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Abstract

Background Several studies have focused on the microbiota living in en-
vironmental niches including human body sites. In many of these studies
researchers collect longitudinal data with the goal of understanding not just
the composition of the microbiome but also the interactions between the
different taxa. However, analysis of such data is challenging and very few
methods have been developed to reconstruct dynamic models from time series
microbiome data.

Results Here we present a computational pipeline that enables the integra-
tion of data across individuals for the reconstruction of such models. Our
pipeline starts by aligning the data collected for all individuals. The aligned
profiles are then used to learn a dynamic Bayesian network which represents
causal relationships between taxa and clinical variables. Testing our meth-
ods on three longitudinal microbiome data sets we show that our pipeline
improve upon prior methods developed for this task. We also discuss the
biological insights provided by the models which include several known and
novel interactions.

Conclusions We propose a computational pipeline for analyzing longitudi-
nal microbiome data. Our results provide evidence that microbiome align-
ments coupled with dynamic Bayesian networks improve predictive perfor-
mance over previous methods and enhance our ability to infer biological
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relationships within the microbiome and between taxa and clinical factors.

Keywords: Dynamic interaction network inference, Longitudinal
microbiome analysis, Microbial composition prediction, Dynamic Bayesian
networks, Temporal alignment

1 1. Introduction

2 Multiple efforts have attempted to study the microbiota living in environ-
s mental niches including human body sites. These microbial communities can
s play beneficial as well as harmful roles in their hosts and environments. For
s instance, microbes living in the human gut perform numerous vital functions
s for homeostasis ranging from harvesting essential nutrients to regulating and
7 maintaining the immune system. Alternatively, a compositional imbalance
s known as dysbiosis can lead to a wide range of human diseases [1], and is
o linked to environmental problems such as harmful algal blooms [2].

10 While many studies profile several different types of microbial taxa, it is
1 not easy in most cases to uncover the complex interactions within the mi-
12 crobiome and between taxa and clinical factors (e.g., gender, age, ethnicity).
13 Microbiomes are inherently dynamic, thus, in order to fully reconstruct these
14 interactions we need to obtain and analyze longitudinal data [3]. Examples
15 include characterizing temporal variation of the gut microbial communities
16 from pre-term infants during the first weeks of life, and understanding re-
17 sponses of the vaginal microbiota to biological events such as menses. Even
18 when such longitudinal data is collected, the ability to extract an accurate
19 set of interactions from the data is still a major challenge.

20 To address this challenge we need computational time-series tools that can
a1 handle data sets that may exhibit missing or noisy data and non-uniform sam-
22 pling. Furthermore, a critical issue which naturally arises when dealing with
23 longitudinal biological data is that of temporal rate variations. Given lon-
2 gitudinal samples from different individuals (for example, gut microbiome),
»s  we cannot expect that the rates in which interactions take place is exactly
s the same between these individuals. Issues including age, gender, external
7 exposure, etc. may lead to faster or slower rates of change between individ-
s uals. Thus, to analyze longitudinal data across individuals we need to first
2 align the microbial data. Using the aligned profiles we can next employ other
s methods to construct a model for the process being studied.
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31 Most current approaches for analyzing longitudinal microbiome data fo-
2 cus on changes in outcomes over time [4, 5]. The main drawback of this
;3 approach is that individual microbiome entities are treated as independent
s outcomes, hence, potential relationships between these entities are ignored.
s An alternative approach involves the use dynamical systems such as the
s generalized Lotka-Volterra (gLV) models [6, 7, 8, 9]. While gLV and other
s dynamical systems can help in studying the stability of temporal bacterial
;s communities, they are not well-suited for causality and probabilistic infer-
» ence over discrete time. Finally, probabilistic graphical models (e.g., hidden
w0 Markov models, Kalman filters and dynamic Bayesian networks) are ma-
s chine learning tools which can effectively model dynamic processes, as well
2 as discover causal interactions [10].

13 In this work we first adapt statistical spline estimation and dynamic time-
w  warping techniques for aligning time-series microbial data so that they can
s be integrated across individuals. We use the aligned data to learn a Dynamic
s Bayesian Network (DBN), where nodes represent microbial taxa, clinical con-
s ditions, or demographic factors and edges represent causal relationships be-
s tween these entities. We evaluate our model by using multiple data sets
s comprised of the microbiota living in human body parts including gastroin-
so testinal tract, urogenital tract and oral cavity. We show that models for
s1 these systems can accurately predict changes in taxa and that they greatly
s improve upon models constructed by prior methods. Finally, we characterize
53 the biological relationships in the reconstructed microbial communities and
s« discuss known and novel interactions discovered by these models.

5 2. Methods

se  Data sets

57 We collected multiple public longitudinal microbiome data sets for testing
ss our method:
50 Infant gut microbiome This data set was collected by La Rosa et

o al. [5]. They sequenced gut microbiome from 58 pre-term infants in neonatal
s intensive care unit (NICU). The data was collected during the first 12 weeks
e2 of life (until discharged from NICU or deceased) sampled every day or two
&3 on average. Following analysis 29 microbial taxa were reported across the
oo 922 total infant gut microbiome measurements. In addition to the taxa
s information, this data set includes clinical and demographic information for
s example, gestational age at birth, post-conceptional age when sample was
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& obtained, mode of delivery (C-section or vaginal), antibiotic use (percentage
s of days of life on antibiotic), and more (see Additional file 1: Table S1 for
e complete list of clinical features available).

