a bang-bang or singular optimal control of Equation (12)342

is to minimise343

J =
∫ tf

0
(a1u+ a2L) dt, (16)

subject to b1 ≤ u ≤ b2. We can construct the Hamiltonian as H = L + λf ,344

where L is the integrand of Equation (16), λ = [λ1, λ2, λ3, λ4, λ5] and f is the345

right hand side of Equation (12), giving346

H = a2L+ a1u+ λ1[ρSS(1− S)− δSS]

+ λ2[δSS + ρAA(1− A− L)− δAA]

+ λ3(δAA− µDD)

+ λ4[ρLL(1− A− L)− δLL− αL/(γ + L)− uL]

+ λ5(LδL − TµT ). (17)

As for the continuous control case, we differentiate the Hamiltonian with re-347

spect to our control variable u. With a linear pay-off, however, the result no348

longer contains u. Rather than solving for u, we define a switching function,349
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ψ(t), given by350

ψ(t) =
∂H

∂u
= −λ4(t)L(t) + a1. (18)

From PMP [50], it is implied that the Hamiltonian will be minimised under351

the following conditions,352

u∗(t) =


b1, if ψ(t) > 0,

b2, if ψ(t) < 0.

(19)

Conditions in Equation (19) produce a bang-bang control. Here, the control353

variable takes a value of either its upper or lower bound. Notably, Equation354

(19) omits the case where ψ(t) = 0, as a bang-bang optimal control requires355

that ψ(t) = 0 only at discrete points, if at all [13]. If ψ(t) = 0 for any finite356

interval aside from isolated points, the control is singular. Singular controls are357

most commonly encountered in cases where the Hamiltonian is linear in the358

control variable but non-linear in some state variables [11]. When ψ(t) = 0 over359

an interval, the Hamiltonian is not a function of the control, so the state and360

co-state variables no longer determine the control [11]; over this interval the361

control is determined by requiring ∂H/∂u = 0. Our control problem defined by362

Equation (12) and Equation (16) is not singular, so we do not discuss singular363

controls further.364

Our co-state equations for λ are found as ∂H/∂f = −dλ/dt. The co-state in365
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the bang-bang control problem is given by,366

dλ1
dt

= 2Sλ1ρS + δSλ1 − δSλ2 − λ1ρS,
dλ2
dt

= 2Aλ2ρA + Lλ2ρA + Lλ4ρL + δAλ2 − λ2ρA,
dλ3
dt

= µDλ3,

dλ4
dt

= −a2 + ρAAλ2 + λ4ρLA+ 2ρLLλ4 − λ4ρL

+ λ4δL +
αγλ4

(γ + L)2
+ λ4u− γLλ5,

dλ5
dt

= µTλ5, (20)

and we note that Equation 20 is subtly different to Equation 15, as the first367

term of the fourth line of Equation (20) is the constant −a2, and no longer368

depends on L.369

The transversality condition, Equation (11), gives the final time conditions370

on the co-state, [λ1(tf ), λ2(tf ), λ3(tf ), λ4(tf ), λ5(tf )] = [0, 0, 0, 0, 0]. Assuming371

again that the initial state is known; [S(0), A(0), D(0), L(0), T (0)], it is now372

possible to determine the optimal bang-bang control and corresponding opti-373

mal state and co-state through solving a two-point BVP that we solve using374

the FBSM, as in the continuous control case. It is not necessary to modify375

the FBSM algorithm to find bang-bang optimal controls, though care must376

be taken in how the control is updated between iterations. This is discussed377

further in Section 4.4. Depending on the numerical scheme used to integrate378

the state and co-state equations through time, the discontinuous nature of379

the bang-bang control may require careful handling. Solutions are provided in380

Figure 6 for various weighting on the control parameters. In the continuous381

control case, when a1 > a2, placing a greater weighting on the negative im-382

pact of the control than the negative impact of the leukaemic stem cells; we383

observed that the control is applied at a lower level than when a1 < a2. The384

optimal bang-bang control must take either the upper or lower bound of the385
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specified range. As such, in the bang-bang control case the pay-off weighting386

parameters determine not the level at which the control is applied, but rather387

the times at which the control switches from one bound to the other, hence388

the name switching function given to Equation (19).389
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Fig. 6. Bang-bang control solutions for various weightings on control and leukaemia
in the pay-off (a1 and a2 respectively), with different control upper bounds. These
figures are produced with immune response parameters α = 0.015, γ = 0.1.

