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Abstract

Acute myeloid leukaemia (AML) is a blood cancer affecting the haematopoietic stem
cells of the myeloid cell line. AML is routinely treated with chemotherapy, and so
it is of great interest to develop optimal chemotherapy treatment strategies. In this
work, we incorporate an immune response into a stem cell model of AML, since we
find that previous models lacking an immune response are inappropriate for deriving
optimal control strategies. Using optimal control theory, we produce continuous con-
trols and bang-bang controls, corresponding to a range of objectives and parameter
choices. Through example calculations, we provide a practical approach to applying
optimal control using Pontryagin’s maximum principle. In particular, we describe
and explore factors that have a profound influence on numerical convergence. We
find that the convergence behaviour is sensitive to the method of control updating,
the nature of the control, and to the relative weighting of terms in the objective

function. All codes we use to implement optimal control are made available.
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1 1 Introduction

> Acute Myeloid Leukaemia (AML) is a blood cancer that is characterised by
3 haematopoietic stem cells of the myeloid cell line, primarily in the bone mar-
s+ row, transforming into leukaemic blast cells [21/46]. These blast cells no longer
s undergo normal differentiation or maturation and stop responding to normal
¢ regulators of proliferation [22]; their presence in the bone marrow niche dis-
7 rupts normal haematopoiesis [21]. AML has significant mortality rates, with
s a five-year survival rate of 24.5% [7], and challenges in treatment arise not
o only in eradication of the leukaemic cells but also prophylaxis and treatment
10 of numerous life threatening complications that arise due to the absence of
u sufficient healthy blood cells [61]. Multiple interventions are employed in the
2 management and treatment of AML, including: leukapheresis; haematopoi-
13 etic stem cell transplants; radiotherapy; chemotherapy and immunotherapy

w [AEAG5].

15 Mathematical models are widely used to gain insight into complex biologi-
16 cal processes [28/47]. Mathematical models facilitate the development of novel
17 hypotheses, allow us to test assumptions, improve our understanding of bio-
18 logical interactions, interpret experimental data and assist in the generating
19 parameter estimates. Furthermore, mathematical models provide a convenient,
2 low-cost mechanism for investigating biological processes and interventions for
a1 which experimental data may be scarce, cost-prohibitive or difficult to obtain
» owing to ethical issues. Mathematical models are routinely used to interro-
;3 gate a variety of processes relating to cancer research including; incidence;
2 development and metastasis; tumour growth; immune reaction and treatment
s [T2T52T13042/58]. Recently, mathematical models have been used to inves-

2 tigate various aspects of AML, including: incidence [40]; pathogenesis [18];
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a7 interactions between cancer and healthy haematopoietic stem cells within the

s bone marrow niche [21]; and recurrence following remission [49].

2 Determining how to apply optimally a treatment such as chemotherapy is of
s great practical and theoretical interest. Chemotherapy, a common treatment
a for AML [20], is associated with significant health costs related to the cyto-
» toxicity of chemotherapeutic agents [I0J46], but also substantial economic cost
13 [63]. Optimal control theory provides us with tools for determining the optimal
s way to apply a control to a model such that some desired quantities of interest
3 are minimised or maximised. Optimal control has been applied to a range of
s medically motivated biological models recently; including vaccination, tumour

v therapy and drug scheduling [14]16/34/35/43].

;s In this work we consider a recent haematopoietic stem cell model of AML
» [21]. After examining the steady state behaviour associated with this model,
» we make a biologically appropriate and mathematically convenient modifica-
s tion by incorporating an immune response in the form of a Michaelis-Menten

22 Kkinetic function. Overall, in this work we pursue two broad aims:

i3 (1) Determine how to apply optimal control to the model, accounting for key
4 clinical features such as the competition between the negative effects of
15 the disease and the negative effects of the treatment;

s (2) Provide a concise and insightful discussion of the methodology and nu-
7 merical implementation of optimal control, as we find that much of the

48 existing literature is opaque with regard to practical implementation.

s In addressing these aims, we provide a brief introduction to the theory of
so optimal control and apply optimal control techniques to the modified model,
51 identifying optimal treatment strategies under a variety of circumstances. This
s2 leads us to consider both continuous and discontinuous bang-bang optimal
53 controls. Our work provides a comprehensive discussion of practical issues

s« that can arise when applying optimal control, and we explore key factors
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55 that influence numerical convergence when using a forward-backward sweep
ss algorithm to solve two-point boundary value problems that arise. The codes we
s use to implement the algorithms associated with the optimal control solutions

ss 1S freely available on |GitHub.

o In Section |2l we present a haemotopoietic stem cell model of AML [21], and
s discuss the steady states. In Section |3 the importance of an immune response
e1 is outlined, and the model is modified to include such a response. In Section
s [, we present discussion and results of optimal control applied to the modified

63 AML model. Finally, concluding remarks are provided in Section

s« 2 Acute myeloid leukaemia model

s Crowell, MacLean and Stumpf [2I] propose a system of ordinary differential

e equations (ODEs) to model AML. Their model can be written as,

ds

T psS(K1 — Z1) — 68,

dA

dD

— = 0,A— upD

a A KDL/,

dL

7dt e pLL(K2 - ZQ) - 5LL7

dT

L SL— T 1
=0l pur (1)

e Here S(t), A(t), D(t), L(t) and T'(t) represent haematopoietic stem cells, pro-
¢ genitor cells, terminally differentiated cells of S(t), leukaemia stem cells and
oo fully differentiated leukaemia cells, respectively. Z;(t) = S(t) and Zy(t) =
w0 A(t) + L(t), where A(t) and L(t) are coupled as the proliferating leukaemia

7 population (L(t)) competes with the haematopoietic progenitor cell popu-
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2 lation (A(t)). This competition is motivated in [21] by the hypothesis that
7z leukaemic stem cells and haematopoietic stem cells occupy the same niche
7+ within the bone marrow [25/57] and hence compete for resources. This niche
75 interaction has been demonstrated as being crucial to similar haematopoietic
76 and leukaemic cell models of chronic myeloid leukaemia [42]. Throughout this
77 work we present numerical solutions to this model and other related mod-
7 els. In all solutions presented the parameters are dimensionless, such that the
70 time scale is arbitrary and cell population sizes within the bone marrow are
s expressed as a portion of the carrying capacities, such that K; = Ky = 1. Set-
&1 ting these carrying capacities to be of equal size is a simplifying assumption
s2 in our analysis, though we note that this is not required, and could be relaxed

g3 if suitable alternative estimates of the carrying capacities were identified.