70 Vaginal microbiome The vaginal microbiota data set was collected by
n Gajer et al. [4]. They studied 32 reproductive-age healthy women over a
72 16-week period. This longitudinal data set is comprised of 937 self-collected
7z vaginal swabs and vaginal smears sampled two times a week. Analysis identi-
= fied 330 bacterial taxa in the samples. The data also contains clinical and de-
75 mographic attributes on the non-pregnant women such as Nugent score [11],
7 menses duration, tampon usage, vaginal douching, sexual activity, race and
77 age. To test the alignment methods we further sub-divided the microbial
7z composition profiles of each subject by menstrual periods. This resulted in
70 119 time-series samples, an average of 3-4 menstrual cycles per woman. Ad-
9o ditional file 2: Figure Sla shows four sub-samples derived from an individual
s1 sample over the 16-week period along with corresponding menses informa-
g2 tion.

83 Oral cavity microbiome The cavity data was downloaded from the
s case-control study conducted by DiGiulio et al. [12] comprised of 40 pregnant
ss women, 11 of whom delivered pre-term. Overall they collected 3, 767 samples
ss and identified a total of 1,420 microbial taxa. Data was collected weekly dur-
&7 ing gestation and monthly after delivery from four body sites: vagina, distal
s gut, saliva, and tooth/gum. In addition to bacterial taxonomic composition,
s these data sets report clinical and demographic attributes which include ges-
o tational status, gestational or postpartum day when sample was collected,
o race and ethnicity. In this paper, we solely focus on the tooth/gum samples
e during gestation from Caucasian women in the control group to reduce poten-
o3 tial confounding factors. This restricted set contains 374 temporal samples
o from 18 pregnant women.

o5 Additional file 1: Table S1 summarizes the three longitudinal microbiome
o data sets used in this study, including the complete list of clinical features
o7 available.

e Temporal alignment

% As mentioned in the Background, a challenge when comparing time series
w0 obtained from different individuals is the fact that while the overall process
1w studied in these individuals may be similar, the rates of change may differ
102 based on several factors (age, gender, other diseases, etc.). Thus, prior to
103 modeling the relationships between the different taxa we first align the data
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s sets between individuals by warping the time scale of each sample into the
s scale of another representative sample referred to as reference. The goal of an
s alignment algorithm is to determine, for each individual i, a function f;(t)
w7 which takes as an input a reference time ¢ and outputs the corresponding
s time for individual ¢. Using this function we can compare taxa values for
wo all individuals sampled for the same time point. This approach effectively
o sets the stage for accurate discovery of trends and patterns, hence, further
w  disentangling the dynamic and temporal relationships between entities in the
12 microbiome.

13 There are several possible options for selecting transformation function f;.
s Most methods used to date rely on polynomial functions [13, 14]. Prior work
us on the analysis of gene expression data indicated that given the relatively
us small number of time points for each individual simpler functions tend to
17 outperform more complicated ones [15]. Therefore, we used a first degree
us  polynomial: f;(¢) = (’%b) as the alignment function for tackling the temporal
ne alignment problem, where a and b are the parameters of the function.

120 Data pre-processing

121 Since alignment relies on continuous (polynomial) functions while the
122 data is sampled at discrete internals, the first step is to represent the sample
123 data using continuous curves as shown by the transition from Fig. la to
e Fig. 1b. Following prior work [15], we use B-splines for fitting continuous
s curves to microbial composition time-series data, thus, enabling principled
126 estimation of unobserved time points and interpolation at uniform intervals.
12z To avoid overfitting we removed any sample that had less than nine measured
s time points, and estimated a cubic B-spline from the observed abundance
120 profile for all taxa in remaining samples using splrep and BSpline from the
130 Python function scipy.interpolate. Additional file 3: Figure S2 shows the
1 original and cubic spline of a representative microbial taxa from a randomly
12 selected individual sample across each data set.

w3 Aligning microbial tazon

134 To discuss the alignment algorithm we first assume that a reference sam-

135 ple, to which all other samples would be aligned, is available. We next discuss
136 how to chose such reference.

Formally, let s/(¢) be the spline curve for microbial taxa j at time ¢ €

[tmins tmaz] 0 the reference time-series sample r, where t,,;, and ¢4, denote

the starting and ending time points of s/, respectively. Similarly, let s7(t')
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be the spline for individual ¢ in the set of samples to be warped for taxa
J at time t' € [t/ maz)- Next, analogously to Bar-Joseph et al. [13], the

min’ “max

alignment error for microbial taxa j between s and s? is defined as

J2 (s1F(8)) — s1(2))%t
= 5w 7
where o = max{t,in, f; *(t...)} and 8 = min{t,ee, fi *(t),..)} correspond
to the starting and ending time points of the alignment. Observe that by
smoothing the curves, it is possible to estimate the values at any intermediate
time point in the alignment interval [, §]. Finally, we define the microbiome
alignment error for a microbial taxon of interest S between individual samples

r and ¢ as follows .
EM(Ta Z) = Z 6] (Tv Z)

jes

e’ (r,1)

137 Given a reference r and microbial taxon .S, the alignment algorithm task
1s 1S to find parameters a and b that minimize E; for each individual sample ¢
130 in the data set subject to the constraints: a > 0, o < § and % > €.
o The latter constraint enforces that the overlap between aligned interval [, (]
11 and reference interval [t,in, tmae] 1S at least €, otherwise trivial solutions (for
12 example, no overlap leading to 0 error) would be selected. Here we used
3 € = 0.3 though results remain the same with larger values of €. Fig. 1c
us illustrates an aligned set of four samples where reference sample r is shown
1s in orange. Alternatively, Additional file 2: Figure S1b shows the temporal
us alignment between the sub-samples of the vaginal microbiome sample shown
w7 in Figure Sla for taxa L. crispatus using the first menstrual period sub-
us sample as reference (shown in orange).

us  Selecting a reference sample

150 Finding a reference that jointly minimizes FE); for all samples requires
151 combinatorial analysis which takes time that is exponential in the number of
152 individuals [13].