In Figure 6 it is clear that when the upper bound on the control is higher,390

meaning in this context the maximum amount of chemotherapy that can be391

applied at any given time is higher, the control switches to the lower bound392

earlier. In this case the lower bound corresponds to u = 0, or no chemotherapy393
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being applied (control switched off ), though this is not required of the method.394

The interaction between the control and state in Equation (20) means that395

the cumulative amount of control applied is not the same for different bounds396

on the control. In Figure 5 we demonstrate that for a continuous control with397

a1 = 1, a2 = 0.1, a small amount of control is applied. For the bang-bang case398

with the same weighting, we observe in the rightmost column of Figure 6 that399

for a range of control upper bounds, the control is not switched on at all -400

implying that with such a pay-off, it is optimal not to apply the control. One401

may suppose that for a sufficiently small upper bound that the control would402

turn on even with this pay-off, however a lower upper bound on the control403

also reduces the impact the control has on the state.404

Due to the immune response incorporated in Section 3, a sufficiently small405

leukaemic population will tend towards extinction rather than grow back to406

a coexisting steady state. Because of this, we observe in Figure 6 that the407

control switches off before the leukaemic stem cells are totally eradicated -408

the immune response is sufficient once the leukaemic population is sufficiently409

low. This is most evident in Figure 6k, where we can see that the population410

of leukaemic stem cells is declining but has not become extinct by the final411

time, t = 50. In absence of the immune response incorporated in Section 3, we412

would observe the leukaemic population increasing as soon as the control is413

switched off, since the healthy steady state would be unstable; applying fixed414

final time bang-bang optimal control to the original model produces outcomes415

that are mathematically optimal but physically undesirable.416

In our discussion of continuous controls, we note the fixed final time as a417

limitation, since changing the final time can change the profile of the optimal418

control and state. In general the same is true of bang-bang controls with fixed419

final times, though in some instances that we consider the optimal bang-bang420

control does not change significantly if the final time is changed. For example;421

the optimal switching times and corresponding optimal states in the leftmost422
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column of Figure 6 do not change significantly if the final time is increased to423

t = 100, because by t = 50 we see that L ≈ 0 and u = 0, so neither contributes424

significantly to the pay-off in the interval 50 < t ≤ 100. For these cases the425

control is not costly relative to the leukaemia (a1 < a2) so it is applied at the426

upper bound until the leukaemic stem cell population is virtually eradicated427

before switching off.428

For this particular system, we only obtain bang-bang optimal controls with a429

single switching time. We are able to verify these bang-bang optimal controls430

through an exhaustive search of all possible bang-bang controls by specify-431

ing the switching time, directly calculating the pay-off and determining the432

switching time that minimises the pay-off. For all cases considered in Figure 6433

the switching time identified via exhaustive search is in agreement. It is also434

possible that the optimal bang-bang control may switch between the upper435

and lower bounds numerous times, producing multiple ‘bangs’. Bang-bang op-436

timal controls that exhibit multiple bangs can be identified using the FBSM437

without modification, though it is more difficult to find a convergent bang-438

bang optimal control with multiple bangs. Similarly, without knowing a priori439

how many switching times to expect, an exhaustive search for multiple bangs440

is not computationally feasible.441

4.4 Convergence and control updating442

In this section we examine the convergence behaviour of solutions to the op-443

timal control problems presented in this work. Convergence behaviour of nu-444

merical solutions to optimal control problems is influenced by multiple factors.445

In particular, we discuss the initial guess of the control, convergence criteria,446

control updating and pay-off weightings. These factors influence not only the447

number of iterations required to reach a converged numerical solution, but448

also whether or not a converged solution will be reached at all.449
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Holding all other factors constant, provided that the initial guess for the con-450

trol is sensible, the initial guess does not have a significant impact on whether451

or not a converged result is reached for the control problems considered in this452

work. However, convergence is typically reached with fewer iterations when the453

initial guess is relatively closer to the true value of the optimal control. For454

simplicity we use the initial guess u ≡ 0 for all results presented in this work,455

while acknowledging that more thoughtful choices may deliver convergence in456

fewer iterations.457

For optimal control results presented in the previous sections, we determine458

whether convergence has been achieved after each iteration based on the rela-459

tive difference between the updated control, uupdated, and the old control, uold.460