& Crowell, MacLean and Stumpf use numerical solutions of Equation (/1)) to iden-
s tify parameter values that lead to particular long time steady state solutions
s of the model. In this work we will use standard variables to denote time de-
& pendent quantities, such as S(t), and an overbar to denote long-time steady
g8 quantities, such as tlggo S(t) = S. The parameters we use are summarised in

o Table[I) and we note that the model supports three non-trivial steady states:

o (1) The healthy steady state consists of S, A,D > 0 and L = T = 0, such
o1 that there is a population of each healthy cell species and no leukaemia
92 is present.

s (2) The coeisting steady state requires S, A, D, L, T > 0 simultaneously. In

o this work we are interested in modelling the optimal application of an
% intervention (or control) such as chemotherapy to the system that shifts
% it from the coexisting steady state towards the healthy steady state.

o (3) The third steady state is leukaemic, characterised by S = A =D =0

% and L,T > 0, such that only leukaemic cells are present.

o The leukaemic steady state is less interesting from an intervention perspective
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w0 as it cannot be steered towards the healthy steady state via a control such as

w1 chemotherapy alone; requiring in addition a source of healthy cells.

Table 1: Parameters values used in this work.

Parameter description Value
Proliferation of S ps = 0.5
Proliferation of A pa = 0.43
Proliferation of L pr = 0.27
Differentiation of S into A 0g = 0.14
o Differentiation of A into D 04 = 0.44
Differentiation of L into T’ or = 0.05
Migration of D into the blood stream up = 0.275
Migration of T" into the blood stream pr = 0.3
Carrying capacity of the compartment with S K, =1

Carrying capacity of the compartment with A and L Ky =1
Characteristic rate of the immune response a =0.015

Half saturation constant of the immune response v =0.01

s Parameter values in Table|l|are used in all numerical solutions presented in this
s work, unless otherwise indicated. These values match those specified in [21]
105 to produce a healthy steady state, noting that [21] included parameter sweeps
06 OVer pg, pa,0s and &4, with the exception of §;,. We have set §;, = 0.05 to
w7 produce the coexisting steady state, although other values for ¢, also produce

s this coexisting steady state.

100 Schematics showing the key features of the original model, a modified model
1o that incorporates an immune response (Section , and the modified model
i subject to a control (Section [4)) are presented in Figure . Typical numerical
2 solutions of the original model are presented in Figure[2] All numerical results
us presented in this study are obtained using a fourth-order Runge-Kutta method

us [52] with a constant time step of §¢ = 0.001. We find that this choice is
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us sufficient to produce numerical solutions that are grid-independent. From the
s numerical results we observe that for the parameter values given in Table []
u7 provided that initially S(0) > 0 and L(0) > 0, the system will tend towards
us the coexisting steady state. In Section 3| we modify the model to incorporate
ne an immune response, such that sufficiently small leukaemic populations will

120 decay without intervention.
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Fig. 1. Schematics present the interactions and associated parameters for the (a)
original model [2I], (b) modified model with immune response and (¢) modified
model subject to a control, u. In each schematic the additional response is high-

lighted in red. <
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Fig. 2. Numerical solutions of Equations [1| for various initial conditions: (a) Co-
existing steady state solution with [S(0), A(0), D(0), L(0),T(0)] = [0.1,0,0,0.1,0].
(b) Coexisting steady state with [0.5,0,0,1073,0]. (c) Healthy steady state with
[0.1,0,0,0,0]. (d) Leukaemic steady state with [0,0,0,0.1,0].
121 In Figure2b we note that although the initial leukaemia stem cell population is
122 small compared to the initial haematopoietic stem cell population, the system
123 eventually evolves to the same coexisting steady state as in Figure[2h. However,

124 this steady state condition requires a longer timescale to develop from the

s different initial conditions.

s 3 Incorporating the immune response

12z The immune system is known to play a critical role in the development, metas-
s tasis, treatment and recurrence of cancers [24/26]. This knowledge is supported
129 by a range of clinical evidence, including a well-documented increased risk

130 of cancer incidence in patients with immunodeficiency [I7]. This is exempli-
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m  fied by experimental mouse models where mice are typically immunocompro-
12 mised to avoid transplanted cancers being destroyed by the immune response
133 in xenograft studies [19]. Furthermore, tumours found in immunocompetent

134 hosts are observed to exhibit mechanisms for avoiding immune response [45].

135 The behaviour exhibited in Figure [2b indicates that the system cannot reach
s a healthy non-leukaemic steady state in the presence of even small leukaemic
17 stem cell populations. It is reasonable to expect that under some circum-
s stances a small leukaemic population may be outcompeted by healthy cells
130 occupying the same niche [41], without intervention. Therefore, we consider a
1o modification to the model proposed by Crowell, MacLean and Stumpf to incor-
w1 porate an immune response. We expect this immune response to be effective
12 for small L and ineffective for large L, and so we mimic this by introducing a

13 Michaelis-Menten term to represent the immune response, giving,

ds
E = PsS<K1 - Zl) - 5557
dA
E - (SSS + pAA(KQ - ZQ) - 5AA,
dD
— =044 — upD
a A wpLl/,
dL ol
— = L(Ky — Zy) — 0 L —
dt PL ( 2 2) oL, 7+L’
RO
mmune response
dr
— =0, L — urT. 2
a L ur ( )

s Including an immune response in the model is not only mathematically con-
us venient in that it provides desirable steady states that we discuss later in this
us section, but also biologically relevant. Immune responses are widely studied
w7 in both the theoretical and experimental biology literature and acknowledged
1ug as an important contributor to pathogenesis and tumour dynamics in AML
1o [631J60]. Additionally, immunotherapy is being investigated as an alternative

150 to chemotherapy for treatment of AML and many other cancers [9/39/44].