153 Instead, we used a heuristic approach to find the best pairwise alignment
1ss function and, ultimately, select an optimal reference. In particular, we first
155 find the best pairwise alignments via a grid-search parameter sweep between
156 a € (0,4] with increments of 0.01 and b € [—50, 50] with increments of 0.5 in
157 the linear alignment function f; previously described. It is important to note
158 that this restricted search space for parameters a and b may lead to some
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150 sample pairs (r, 1) without a temporal alignment because overlap constraint is
1o not met. Additionally, we filtered out any microbial taxa j € S for which the
11 mean abundance in either s/ or s was less than 0.1%, or had zero variance
12 over the originally sampled time points. Lastly, an optimal reference for
13 each data set is determined by generating all possible pairwise alignments
1« between samples. To select the best reference r* we employed the following
165 criteria: (1) at least 90% of the individual samples are aligned to r*, and (2)
16 the alignment error E); is minimized.

167 Abnormal or noisy samples filtering As a post-processing step, we
s implemented a simple procedure which takes as input the resulting individual-
10 wise alignments to identify and filter out abnormal and noisy samples. Given
1o an aligned microbiome data set, we (1) computed the mean p and standard
i deviation ¢ of the alignment error E,; across all aligned individual samples,
12 and (2) removed all samples from an individual where Eyy > p+ (2 X 0).
i3 Fig. 1d shows the filtered set for the aligned taxa in the previous step
e (Fig. 1c). This analysis can both, help to identify outliers and improves
s the ability to accurately reconstruct models for taxa interactions as we show
e in Results.

177 Taxon selection from alignment As previously described, the micro-
7s  biome alignment error F); for a pairwise alignment is restricted to the set
179 of microbial taxa S which contributed to the alignment. However, this set
1o of microbes can vary for different pairwise alignments even with the same
1 reference. Therefore, we focused on the subset of taxa which contributed to
12 at least half of the pairwise alignments for the selected reference.

183 Additional file 4: Table S2 lists alignment information for each data set
1a such as reference sample, number of aligned samples and selected taxa.

15 Model construction

186 Using the aligned taxa, we next attempted to learn graphical models
17 that provide information about the causal impacts of taxa and clinical or
188 demographic variables on other taxa. For this, we used Dynamic Bayesian
10 Networks (DBNs) which have been widely used to model sequential data,
wo including speech [16, 17], biological [18, 19, 10], or economic sequences [20,
w1 21]. A DBN is a directed acyclic graph where, at each time slice (or time
102 instance), nodes correspond to random variables of interest (e.g., taxa, post-
103 conceptional age, or Nugent score) and directed edges correspond to their
e conditional dependencies in the graph [22]. These time slices are not modeled
105 separately. Instead a DBN contains edges connecting time slices known as

7
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ws inter edges that are repeated for each time point modeled as depicted in
w7 Fig. le. In summary, the model learns the transition probability from one
198 time point to the next as a stationary conditional probability. DBNs are
199 considered generative models, therefore, ideal for modeling the compositional
20 interactions and dynamics of the microbiota given the first time point.
201 Here, we use a “two-stage” DBN model in which only two slices are
22 modeled and learned at a time. Throughout this paper, we will refer to the
203 previous and current time slice with suffix ¢7 and i + 1, respectively. Fig. le
20a illustrates a skeleton of the general structure of a two-stage DBN in the
205 context of a longitudinal microbiome study. In this example, for each time
26 slice, the nodes correspond to random variables of observed quantities for
207 different microbial taxa (74, 7%, T3, Ty) or clinical factors (Cy, Cy, C3) shown
208 as circles and diamonds, respectively. These variables can be connected by
200 intra edges (dotted lines) or inter edges (solid lines). In this DBN model,
210 the abundance of a particular microbe in the current time slice is determined
o by parameters from both intra and inter edges, thus, modeling the complex
212 interactions and dynamics between the entities in the microbial community.
213 Typically, analysis using DBNs is divided into two components: learning
2 the network structure and parameters and inference on the network. The
25 former can be further sub-divided into (i) structure learning which involves
26 inferring from data the causal connections between nodes (i.e., learning the
27 intra and inter edges) while avoiding overfitting the model, and (ii) param-
28 eter learning which involves learning the parameters of each intra and in-
29 ter edge in a specific network structure. There are only a limited number
20 of open software packages which support both learning and inference with
21 DBNs [23, 24] in the presence of discrete and continuous variables. Here we
22 used CGBayesNets package [23, 10] which is freely available software package
23 for learning the network structure and performing inference for Conditional
24 Gaussian Bayesian models [25]. While useful, CGBayesNets does not support
25 several aspects of DBN learning including the use of intra edges, searching
26 for a parent candidate set in the absence of prior information and more. We
27 have thus extended the structure learning capabilities of CGBayesNets to
28 include intra edges while learning network structures and implemented well-
29 known network scoring functions for penalizing models based on the number
20 of parameters such as Akaike Information Criterion (AIC) and Bayesian In-
21 formation Criterion (BIC) [26].
Learning DBIN model parameters Let © denote the set of param-
eters for the DBN and G denote a specific network structure over discrete