If this relative difference is sufficiently small, the updated control is accepted461

as the optimal control. A typical relative difference convergence criterion re-462

quires463

|uupdated − uold|
|uupdated|

≤ ε, (21)

where 0 < ε � 1 is the desired relative tolerance. Following [36], we adjust464

Equation (21) to allow for a control of the form u ≡ 0, giving465

ε
n∑

i=1

|uupdated(i∆t)| −
n∑

i=1

|uupdated(i∆t)− uold(i∆t)| ≥ 0, (22)

where t = i∆t, ∆t is the numerical time step and n is the number of nodes466

in the time discretisation. The absolute value is taken to ensure that positive467

differences are not offset by negative differences that could otherwise result468

in incorrectly detecting convergence. The choice of convergence criterion and469

acceptable tolerance depends on the particular problem at hand, and may470

need to be adjusted to be appropriate for another control problem. In some471

instances, it may be necessary to check convergence of the state and co-state472

as well as the control, particularly if the state response to control is sensitive.473
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For the control problems studied in this work, we find that state and co-474

state respond predictably to the control, and convergence of the control is475

accompanied by convergence of that state and co-state. As such we do not476

explicitly check for convergence of the state and co-state.477

In each iteration of the FBSM we recalculate the control, unew, based on the478

newly calculated state and co-state solutions and associated optimality cri-479

terion, as discussed in Section 4.2 for the continuous control and Section 4.3480

for the bang-bang control. Typically, unew is not used directly as the control481

for the next iteration of the FBSM, but rather we form an updated control482

uupdated as a weighted combination of unew and the control from the previ-483

ous iteration, uold. The motivation for this is two-fold; first, an appropriately484

weighted control updating scheme can speed up convergence; and second, for485

many optimal control problems, a direct update of uupdated = unew will fail486

to produce converging results at all. A common approach is to update the487

control based on a convex combination, such that the total weightings sum to488

one, of the new and previous control(s). In this work we use a constant linear489

weighting, with 0 < ω < 1, giving490

uupdated = ωuold + (1− ω)unew. (23)

We find that the best choice for ω depends not only on the form of the control,491

continuous or bang-bang, but also on model parameters such as the pay-off492

weightings. There is a trade-off between the number of iterations required to493

obtain convergence, and actually converging at all; a larger ω typically is more494

likely to produce converging solutions, but this also means that the control495

changes less each iteration, so more iterations are required. For example, a496

weighting of ω = 0.7 was sufficiently large that all continuous control solutions497

presented in Figure 5 converged to a relative tolerance of ε = 1 × 10−3. For498

ω = 0.6 only Figure 5d converges, and for ω = 0.8, all solutions in Figure 5499
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converge but require more iterations than when ω = 0.7.500

Convergence in the bang-bang control case typically requires larger ω and more501

iterations than the continuous controls. In the rightmost column of Figure502

6, there is no concept of convergence as the control never switches on. Only503

Figure 6j and Figure 6k converge to a relative tolerance of 1×10−3 for ω = 0.7,504

with ω = 0.9 being sufficient for convergence of all remaining solutions aside505

from Figure 6b, where we set ω = 0.95.506

It is clear that the best control updating scheme depends on the particular507

problem; and a scheme that works well for one problem may not necessarily508

work at all for another. When solving control problems, it may be necessary509

to try a range of updating schemes to achieve convergence. In this work we510

only consider constant weighted updating, though there are more sophisti-511

cated updating schemes that shift the weighting towards unew as the number512

of iterations increase [36]. In Figure 7 we examine the influence of the control513

update weighting ω, and the pay-off weightings, a1 and a2, on the convergence514

behaviour of the bang-bang control problem studied in Section 4.3. Specifi-515

cally, we consider the case where 0 ≤ u ≤ 0.5, and determine that a solution516

has converged if it meets a relative tolerance of ε = 1 × 10−3 within 250 it-517

erations. In each panel of Figure 7 we observe three regions : in region I we518

have no concept of convergence as the control never switches on; in region II519

we find that the optimal control problem does not converge; and in region III520

we observe convergence. Not all simulations conform strictly to these regions521

since the boundary between the different regions is not always sharp and well-522

defined. However, broadly speaking, these three regions capture the essence523

of the convergence behaviour that we observe. These regions are constructed524

based on discrete simulations of the problem for 0 < a1 ≤ 10 and 0 ≤ a2 ≤ 10,525

each in increments of 0.1. The case where a1 = 0 is excluded as this corre-526

sponds to no cost associated with applying the control, so there is no sense of527

convergence.528
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Fig. 7. Convergence behaviour for (a) ω = 0.85, (b) ω = 0.9, and (c) ω = 0.95, with
a1 and a2 ranging from 0 to 10 in increments of 0.1, excluding a1 = 0. In region I
(dark blue) we have no concept of convergence as the control never switches on. In
region II (light blue) we find that the optimal control problem does not converge,
and in region III (yellow) we observe convergence. These figures are produced with
immune response parameters α = 0.015, γ = 0.1.