10
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151 Michaelis-Menten terms are commonly used to incorporate immune responses
152 in other biologically motivated models [2[23/37]. However, it is unclear, simply
153 by inspection, what parameter values are required to obtain two stable steady
154 states: one coexisting and one healthy. For v < o the Michaelis-Menten term
155 behaves as exponential decay at a rate of o, while for v > L it behaves as a
155 linear sink term [5556]. Intuitively, we expect setting v = O(L) will produce
157 the desired dynamics whereby the immune response is effective for small L

158 and ineffective for large L.

159 We investigate further by considering the potential steady states permitted
60 by Equation (2]). We note that S is governed by a logistic growth mechanism
61 that does not depend on any of the other species so we have S = 1 — dg/ps.
12 Similarly, D and T do not influence the other populations and hence can be
13 neglected in the consideration of the steady states. Therefore, we consider a
s reduced system in terms of A, L with S = 1—6g/pg, recalling that Z, = A+ L,
s and through scaling Ky =1,

%:f(A,L):dg (1—55> —FpAA(l—A—L)—(SAA, (3)
dt Ps

dL al

S G(AL)=p L(1—A—L)—6,L— . 4
P g(A, L) = prL( ) — 0L ) (4)

s By inspection, there is a trivial L-nullcline at L = 0. We can find the A-
167 nullcline by setting f(A, L) = 0 in Equation (3)),

L=""+4+1-A--"2, (5)

s Similarly, we can find the non-trivial L-nullcline by setting g(A, L) = 0 in
160 Equation ,

11
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Fig. 3. Nullclines using parameters for (a) a coexistence steady state;
[ps, pasprL,0s,94,0r] = [0.5,0.43,.027,0.14,0.44,0.05], and (b) the same parame-
ters with application of a control of u = 0.1, effectively increasing dz, to 0.15 (a
control could be a treatment such as chemotherapy that increases the rate of de-
cay of leukaemic stem cells, this is discussed in Section . In (a), for particular
choices of the introduced parameters o and « it is possible for the hyperbolas to
intersect twice within the physically realistic region (dashed triangle). These figures
are produced with a = 0.015, v = 0.1.

o The nullclines, given by Equations and (@, are hyperbolas. In Figure
1 we present phase planes showing dynamics of the A and L populations within

2 the physically meaningful region, A + L < 1.

12
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This system has the desired property that we outlined previously, namely
that there is a stable steady state of coexistence that we aim to steer to the
stable state with no leukaemia through applying optimal control. Numerical

solutions of the modified model with no control are presented in Figure

13
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Fig. 4. Numerical solutions to the modified model with an immune response for
initial conditions corresponding to Figure [2} In (a) we observe coexistence, though
it takes longer for the solutions to approach steady state when compared with
the original model (Figure [2h). This result is presented over a larger time-scale.
With the introduction of the Michaelis-Menten style immune response to leukaemia,
we observe in (b) that a small leukaemia stem cell population does not survive
in the presence of a haematopoietic stem cell population. This is in contrast to
Figure[2b, where a minute population of leukaemic stem cells was sufficient to grow
to a coexisting steady state. These figures are produced with immune response
parameters o = 0.015, v = 0.1.

14
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177 4 Results and discussion

7s  In this section we provide a concise overview of the theory of optimal control.
o Methods for solving optimal control problems are discussed. We determine
1o optimal controls to the model presented in Section [3| Specifically, we consider
111 continuous optimal controls corresponding to quadratic pay-off functions and
12 discontinuous bang-bang optimal controls corresponding to linear pay-off func-
183 tions. Numerical solutions are produced for several different pay-off weighting

18a  parameter combinations.

185 4.1  Optimal control theory

18 'he basic principle of optimal control is to apply an external force, the control,
17 to a system of differential equations, the state equations, to cause the solution,
s the state, to follow a new trajectory and/or arrive at a different final state.
189 The goal of optimal control is to select a particular control that maximises or
10 minimises a chosen objective functional, the pay-off; typically a function of the
01 state and the control. The pay-off is chosen such that the new trajectory /final
12 state are preferred to that of the uncontrolled state, accounting for any cost

13 associated with applying the control.

s A typical optimal control problem will introduce the state equations as func-

15 tions of the state x(t) and the control u(t), with initial state x(0) = xo,

dx

o = Jx0.u), x() R (7)

196 It is also necessary to specify either a final time ¢; with the final state free, or

w7 a final state x(tf), with the final time free.

s A pay-off function J is defined as a function of the final state, x(¢;), and a

15
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e cost function L£(t,x(t),u(t)) integrated from initial time (¢y) to final time (¢).
20 Through choosing an optimal control u*(¢) and solving for the corresponding
20 optimal state x*(¢), we seek to maximise or minimise this objective function.
22 Selecting the pay-off enables us to incorporate the context of our application
203 and determine the meaning of optimality. In general, the pay-off function can

200 be written as,

t

J=o(x(ty) + [ L(tx(t),u(t)) dt. (8)

to

25  Depending on the form of ¢, it may be possible to incorporate ¢ into £ by
26 restating the final state constraint in terms of an integral expression using
207 the Fundamental Theorem of Calculus, and noting that ¢(x(to)) is constant
208  and hence does not impact the optimal control. The resulting unconstrained
200 optimal control problem is often more straightforward to solve than the con-

210 strained problem.