8
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and continuous variables in the microbiome study. In a similar manner to
McGeachie et al. [10], we can decompose the joint distribution as

P(A)F(¥[A) = [ ] plx |Pa(2) ]| £y Pa(y))

TEA yevw

where P denotes a set of conditional probability distributions over discrete
variables A, F' denotes a set of linear Gaussian conditional densities over
continuous variables ¥, and Pa®(X) denotes the set of parents for variable
X in GG. Since we are dealing with both, continuous and discrete nodes in the
DBN, in our method, continuous variables (i.e., microbial taxa compositions)
are modeled using a Gaussian with the mean set based on a regression model
over the set of continuous parents as follows

k
f(y|u1,---,uk)~N()\o+Z/\i X g, 0°)
i=1

where uq, - - -, u are continuous parents of y; \qg is the intercept; Ay, - -+, A\, are
the corresponding regression coefficients for uy, - - -, ux; and o2 is the standard
deviation. We point out that if y has discrete parents then we need to
compute coefficients L = {\;}¥_; and standard deviation o2 for each discrete
parents configuration. For example, the conditional linear Gaussian density
function for variable Ty 411 in Fig. 1e denoted as f(Ty_ti+1 | Ta_ti, Cs_tis To_tiv1)
is modeled by

NN+ M X Tygi+ Ao X Cy45 + A3 X Ty 441, 02),

22 where A\i, Ao, A3 and o2 are the DBN model parameters. In general, given
213 a longitudinal data set D and known structure GG, we can directly infer the
2 parameters © by maximizing the likelihood of the data given our regression
235 model.
Learning DBN structure Learning the DBN structure can be ex-
pressed as finding the optimal structure and parameters

max P(D|©,G)P(©,G) = P(D,0|G)P(G),
26 where P(D|©,G) is the likelihood of the data given the model. Intuitively,

2 the likelihood increases as the number of valid parents Pa®(.) increases,
238 thus, making it challenging to infer the most accurate model for data set

9
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29 D. Therefore, the goal is to effectively search over possible structures while
20 using a function that penalizes overly complicated structures and protects
21 from overfitting.

Here, we maximize P(D,© |G) for a given structure G using maximum
likelihood estimation (MLE) coupled with BIC score instead of Bayesian
Dirichlet equivalent sample-size uniform (BDeu) metric used in CGBayesNets [23].
The BDeu score requires prior knowledge (i.e., equivalent sample size priors)
which are typically arbitrarily set to 1; however, multiple studies have shown
the sensitivity of BDeu to these parameters [27, 28], as well as the use of
improper prior distributions [29]. Alternatively, BIC score does not depend
on the prior over the parameters, thus, an ideal approach for scenarios where
prior information is not available or difficult to obtain. Next, in order to
maximize the full log-likelihood term we implemented a greedy hill-climbing
algorithm. We initialize the structure by first connecting each taxa node at
the previous time point (for example T} 4 in Fig. le) to the corresponding
taxa node at the next time point (7} 441 in Fig. 1le). We call this setting the
baseline model since it ignores dependencies between taxa’s and only tries
to infer taxa levels based on its levels in the previous time points. Next,
we added nodes as parents of a specific node via intra or inter edges de-
pending on which valid edge (i.e., no cycles) leads to the largest increase of
the log-likelihood function beyond the global penalty incurred by adding the
parameters as measured by the BIC? score approximation

BIC(G,D) =log P(D|©,G) — glog N,

22 where d = |0 is the number of DBN model parameters in G, and N is the
23 number of time points in D. Additionally, we imposed an upper bound limit
24 on the maximum number of possible parents (mazParents € {1,3,5}) for
us each bacterial node X (i.e., [Pa®(X)| < mazParents).

us  Inferring biological relationships

247 Microbial ecosystems are complex, often displaying a stunning diversity
s and a wide variety of relationships between community members. These bi-
a9 ological relationships can be broadly divided into two categories: beneficial:

3We also computed AIC score (i.e., AIC(G,D) = log P(D|0©,G) — d) but it was
consistently outperformed by BIC score.
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20 (including mutualism, commensalism and obligate), or harmful (including
251 competition, amensalism and parasitism). Although the longitudinal data
22 sets considered in this study do not provide enough information to further
23 sub-categorize each biological relationship (e.g., mutualism vs. commensal-
2 ism), we use the learned DBN model from each microbiome data set and
5 inspect each interaction as a means for inferring simple to increasingly com-
6 plex relationships. For example, consider variable T} 4 in Fig. 1le. Given that
257 ti and ti+ 1 represent the previous time point and the current time point (re-
s spectively), the possible inference in this case is as follows: Edges from T} 4
0 and Cs_y; (inter edges), and from Ty 441 (intra edge) suggest the existence
x%0 of a temporal relationship in which the abundance of taxa Ty at a previous
261 time instant and abundance of taxa T, at the current time instant, as well
x%2  as condition C3 from the previous time instant impact the abundance of T}
23 at the current time. We previously stated that f(Ty i1 | Tatis Cs_ti, Totiv1)
2 is modeled by N(Xg + Ay X Ty + Ao X Cs_45 + A3 X Ty_4i41,0%). Therefore,
x5 inspecting the regression coefficients Aj, Ao, A3 immediately suggests whether
x6 the impact is positive or negative. In this example, the regression coefficients
27 A1, Ay are positive (A1, Ay > 0) while coefficient A3 is negative (A3 < 0), thus,
xs variables Ty 4 and Cs 4 exhibit positive relationships with microbial taxa
20 14 4411 shown as green edges in Fig. le, whereas taxa Ts ;; exhibits a negative
20 interaction with Ty 4.1 shown as a red edge (Fig. le). This simple analytic
on - approach enables us to annotate each biological relationship with directional
272 information.