From Figure 7 it is clear that convergence is achieved in a larger region of the529

(a1, a2) parameter space when ω is increased. However, it is important to note530

that achieving convergence in this context only implies that Equation (22) is531

satisfied, and does not necessarily mean that a suitable bang-bang control is532

obtained. While some controls corresponding to individual simulations in Fig-533

ure 7c are suitable bang-bang controls; a portion are approaching bang-bang534

but require additional iterations to accurately calculate the control around535

the switching point. The weighting applied in Equation (23) has the effect536

of smoothing u during intermediate iterations of the FBSM; this smoothness537

is gradually reduced as the control converges to the optimal switching point.538

Since ω explicitly influences the relative amount that the control can differ539

between iterations, if a larger ω is required to achieve convergence for a given540

problem, it may also be necessary to reduce the convergence tolerance ε to541

ensure that the resulting control is sufficiently bang-bang.542
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5 Conclusion and Outlook543

In this work we consider a haematopoietic stem cell model of AML that incor-544

porates competition between leukaemic stem cells and blood progenitor cells545

within the bone marrow niche. We incorporate a biologically appropriate im-546

mune response in the form of a Michaelis-Menten term. This modification is547

mathematically convenient because of the impact it has on the steady states,548

and biologically relevant because the immune response is known to play an549

important role in cancer progression and treatment. With a view to identify-550

ing the optimal way to apply a treatment such as chemotherapy to the model,551

we formulate and solve optimal control problems corresponding to multiple of552

objectives and constraints. This includes quadratic pay-off functions, yielding553

continuous controls, as well as linear pay-off functions, yielding discontinuous554

bang-bang controls.555

We provide a brief overview of optimal control theory, with a focus on the556

necessary conditions derived from Pontryagin’s Maximum Principle. This ap-557

proach formulates the optimal control problem as a coupled multi-species558

two-point boundary value problem. The resulting optimal control problem559

is solved numerically using the iterative FBSM. The algorithm for the FBSM560

is discussed, with a focus on highlighting typical issues that may arise in im-561

plementing optimal control. Suggestions are provided for overcoming these562

issues. In particular, we focus on factors that influence the convergence of563

the FBSM; not only in terms of the number of iterations required, but also564

whether it converges at all. These factors include the initial guess for the565

control, the convergence criterion, the method of updating the control, the566

associated weighting placed on controls from prior iterations and parameters567

such as pay-off weightings, and in the bang-bang control case, the control568

bounds.569

For the model we consider; a well informed initial guess for the control may re-570
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duce the number of iterations required for convergence, but any sensible guess571

should not prevent convergence. Most critically, we show that the method of572

updating the control and the associated weight placed on the control from the573

previous iteration has a significant impact on whether or not convergence will574

be achieved, as do the weights in the pay-off function. In the bang-bang control575

case, we observe that increasing the upper bound on the control can prevent576

convergence, holding all other factors constant; in this case, placing a greater577

weight on the solution from the previous iteration may produce convergence.578

There are many potential avenues to extend the ideas explored in this work.579

Here, we have incorporated the control via a simple mechanism, and more so-580

phisticated pharmacokinetic processes such as drug absorption and metabolism581

could be incorporated to increase the biological detail captured by the model,582

but this additional biological detail comes at the cost of increasing the num-583

ber of unknown, and possibly unmeasurable parameters. Therefore, care must584

be exercised in following up this kind of extension. The control problems pre-585

sented in this work could be reformulated as fixed final state problems, leaving586

the final time free to vary which could be more clinically relevant than spec-587

ifying the final time. With the introduction of an immune mechanism to the588

model, it is also possible to consider a control based around immunotherapy.589

A recent idea of great interest in clinical cancer research is the possibility of590

introducing an interval of time during treatment in which no chemotherapy is591

applied. This kind of intervention is reminiscent of a bang-bang control, and592

is often referred to as a drug holiday [59]. There is some evidence to suggest593

that drug resistance of tumour cells may reduce with time so that patients594

experience an improve response to chemotherapy following a drug holiday595

[32,33,54]. This application of a drug in an on-off fashion parallels the idea of596

the bang-bang controls we consider in this work and so it would be interesting597

to formulate the concept of designing a drug holiday in terms of a bang-bang598

optimal control problem using the algorithms and concepts developed in this599
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