au The optimal control can be found by solving necessary conditions obtained
22 through application of Pontryagin’s Maximum Principle (PMP) [50], or a nec-
23 essary and sufficient condition by forming and solving the Hamilton-Jacobi-
2e Bellman partial differential equation; a dynamic programming approach [§]. In
25 this work we use the PMP and we construct the Hamiltonian, H(¢,x,u, A) =
n6 L(t,x,u) + Af, where X = [A{ (), A2(t), ..., A\, (t)] are the adjoint variables for
217 an n-dimensional state. The adjoint is analogous to Lagrange multipliers for
218 unconstrained optimisation problems. Through the Hamiltonian, the adjoint
210 allows us to link our state to our pay-off function. The necessary conditions

220 can be expressed in terms of the Hamiltonian,

22 (1) The optimality condition is obtained by minimising the Hamiltonian,

oH . (0L . Of
67'“ = 0 gives <8u + A&[/) = O, (9)

23 (2) the adjoint, also referred to as co-state, is found by setting,

16
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224

0OH dh . dA oL of
ox T ap SVine g T (ax * *ax> , and (10)
25 (3) satisfying the transversality condition,
o¢
Aty) = — . 11
=5, (1)

21 4.2 Continuous optimal control

28 In this section we consider optimal control applied to the AML model pre-
20 sented in Section [3, From this point we omit the implied time dependence of
230 all control, state and co-state variables for notational convenience. Consider
21 the steady states we observed for the coexistent parameter values of model
2 1. Suppose we wish to apply an optimal control that steers the system from
23 a steady state observed in Figure dh towards a healthy steady state (Figure
2 [Ab). This could be achieved by applying a drug u(t), the dosage of which may

235 vary over time, that kills leukaemic stem cells,

ds

E = pSS<K1 - Zl) - (SSS,

dA

E:555+pAA(K2—Z2)—5AA,

dD

=~ = 64A— upD

ar oAt T HDE

dL al

— = L(Ky — Zy) — 61, L — —ul

a prL(K; 2) L Y+ L UL,

dT

— =0, L — urT. 12
a L Hr (12)

236 A potential pay-off function for this optimal control problem is to minimise,

17


https://doi.org/10.1101/429811

bioRxiv preprint doi: https://doi.org/10.1101/429811; this version posted September 28, 2018. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

t
J = / ! (CL1U2 +CL2L2) dt, (13)
0

237 where the control problem is assumed to start at time zero and run until a
2 fixed end time of ¢;. In defining a pay-off function there is significant scope
20 for flexibility, and what constitutes an appropriate choice depends on the
20 application. The parameters a; > 0 and ay > 0 are chosen to weight the
21 importance of each term in the pay-off, and can be adjusted to best suit a
a2 particular application. Through scaling it can be seen that for this example
23 only the relative weighting (a1 /as) is important, however we specify a; and as

aa separately for clarity.

s Quadratic pay-off functions have several desirable mathematical properties
us  that increase the ease of finding optimal solutions; they are smooth and have
a7 only a single extremum. Furthermore, Quadratic pay-off functions help to
28 avoid non-physical controls that may otherwise be found. For example; if the
29 pay-off was a cubic function of u, setting u to be large and negative may min-
0 imise the pay-off but be physically unrealisable. Quadratic pay-off functions
1 also have some desirable physical properties; a quadratic term will apply a
22 harsher penalty to large amounts of control than small amounts [5], which in
253 many treatments, such as chemotherapy, is desirable [29]. In control engineer-
4 ing applications, the control, u, is thought to be proportional to a voltage or
5 current, in which case a quadratic pay-off has a convenient interpretation, as
»6 12 is proportional to power, and the integral of this power over an interval is
257 proportional to the energy expended [5]. Pay-off functions that are quadratic
s in the control variable are used in many biological [38/53] and engineering

20 applications [34§].

0  We can construct the Hamiltonian as H = £ + Af; where f is the right hand
21 side of Equation (12)), A = [A1, A2, A3, Aa, As], and from Equation (13, we have

18
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w2 L= aju® + ayL?, giving,

H = ayL* + ayu® + Mi[psS(1 — S) — 8s95]
+ Aa[05S + paA(l — A — L) — 644
+ \3(64A — pupD)
+ MlprL(1 —A—L)—6,L —aL/(y+ L) — ul]
+ As(0rL — prT). (14)

%3 From Equation @D, we find the optimal control by setting 0H/0u = 0, giving
20 U = A\gL/2a,. Following Equation , the co-state equations for X are found
s by setting dA/dt = —0H/0x,

dA
dA
dAs
i R Y
dt HDA3,
dA
d—; = —2asL + paAdy + Mapr A+ 2pL LAy — Mapr,
ayAy
+ M0+ g A — s,
40 (v + L)? 4U — YLAs

dAs
AT W 15
a M )

»%6 The transversality condition, Equation , gives final time conditions on
%7 the co-state, Equation ; A(ty) = 10,0,0,0,0]. Assuming that the initial
s state is known; [S(0), A(0), D(0), L(0), T'(0)], it is now possible to determine
»%0 the optimal control and corresponding state and co-state through solving a

20 two-point boundary value problem (BVP).
o1 We solve Equation ([2)) numerically to reach the stable coexistence steady state
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o2 of the uncontrolled model. These steady state values in the absence of the
a3 control are used as the initial state conditions to solve the BVP to find the
oz optimal control solution. The initial condition for the optimal control prob-
zs lem is [S(0), A(0), D(0), L(0),7(0)] = [0.7200, 0.3255,0.5207,0.3715,0.0619].
76 Initialising the optimal control solution from the uncontrolled steady state is

o7 not necessary, however it helps to illustrate the role of the control.

s There are a range analytical methods available for solving some forms of BVP
20 under certain restrictions conditions [1J62]. However, in this work we focus on
20 numerical solutions with a view to identifying and discussing typical issues
21 that may arise in implementation. Common numerical solution techniques
22 include shooting and forward backward sweep methods (FBSM) [27/36]. The
23 most effective numerical method depends on the particular BVP. The single
2 shooting method is relatively straightforward, but can be sensitive to the initial
285 guess of the co-state. Forming a suitable guess for the initial values of the co-
26 state is challenging, as the co-state does not have a straightforward physical
27 interpretation. Although the FBSM calls for an initial guess for the control
s over the entire interval, this can often be straightforward to determine, as we

20 will demonstrate.