a3 Network visualization

274 All the bootstrap networks shown are visualized using Cytoscape [30]
s version 3.6.0, using Attribute Circle Layout with Organic Edge Router. An
276 in-house script is used to generate a custom style XML file for each network,
o7 encoding the following information in the graph:

278 e Time t2 nodes colored in orange
279 e Time ti 4+ 1 nodes colored in blue
280 e Number of incoming edges directly proportional to node size

4For each data set, we ran 500 bootstrap realizations and only reported edges with
bootstrap support of at least 50% in the consensus DBN.
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281 e Taxa abundance directly proportional to node transparency

282 e Clinical and demographic nodes represented with diamond shaped nodes
283 e Taxa nodes represented with circle shaped nodes

284 e Solid edges represent inter edges (i.e., from time slice ti to ti + 1)

285 e Dashed edges represent intra edges

286 e Positively weighted edges are colored in green

287 e Negatively weighted edges are colored in red

288 e Regression coefficient directly proportional to edge thickness

289 e Bootstrap value directly proportional to edge transparency

Also the regression coefficients corresponding to edge thickness were nor-
malized as follows: Let y be a microbial taxa node with continuous taxa
parents uq, - - -, ur modeled by

k
f(y|U1,,U]€)NN<)\0+Z/\l XUZ',UZ)
=1

where Ay, .-+, A\, are the corresponding regression coefficients for wuq, - -, ug
as previously described in this section. The normalized regression coefficients
{AN}E_ | are defined as

by
k _ )
Z 23:1 |[Aj x ]

20 where u; is the mean abundance of taxa u; across all samples.

201 3. Results

202 Fig. 1 presents the computational pipeline we developed for aligning and
203 learning DBNs for microbiome and clinical data. We start by estimating a
204 cubic spline from the observed abundance profile of each taxa (Fig. 1b). Next,
25 we determine an alignment which allows us to directly compare temporal data
206 across individuals (Fig. 1c), as well as filter out abnormal and noisy samples
207 (Fig. 1d). Finally, we use the aligned data to learn causal dynamic models
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208 that provide information about interactions between taxa, their impact, and
20 the impact of clinical variables on taxa levels over time (Fig. le-f).

300 We applied our methods to study longitudinal data sets from three human
;1 microbiome niches: infant gut, vagina and oral cavity (see Methods for full
32 descriptions). In addition to the differences in the taxa they profile, these
23 data sets vary in the number of subjects profiled (ranging from 18 to 58,
s4  in the number of time points they collected, the overall number of samples
55 and time series that were studied, etc. Thus, they provide a good set to test
w06 the generality of our methods and their usefulness in different microbiome
507 studies.

w8 Infant gut alignments captures gestational age at birth

300 Below, we discuss in detail the improved accuracy of the learned dynamic
s models due to use of temporal alignments. However, even before using them
sn for our models, we wanted to test whether the alignment results agree with
sz biological knowledge. For this, we used the infant gut data. Infant gut mi-
a3 crobiota goes through a patterned shift in dominance between three bacterial
s populations (Bacilli to Gammaproteobacteria to Clostridia) in the weeks im-
a5 mediately following birth. La Rosa et al. [5] reported that the rate of change
a6 18 dependent on maturation of the infant highlighting the importance of post-
a7 conceptional age as opposed to day of life when analyzing bacterial compo-
sis  sition dynamics in preterm infants. We found that our alignment method
a9 is able to capture this rate of change without explicitly using gestational or
10  post-conceptional age.

321 Fig. 2 shows the relationship between alignment parameters a and b (from
2 the transformation function f;(t) = @ described in Methods) and the ges-
33 tational age at birth for each infant in the gut microbiome data set. Each
224 aligned infant sample is represented by a blue circle where the x-axis shows
35 _Tb and y-axis shows the gestational age at birth. As can be seen, the align-
»s ment parameters are reasonably well correlated with gestational age at birth
27 (Pearson’s correlation coefficient = 0.35) indicating that this method can
»s indeed be used to infer differences in rates between individuals.

20 Resulting dynamic Bayesian network models

330 We next applied the full pipeline to learn DBNs from the three micro-
s biome data sets under study. In particular, we use longitudinal data sets
32 from three human microbiome niches: infant gut, vaginal and oral cavity as
13 described in Methods. In this section, we highlight the overall characteristics
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13« of the learned DBN for each aligned and filtered microbiome data set (Fig-
15 ure 3 and Additional file 5: Figure S3). In these figures the nodes represent
1 taxa and clinical (or demographic) variables and the directed edges represent
;37 temporal relationships between them. Several triangles were also observed in
1 the networks. In some of the triangles, directed edges to a given node were
139 linked from both time slices of another variable. We will refer to these as
uo  directed triangles.