20 We apply the FBSM using an initial guess for the control, u(t) = 0, to solve
2 for the state variables forward in time. The co-state is then solved backward
22 in time. In each case a fixed step fourth order Runge-Kutta method is applied
203 to solve the relevant system of ODEs. Using these solutions, the control is up-
2 dated and the process is repeated until convergence is achieved. The algorithm

25 for the forward-backward sweep method is given in Algorithm 1.

20
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Algorithm 1: Forward-backward sweep

i. Make an initial guess of u(t).

Typically u(t) = 0 is sufficient, though a more thoughtful choice may
result in fewer iterations required for convergence.

ii. Using the initial condition x(0) = xo, solve for x(t) forward in time
using the initial guess of wu(t).

iii. Using the transversality condition A(ty), solve for A(t) backwards in
time, using the values for u(t) and x(t).

iv. Calculate uyew(t) by evaluating the expression for the optimal control
u*(t) using the updated x(t) and A(t) values.

v. Update u(t) based on a combination of ey (t) and the previous w(t).
For continuous controls applied to relatively simple systems, it may
be possible to use Upey(t) directly (u(t) = Unew(t)), however this is not
sufficient to achieve convergence in general. We discuss this further
in Section [{.4}

vi. Check for convergence.

If x(t), A(t) and u(t) are within a specified absolute or relative tol-
erance of the previous iteration, accept x(t), A(t) and u(t) as having
converged, otherwise return to Step ii. and repeat the process using the

updated u(t).

206 Solutions are provided in Figure 5| for various weighting on the control param-
207 eters. As expected, when a; > as, placing a greater weighting on the negative
26 impact of the control than the negative impact of the leukaemic stem cells we
200 Observe that the control is applied at a lower level than when a; < as. When
20 the pay-off weightings are equal, as shown in Figure [5p, the continuous control
s is applied at an amount similar to the level of the leukaemic stem cell popula-
52 tion. Similarly, when the amount of control applied is larger, we observe that
33 the leukaemic stem cell population declines at a faster rate. With a; > as, as

2+ in Figure[bl, we observe that the leukaemic population is effectively eradicated
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s by ¢y, whereas when a; < ay we see, in Figure , that a leukaemic population
36 Temains at ty. A limitation of specifying a fixed final time, as opposed to a
s07  fixed final state, is that the optimal outcome is dependent on the specified final
s time, and there is no consideration for what may happen after ty. In many
30 applications, the notion of what happens beyond the control interval is not of
s interest, though in some instances specifying a final state may be more sensi-
su ble. In this work we consider fixed final time problems for ease of comparison
;12 between controls under different parameter regimes, though we acknowledge
a1z that specifying a final state, such as no leukaemic stem cells, may be more

sis biologically appropriate.

a5 For each of the optimal controls presented in Figure |bl we include an estimate
sis of J, calculated by evaluating Equation with the trapezoid rule. It is
ai7 - critical to note that these pay-offs should not be directly compared with each
s1s another. This kind of comparison would be meaningless as each result corre-
a9 sponds to different choices of a; and ay, and these values explicitly contribute
20 to J. For example; suppose an optimal control with pay-off weightings a; and
21 ag is computed to have a pay-off of J;. Recomputing the optimal control with
22 weightings 2a; and 2a,; would produce a near identical optimal control and
33 corresponding state, with slight deviation due to floating-point error. However,

s24 the corresponding pay-off J, would be twice as large.

»s  No pay-off is calculated for the uncontrolled steady state solution (Figure [pa)
16 as the choice of a; and ay would be arbitrary. In this sense, computed pay-offs
s7 are not useful for comparing the outcome of treatment versus no treatment as
28 there is no meaningful pay-off associated with no treatment. Rather, computed
19 pay-offs can be used for comparison with other controls applied to a system
s with identical parameters to check whether or not they are comparable in
131 outcome to the optimal control, noting that the response of the state will also

s change if the control changes.
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Fig. 5. Application of a continuous optimal control (black dashed line) for var-
ious pay-off weightings a1 and ao. The corresponding pay-off, J, is also given.
(a) Coexisting steady state solution with no control applied. (b) Equal weighting
[a1,a2) = [1,1], J = 0.7167. (c) Leukaemia weighted more heavily [a;, as] = [0.1,1],
J =0.2288. (d) Control weighted more heavily [a1,as] = [1,0.1], J = 0.2262. These
figures are produced with immune response parameters o = 0.015, v = 0.1.
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3 4.8  Bang-bang optimal control

s In addition to considering continuous controls, it is also relevant to con-
15 sider discontinuous bang-bang controls as this kind of on-off control could
16 be thought to be more clinically relevant than a continuous setting. Bang-
;37 bang control problems require a specified bound on the control variable. A
18 bang-bang optimal control takes the value of either the upper or lower bound
139 with finitely many switching points over an interval. As a starting point we
s re-consider Equation and note that a control will be either bang-bang op-
san timal or singular if the pay-off function is linear in the control term. A pay-off
s that should produce a bang-bang or singular optimal control of Equation ((12))

a3 1S to minimise
ty
J :/ (aqu + as L) dt, (16)
0

saa subject to by < u < by. We can construct the Hamiltonian as H = £ + Af,
us where £ is the integrand of Equation (16), A = [A1, A2, A3, A4, As] and f is the
us  right hand side of Equation , giving

H = asL + ayu + M[psS(1 = S) — 0g95]
+ Ao[05S + paA(l — A— L) — 544]
+ A3(04aA — upD)
+ M[pr L1 — A—L)—6,L —aL/(y+ L) — ul]
+ As(LSy — Thr). (17)

sz As for the continuous control case, we differentiate the Hamiltonian with re-
us  spect to our control variable u. With a linear pay-off, however, the result no

s longer contains u. Rather than solving for u, we define a switching function,
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350 ¢(t), given by

U(t) = -~ = —M(t)L(E) + ar. (18)

31 From PMP [50], it is implied that the Hamiltonian will be minimised under

2 the following conditions,

b, i (t) >0,

by, if () < 0.

i3 Conditions in Equation produce a bang-bang control. Here, the control
4 variable takes a value of either its upper or lower bound. Notably, Equation
355 omits the case where 1 (t) = 0, as a bang-bang optimal control requires
16 that ¢(t) = 0 only at discrete points, if at all [13]. If ¢/(¢) = 0 for any finite
37 interval aside from isolated points, the control is singular. Singular controls are
18 most commonly encountered in cases where the Hamiltonian is linear in the
30 control variable but non-linear in some state variables [11]. When (¢) = 0 over
w0 an interval, the Hamiltonian is not a function of the control, so the state and
31 co-state variables no longer determine the control [I1]; over this interval the
32 control is determined by requiring 0H /Ju = 0. Our control problem defined by
33 Fquation and Equation is not singular, so we do not discuss singular

s controls further.

3 Our co-state equations for A are found as 0H/0f = —dA/dt. The co-state in
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w6 the bang-bang control problem is given by,

dA
ditl = 25)\1,03 -+ 55)\1 - 5S>\2 - >\1;05'7
dA
d—; = 2AXpa + LAspa + LAspr, 4 0ars — Aapa,
dAs
=5 n
dt HDA3,
Ay _ Ao+ AaprA+2p1 L — A
E——ag—i—pA 2+ AprL A+ 2pL LAy — AgpL
YAy
+ Mg + 5 + Au— YLAs,
40L (v + L)? 4U — YL A5

dAs
2 = e 2
d M1 As, ( 0>

7 and we note that Equation [20] is subtly different to Equation [15] as the first
e term of the fourth line of Equation is the constant —a,, and no longer

0 depends on L.

s The transversality condition, Equation , gives the final time conditions
s on the co-state, [Ai(tr), Aa(ts), As(ts), Ma(ty), As(ts)] = [0,0,0,0,0]. Assuming
w2 again that the initial state is known; [S(0), A(0), D(0), L(0),T(0)], it is now
a3 possible to determine the optimal bang-bang control and corresponding opti-
s mal state and co-state through solving a two-point BVP that we solve using
srs the FBSM, as in the continuous control case. It is not necessary to modify
s the FBSM algorithm to find bang-bang optimal controls, though care must
;7 be taken in how the control is updated between iterations. This is discussed
ws  further in Section [£.4 Depending on the numerical scheme used to integrate
;9 the state and co-state equations through time, the discontinuous nature of
;0 the bang-bang control may require careful handling. Solutions are provided in
s Figure [0] for various weighting on the control parameters. In the continuous
2 control case, when a; > as, placing a greater weighting on the negative im-
;3 pact of the control than the negative impact of the leukaemic stem cells; we
;s observed that the control is applied at a lower level than when a; < as. The

s optimal bang-bang control must take either the upper or lower bound of the
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specified range. As such, in the bang-bang control case the pay-off weighting
parameters determine not the level at which the control is applied, but rather
the times at which the control switches from one bound to the other, hence

the name switching function given to Equation .
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Fig. 6. Bang-bang control solutions for various weightings on control and leukaemia
in the pay-off (a1 and agy respectively), with different control upper bounds. These
figures are produced with immune response parameters a = 0.015, v = 0.1.

In Figure [6] it is clear that when the upper bound on the control is higher,
meaning in this context the maximum amount of chemotherapy that can be
applied at any given time is higher, the control switches to the lower bound

earlier. In this case the lower bound corresponds to u = 0, or no chemotherapy
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3¢ being applied (control switched off ), though this is not required of the method.
35 The interaction between the control and state in Equation (20) means that
36 the cumulative amount of control applied is not the same for different bounds
sz on the control. In Figure |5 we demonstrate that for a continuous control with
e ap = 1, ap = 0.1, a small amount of control is applied. For the bang-bang case
10 with the same weighting, we observe in the rightmost column of Figure [6] that
wo for a range of control upper bounds, the control is not switched on at all -
w1 implying that with such a pay-off, it is optimal not to apply the control. One
w2 may suppose that for a sufficiently small upper bound that the control would
w3 turn on even with this pay-off, however a lower upper bound on the control

w0s also reduces the impact the control has on the state.

ws Due to the immune response incorporated in Section [3, a sufficiently small
w6 leukaemic population will tend towards extinction rather than grow back to
w1 a coexisting steady state. Because of this, we observe in Figure [6] that the
w8 control switches off before the leukaemic stem cells are totally eradicated -
w0 the immune response is sufficient once the leukaemic population is sufficiently
a0 low. This is most evident in Figure [6k, where we can see that the population
a1 of leukaemic stem cells is declining but has not become extinct by the final
a2 time, ¢ = 50. In absence of the immune response incorporated in Section [3], we
a3 would observe the leukaemic population increasing as soon as the control is
s switched off, since the healthy steady state would be unstable; applying fixed
a5 final time bang-bang optimal control to the original model produces outcomes

se that are mathematically optimal but physically undesirable.

a7 In our discussion of continuous controls, we note the fixed final time as a
sz limitation, since changing the final time can change the profile of the optimal
a9 control and state. In general the same is true of bang-bang controls with fixed
w0 final times, though in some instances that we consider the optimal bang-bang
a1 control does not change significantly if the final time is changed. For example;

22 the optimal switching times and corresponding optimal states in the leftmost
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23 column of Figure [6] do not change significantly if the final time is increased to
24t =100, because by t = 50 we see that L ~ 0 and u = 0, so neither contributes
»s significantly to the pay-off in the interval 50 < ¢ < 100. For these cases the
26 control is not costly relative to the leukaemia (a; < ag) so it is applied at the
27 upper bound until the leukaemic stem cell population is virtually eradicated

28 before switching off.