301 Infant gut The learned DBN model for the infant gut microbiota data set
w2 at a sampling rate of 3 days and maxParents = 3 was computed. It contains
13 19 nodes per time slice (14 microbial taxa, 4 clinical and 1 demographic
s variable nodes) and 39 directed edges (31 inter edges and 8 intra edges) with
us no directed triangles as shown in Fig. 3a. Since we only learn temporal
1s conditional dependence (i.e., incoming edges) for taxa nodes at time slice
s 1+ 1, the maximum number of possible edges is 14 X maxParents = 42, thus,
1s most of the taxa nodes (11 out of 14) have reached the maximum number of
uo  parents allowed (i.e., mazParents = 3). Additionally, the majority of these
0 temporal relationships are between microbial taxa. In particular, the model
51 includes several interactions between the key colonizers of the premature
2 infant gut: Bacilli, Clostridia and Gammaproteobacteria. Furthermore, the
13 only negative interactions learned by the model comprise these microbes
s which are directly involved in the progression of the infant gut microbiota.
35 Also, the nodes for gestational age at birth and post-conceptional age at
36 birth are not shown because they are isolated from the rest of the network,
37 without any single edge. Overall, these trends strongly suggest that the DBN
s 1S capturing biologically relevant interactions between taxa.

350 Vaginal As with the gut microbiome data set, we learned a DBN model
w0 for the vaginal microbiome data at a sampling rate of 3 days and maxParents =
s 3 (Fig. 3b). The resulting DBN is comprised of 24 nodes per time instance
32 (23 taxa and 1 clinical) and 58 edges (40 inter edges and 18 intra edges). Ad-
33 ditionally, 12 directed triangles involving taxa nodes were observed. In pre-
s« liminary analyses, additional clinical and demographic attributes (e.g., Nu-
35 gent category, race and age group) resulted in networks with these variables
s connected to all taxa nodes, thus, removed from further analysis. Specif-
s7 ically, we estimated the degree of overfitting of these variables by learn-
e ing and testing DBN models with and without them. This resulted in the
ss0 DBN shown in Fig. 3b which exhibited lowest generalization error. In this
s case, the maximum number of potential edges between bacterial nodes is
sn 24 X maxParents = 72; however, only 16 out of 24 taxa nodes reached the
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s threshold on the maximum number of parents. Among all the 58 edges, only
si3 one interaction Day_Period_ti+1 to L. iners_ti+1 involves a clinical node
s whereas the remaining 57 edges (including 15 negative interactions) cap-
w5 tured temporal relationships among microbial taxa. This mixture of positive
s and negative interactions between taxa provides evidence of the DBNs ability
;7 to capture the complex relationships and temporal dynamics of the vaginal
ss  microbiota.

379 Oral cavity We learned a DBN with the longitudinal tooth/gum mi-
0 crobiome data set with a sampling rate of 7 days and mazParents = 3.
s Additional file 5: Figure S3 shows the learned DBN which contains 20 nodes
32 for each time slice (19 taxa and 1 clinical) and 52 edges (33 inter edges and
33 19 intra edges) out of 57 possible edges. In addition 2 directed triangles
ssa were observed involving taxa nodes. Here, the DBN model includes multiple
35 positive and negative interactions among early colonizers (e.g., Veillonella
s and H. parainfluenzae) and late colonizers (e.g., Porphyromonas) of the oral
57 microbiota which are supported by previous experimental studies [31].

s Comparisons to prior methods

389 To evaluate the accuracy of our pipeline and to compare them to models
30 reconstructed by prior methods published in the literature [32, 10], we used
;1 a per-subject cross-validation with the goal of predicting microbial taxon
;2 abundances using the learned models. In each iteration, the longitudinal mi-
33 crobial abundance profile of a single subject was selected as the test set, and
s+ the remaining profiles were used for building the network and learning model
35  parameters. Next, starting from the second time point, we used the learned
s model to predict an abundance value for every taxa in the test set at each
37 time point using the previous and current time points. Predicted values were
s normalized to represent relative abundance of each taxa across the microbial
30 community of interest. Finally, we measured the average predictive accuracy
w0 by computing the mean absolute error (MAE) for the selected taxon in the
s network. We repeated this process (learning the models and predicting based
w2 on them) for several different sampling rates, which ranged from 1 up to 28
w3 days depending on the data set. The original and predicted microbial abun-
ss  dance profiles can be compared as shown in Fig. 1f. The average MAE for
ws predictions on the three data sets are summarized in Fig. 4(a-c). For each
ws data set, error plots are shown for ten different methods. Along with two of
w7 our DBNs (one with and one without alignments), four methods with and
w8 four without alignments were compared. These are further described below.
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409 First, we compared the DBN strategy to a naive (baseline) approach. This
a0 baseline approach makes the trivial prediction that the abundance value for
a  each taxa A at any given point is exactly equal to the abundance measured
a2 at the previous time point. Given that measured abundances are continuous
a3 variables, this turns out to be an extremely competitive method and per-
s forms better than most prior methods for the data sets we tested on. Next,
a5 we compared our DBNs to three other methods suggested for modeling in-
s teractions among taxa: (a) McGeachie et al. [10] developed a different DBN
a7 model where network learning is estimated from the BDeu scoring metric [23]
as  (instead of MLE), (b) McGeachie et al.++ an in-house implementation that
a0 extends McGeachie et al.’s method to allow for intra edges during structure
20 learning, and (c) MTPLasso [32] that models time-series microbial data us-
w21 ing a gLV model. In all cases, we used the default parameters as provided in
«22 the original publications.

423 As can be seen, our method outperforms the baseline and previous meth-
w20 ods for the infant gut data. It also performs favorably when compared to
w5 baseline on the other two data sets. Temporal alignments improved the
w6 predictive performance over unaligned samples across gut and vaginal mi-
w27 crobiomes by about 1-4 percentage points. In particular, a two-tailed t-
w8 test indicates significant (denoted by *) performance improvements for most
w0 sampling rates (infant gut: p — value = 0.043* for 1d, p — value = 0.034*
w0 for 3d, p—wvalue = 0.109 for 5d, and p —wvalue < 1.00E — 05* for 7d;
s vaginal: p —wvalue < 1.00E — 06* for 1d, p —wvalue < 1.00E — 05* for
w2 3d, p—wvalue = 5.50F — 05* for 5d, p —value = 3.10E — 03* for 7d, and
s p—walue = 0.097 for 14d). On the other hand, alignments did not show
s significant predictive performance improvements on the oral data set and is
a5 consistent with previous analysis on the same data set [12]. Surprisingly,
16 the simple baseline approach outperforms all previously published methods:
s McGeachie et al. [10] and MTPLasso [32] across the three data sets. Finally,
ss  Fig. 4d highlights the MAE results for a sampling rate that most closely
a0 resembles the originally measured time points.

wmo  Anomaly detection using alignment

aa1 When analyzing large cohorts of microbiome data, it is important to
w2 implement a strategy to remove outliers as these can affect our ability to
u3  generalize from the collected data. As discussed in Methods, we can use our
aa alignment error Fy; score to identify such subjects and remove them prior to
as  modeling. In the context of the gut data set, this resulted in the identification
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ws of two infant samples: Subjects 5 and 55 (highlighted in red within Additional
wr file 6: Figure S4a) which are likely processing errors, contaminated samples,
ws or just natural anomalies. Sample 55 has been previously identified as a
uo likely abruption event by McGeachie et al. [10] using a different approach.
0 Similarly, Additional file 6: Figure S4b shows the distribution of alignment
i1 errors Fyy for the vaginal microbiome data. In this case, we remove 6 sub-
42 samples from 4 different women (highlighted in red). We note that there were
53 no outliers identified in the oral cavity microbiome data set. When learning
ssa - DBNs following the filtering we obtain even better models. Additional file 7:
»ss  Figure S5 compares the average MAE results of our proposed DBN model
w6 between the unfiltered and filtered samples for the gut and vaginal data sets.
ss7 - As can be seen, a large performance improvement is observed for the gut data
s while a slight improvement is observed for the vaginal data when removing
w0 the outliers. These results suggest that even though the method uses less
w0 data to learn the models, the models that it does learn are more accurate.

w1 4. Discussion

w2 The power of temporal alignments

463 We developed a pipeline for the analysis of longitudinal microbiome data
s and applied it to three data sets profiling different human body parts. To
w5 evaluate the reconstructed networks we used them to predict changes in taxa
ws abundance over time. Interestingly, ours is the first method to improve upon
w7 a naive baseline (Fig. 4). While this does not fully validate the accuracy of
w8 the models, it does mean that the additional interactions determined by our
w0 method contribute to the ability to infer future changes and so at least some
a0 are likely true.

an As part of our pipeline we perform temporal alignment. While ground
a2 truth for alignments is usually hard to determine, in one of the data sets we
a3 analyzed we could compare the alignment results to external information to
an test its usefulness. In the context of the infant gut data, it has been shown
a5 that using day of life as the independent variable hinders the identification of
as  associations between bacterial composition and day of sampling. Therefore,
a7 previous work have re-analyzed the premature gut microbiota with post-
ws  conceptional age, uncovering biologically relevant relationships [5]. By using
a0 alignment we were able to correct for this difference without the need to
w0 rely on the external age information. In addition to the results presented in
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w1 Fig. 2, the learned DBN in Fig. 3a does not show any relationships to post-
.2 conceptional age or gestational age at birth indicating that our alignment
i3 was able to successfully compensate for. While for this data such correction
sa  could have been made using post-conceptional age, in other cases the reason
w5 for the rate change may not be obvious and without alignment it would be
w6 hard to account for such hidden effects.

w7 Uncovering biological relationships

a88 We next discuss in more detail the learned DBN models.

489 Infant gut As mentioned in Results, the only negative relationships iden-
w0 tified supports the known colonization order, that is, a shift in dominance
w1 from Bacilli to Gammaproteobacteria to Clostridia) [5], as the infant goes
w2 through the first several weeks of life. These edges show incoming negative
w03 relationships to Bacilli from Gammaproteobacteria and Clostridia. In partic-
s ular, an increase in the abundance of the parents is associated with a decrease
w5 in the abundance of the child. The negative edge from Gammaproteobacte-
ws 110 to Clostridia agrees with previous findings where Clostridia’s abundance
w7 is found to increase at a gradual rate until it peaks at post-conceptional
ws  age between 33 and 36 weeks whereas Gammaproteobacteria decreases as
w0 infants age [5, 10]. This relationship is also confirmed by the edges from
so  Day of life to Gammaproteobacteria and Clostridia (Fig. 3b). Moreover, the
s, DBN model indicates a relationship between breastfeeding and Actinobacte-
si2 150, Bacteroidia, and Alphaproteobacteria. These bacteria are known to be
so3 present in breast milk which is known to heavily influence and shape the
soo infant gut microbiome [33].