2o For this particular system, we only obtain bang-bang optimal controls with a
a0 single switching time. We are able to verify these bang-bang optimal controls
s through an exhaustive search of all possible bang-bang controls by specify-
12 ing the switching time, directly calculating the pay-off and determining the
43 switching time that minimises the pay-off. For all cases considered in Figure [f]
s34 the switching time identified via exhaustive search is in agreement. It is also
i35 possible that the optimal bang-bang control may switch between the upper
s and lower bounds numerous times, producing multiple ‘bangs’. Bang-bang op-
s timal controls that exhibit multiple bangs can be identified using the FBSM
18 without modification, though it is more difficult to find a convergent bang-
139 bang optimal control with multiple bangs. Similarly, without knowing a priori
s how many switching times to expect, an exhaustive search for multiple bangs

w1 is not computationally feasible.

w2 4.4 Convergence and control updating

w3 In this section we examine the convergence behaviour of solutions to the op-
sas  timal control problems presented in this work. Convergence behaviour of nu-
ss  merical solutions to optimal control problems is influenced by multiple factors.
us In particular, we discuss the initial guess of the control, convergence criteria,
a7 control updating and pay-off weightings. These factors influence not only the
wss number of iterations required to reach a converged numerical solution, but

mo also whether or not a converged solution will be reached at all.
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0  Holding all other factors constant, provided that the initial guess for the con-
ss1 trol is sensible, the initial guess does not have a significant impact on whether
ss2  or not a converged result is reached for the control problems considered in this
»s3 work. However, convergence is typically reached with fewer iterations when the
s initial guess is relatively closer to the true value of the optimal control. For
5 simplicity we use the initial guess u = 0 for all results presented in this work,
ss6 - while acknowledging that more thoughtful choices may deliver convergence in

7 fewer iterations.

w3 For optimal control results presented in the previous sections, we determine
so  whether convergence has been achieved after each iteration based on the rela-
o tive difference between the updated control, uypdated, and the old control, uq.
w1 If this relative difference is sufficiently small, the updated control is accepted
w2 as the optimal control. A typical relative difference convergence criterion re-

463 quires

|uupdated - uold| S € (21>

| uupdated |

we where 0 < ¢ < 1 is the desired relative tolerance. Following [36], we adjust

w5 Equation to allow for a control of the form v = 0, giving

€ Z |uupdated(iAt>| - Z |uupdated (@At) - uold(iAtN Z 07 (22)

i=1 i=1

ws  where t = 1At, At is the numerical time step and n is the number of nodes
w7 in the time discretisation. The absolute value is taken to ensure that positive
ws differences are not offset by negative differences that could otherwise result
w0 in incorrectly detecting convergence. The choice of convergence criterion and
a0 acceptable tolerance depends on the particular problem at hand, and may
an need to be adjusted to be appropriate for another control problem. In some
a2 instances, it may be necessary to check convergence of the state and co-state

a3 as well as the control, particularly if the state response to control is sensitive.
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a  For the control problems studied in this work, we find that state and co-
a5 state respond predictably to the control, and convergence of the control is
s accompanied by convergence of that state and co-state. As such we do not

ar explicitly check for convergence of the state and co-state.

as  In each iteration of the FBSM we recalculate the control, e, based on the
a9 newly calculated state and co-state solutions and associated optimality cri-
w0 terion, as discussed in Section for the continuous control and Section
w1 for the bang-bang control. Typically, uyey is not used directly as the control
w2 for the next iteration of the FBSM, but rather we form an updated control
483 Uypdated a5 & weighted combination of une, and the control from the previ-
sa OUS iteration, uqq. The motivation for this is two-fold; first, an appropriately
w5 weighted control updating scheme can speed up convergence; and second, for
w6 many optimal control problems, a direct update of Uupdated = Unew Will fail
w7 to produce converging results at all. A common approach is to update the
ss  control based on a convex combination, such that the total weightings sum to
0 one, of the new and previous control(s). In this work we use a constant linear

w0 weighting, with 0 < w < 1, giving

Uypdated = Wlold + (1 - w)unew- (23)

w1 We find that the best choice for w depends not only on the form of the control,
w2 continuous or bang-bang, but also on model parameters such as the pay-off
w03 weightings. There is a trade-off between the number of iterations required to
s¢  Obtain convergence, and actually converging at all; a larger w typically is more
w5 likely to produce converging solutions, but this also means that the control
w6 changes less each iteration, so more iterations are required. For example, a
w7 weighting of w = 0.7 was sufficiently large that all continuous control solutions
ws presented in Figure [5| converged to a relative tolerance of ¢ = 1 x 1073, For

w9 w = 0.6 only Figure converges, and for w = 0.8, all solutions in Figure
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so0 converge but require more iterations than when w = 0.7.

so0  Convergence in the bang-bang control case typically requires larger w and more
s02 iterations than the continuous controls. In the rightmost column of Figure
s03 [6] there is no concept of convergence as the control never switches on. Only
soa  Figure @] and Figure |§|k converge to a relative tolerance of 1 x 1073 for w = 0.7,
s with w = 0.9 being sufficient for convergence of all remaining solutions aside

s0o from Figure [Bb, where we set w = 0.95.

sor It is clear that the best control updating scheme depends on the particular
s0s  problem; and a scheme that works well for one problem may not necessarily
so0 work at all for another. When solving control problems, it may be necessary
s to try a range of updating schemes to achieve convergence. In this work we
su only consider constant weighted updating, though there are more sophisti-
sz cated updating schemes that shift the weighting towards uye, as the number
si3 of iterations increase [36]. In Figure [7| we examine the influence of the control
s update weighting w, and the pay-off weightings, a; and as, on the convergence
s behaviour of the bang-bang control problem studied in Section [£.3] Specifi-
si6  cally, we consider the case where 0 < u < 0.5, and determine that a solution
sz has converged if it meets a relative tolerance of e = 1 x 1073 within 250 it-
sis erations. In each panel of Figure [7] we observe three regions: in region I we
s have no concept of convergence as the control never switches on; in region II
s0 we find that the optimal control problem does not converge; and in region III
s21 we observe convergence. Not all simulations conform strictly to these regions
s22 since the boundary between the different regions is not always sharp and well-
523 defined. However, broadly speaking, these three regions capture the essence
s of the convergence behaviour that we observe. These regions are constructed
s based on discrete simulations of the problem for 0 < a; < 10 and 0 < ay < 10,
s each in increments of 0.1. The case where a; = 0 is excluded as this corre-
s27 sponds to no cost associated with applying the control, so there is no sense of

528 convergence.
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w=0.90 ) w=0.95

1T

Fig. 7. Convergence behaviour for (a) w = 0.85, (b) w = 0.9, and (¢) w = 0.95, with
a1 and as ranging from 0 to 10 in increments of 0.1, excluding a; = 0. In region I
(dark blue) we have no concept of convergence as the control never switches on. In
region II (light blue) we find that the optimal control problem does not converge,
and in region III (yellow) we observe convergence. These figures are produced with
immune response parameters o = 0.015, v = 0.1.

0 From Figure[7]it is clear that convergence is achieved in a larger region of the
s0 (a1, az) parameter space when w is increased. However, it is important to note
sn  that achieving convergence in this context only implies that Equation (22)) is
s satisfied, and does not necessarily mean that a suitable bang-bang control is
533 obtained. While some controls corresponding to individual simulations in Fig-
su ure [7 are suitable bang-bang controls; a portion are approaching bang-bang
s but require additional iterations to accurately calculate the control around
s the switching point. The weighting applied in Equation has the effect
s of smoothing u during intermediate iterations of the FBSM; this smoothness
s3s  is gradually reduced as the control converges to the optimal switching point.
59 Since w explicitly influences the relative amount that the control can differ
ss0  between iterations, if a larger w is required to achieve convergence for a given
s problem, it may also be necessary to reduce the convergence tolerance ¢ to

se2 ensure that the resulting control is sufficiently bang-bang.
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23 5 Conclusion and Outlook

saa  In this work we consider a haematopoietic stem cell model of AML that incor-
ss5 porates competition between leukaemic stem cells and blood progenitor cells
ss  within the bone marrow niche. We incorporate a biologically appropriate im-
se7  mune response in the form of a Michaelis-Menten term. This modification is
ss  mathematically convenient because of the impact it has on the steady states,
ss0 and biologically relevant because the immune response is known to play an
ss0 important role in cancer progression and treatment. With a view to identify-
ss1  ing the optimal way to apply a treatment such as chemotherapy to the model,
ss2 we formulate and solve optimal control problems corresponding to multiple of
53 objectives and constraints. This includes quadratic pay-off functions, yielding
ss«  continuous controls, as well as linear pay-off functions, yielding discontinuous

55 bang-bang controls.

ss6  We provide a brief overview of optimal control theory, with a focus on the
ss7 - necessary conditions derived from Pontryagin’s Maximum Principle. This ap-
sss  proach formulates the optimal control problem as a coupled multi-species
550 two-point boundary value problem. The resulting optimal control problem
se0 18 solved numerically using the iterative FBSM. The algorithm for the FBSM
se1 1S discussed, with a focus on highlighting typical issues that may arise in im-
se2  plementing optimal control. Suggestions are provided for overcoming these
se3 issues. In particular, we focus on factors that influence the convergence of
seo the FBSM; not only in terms of the number of iterations required, but also
sss  whether it converges at all. These factors include the initial guess for the
sss control, the convergence criterion, the method of updating the control, the
ss7 associated weighting placed on controls from prior iterations and parameters
ss¢  such as pay-off weightings, and in the bang-bang control case, the control

se0  bounds.

s For the model we consider; a well informed initial guess for the control may re-
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s duce the number of iterations required for convergence, but any sensible guess
sz should not prevent convergence. Most critically, we show that the method of
s.3 updating the control and the associated weight placed on the control from the
sz previous iteration has a significant impact on whether or not convergence will
si5 be achieved, as do the weights in the pay-off function. In the bang-bang control
st case, we observe that increasing the upper bound on the control can prevent
sz convergence, holding all other factors constant; in this case, placing a greater

s.s - weight on the solution from the previous iteration may produce convergence.

s 'There are many potential avenues to extend the ideas explored in this work.
ss0 Here, we have incorporated the control via a simple mechanism, and more so-
ss1  phisticated pharmacokinetic processes such as drug absorption and metabolism
ss2  could be incorporated to increase the biological detail captured by the model,
ss3 but this additional biological detail comes at the cost of increasing the num-
ssa ber of unknown, and possibly unmeasurable parameters. Therefore, care must
ses  be exercised in following up this kind of extension. The control problems pre-
sss  sented in this work could be reformulated as fixed final state problems, leaving
ss7  the final time free to vary which could be more clinically relevant than spec-
s ifying the final time. With the introduction of an immune mechanism to the

ss0 model, it is also possible to consider a control based around immunotherapy.

so0 A recent idea of great interest in clinical cancer research is the possibility of
s1 introducing an interval of time during treatment in which no chemotherapy is
seo applied. This kind of intervention is reminiscent of a bang-bang control, and
so3 is often referred to as a drug holiday [59]. There is some evidence to suggest
s« that drug resistance of tumour cells may reduce with time so that patients
s experience an improve response to chemotherapy following a drug holiday
sos  [32133/54]. This application of a drug in an on-off fashion parallels the idea of
so7 the bang-bang controls we consider in this work and so it would be interesting
se¢ to formulate the concept of designing a drug holiday in terms of a bang-bang

se0 optimal control problem using the algorithms and concepts developed in this
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