505 Vaginal It has been established that microbial composition can change
sos dramatically during the menses cycle and later return to a ‘stable’ state be-
sor fore the next menstrual period [34, 35]. Previous studies have identified a
sos subset of individuals in this data set as exhibiting a microbial composition
so0 dominated by L. crispatus with a notable increase of L. iners around the
s start of each menstrual period [4, 34] (Additional file 2: Figure Sla). These
su  interactions were also captured by the learned DBN model in the form of a
sz directed triangle involving L. crispatus and L. iners (Fig. 3b). On the other
si3 hand, subjects from another group were characterized as dominated by L.
su gasseri coupled with shifts to Streptococcus during menstruation [4]. These
si5 relationships were also captured by the DBN. The edge from the Day Period
sis to L. iners strengthens this relationship. Furthermore, while L. iners has
sz a lower protective value than the other Lactobacillus [36], the negative edge
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sis between L. iners and Atopobium suggests a relationship related to environ-
s19 ment protection. Also, the positive edge from Atopobium to Gardnerella is
s20 supported by the synergy observed between these two taxa in bacterial vagi-
s nosis [37]. Finally, it is important to note that the shifts and composition of
s22 the vaginal microbiome vary considerably between each subject.

523 Oral For oral microbiomes, several Streptococcus species, including S.
soa - oralis, S. mitis, S. gordonii, and S. sanguis are well known as early colo-
s2s nizers lying close to the tooth pellicle [31]. While our DBN cannot identify
s26  specific species, it suggests interactions between some species of Streptococ-
so7  cus and other later colonizers in the oral microbiome such as Porphyromonas
s2 and Prevotella. The DBN also provided novel predictions, for example taxa
so0  Granulicatella is interacting with Veilonella.

s  Triangles in DBNs

531 An interesting aspect shared by all of the DBNs discussed above is the
s fact that they contain triangles or feed-forward loops. In particular many of
533 these directed triangles are created from nodes representing both time slices
su of another variable, but with different signs (one positive and the other neg-
s ative). For example, microbial taxa L. crispatus displays a directed triangle
s3  with another taxa L. iners in the vaginal DBN (Fig. 3b). In this triangle, pos-
s3  itive edges from L. iners_ti interact with L. iners_ti+1 and L. crispatus_ti+1
s whereas a negative edge connects L. iners_ti+1 to L. crispatus_ti+1.

530 The triangles in the DBNs represent a relationship where the abundance
sa0  Of a child node cannot be solely determined from the abundance of a parent at
sa1 one time slice. Instead, information from both the previous and the current
se2  time slices is needed. This can be interpreted as implying that the child node
sa3  1s associated with the change of the abundance values of the parents rather
ssa  than with the absolute values which each node represents.

sas  Limitation and future work

546 While our pipeline of alignment followed by DBN learning successfully
sa7 - reconstructed models for the data sets we looked at, it is important to under-
sss  stand the limitation of the approach. First, given the complexity of aligning
se0 & large number of individuals, our alignment method is based on a greedy
ss0 algorithm, thus, it is not guaranteed to obtain the optimal result. Even if
ss1 the alignment procedure is successful, the DBN may not be able to reflect
ss2 the correct interactions between taxa. Issues related to sampling rates can
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3 impact the accuracy of the DBN (missing important intermediate interac-
s+ tions) while on the other hand if not enough data is available the model can
55 overfit and predict non-existent interactions.

556 Given these limitations we would attempt to improve the alignment method
ss7 and its guarantees in future work. We are also interested in studying the
sss  ability of our procedure to integrate additional molecular longitudinal infor-
ss0 mation including gene expression and metabolomics data which some studies
seo are now collecting in addition to the taxa abundance data [38]. We believe
ss1 that our approach for integrating information across individual in order to
ss2  learn dynamic models would be useful for several ongoing and future studies.

s ©. Conclusions

564 In this paper, we propose a novel approach to the analysis of longitudi-
sss nal microbiome data sets using dynamic Bayesian networks with the goal of
ses eliciting temporal relationships between various taxonomic entities and other
ss7 clinical factors describing the microbiome. The novelty of our approach lies in
ss¢ the use of temporal alignments to normalize the differences in pace of biolog-
seo ical processes inherent within different subjects. Additionally, the alignment
s algorithm can be used to filter out abruption events or noisy samples. Our re-
s sults show that microbiome alignments improve predictive performance over
sz previous methods and enhance our ability to infer known and potentially
sz3 novel biological and environmental relationships between the various entities
sz of a microbiome and the other clinical and demographic factors that describe
s75 the microbiome.
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Figure 1: Computational pipeline proposed in this work. Figure shows microbial
taxa Gammaproteobacteria at each step in the pipeline from a set of five representative
individual samples (subjects 1, 5, 10, 32 and 48) of the infant gut data set at a sampling
rate of 1 day. a— Raw relative abundance values for each sample measured at (potentially)
non-uniform intervals even within the same subject. b — Cubic B-spline curve for each
individual sample. Sample corresponding to subject 1 (dark blue) contains less than pre-
defined threshold for measured time points, thus, removed from further analysis. The
remaining smoothed curves enable principled estimation of unobserved time points and
interpolation at uniform intervals. ¢ — Temporal alignment of each individual sample
against a selected reference sample (subject 48 shown in orange). d — Post-alignment
filtering of samples with alignment error higher than a pre-defined threshold. Sample
corresponding to subject 5 (grey) discarded. e — Learning a dynamic Bayesian network
(DBN) structure and parameters. Let nodes (77,75, T3,T4) represent microbial taxa and
(C1, Cy, Cs) represent clinical factors shown as circles and diamonds, respectively. Figure
shows two consecutive time slices ti and ¢i + 1, where dotted lines connect nodes from
the same time slice referred to as intra edges, and solid lines connect nodes between time
slices referred to as inter edges. Biological relationships are inferred from edge parameters
in the learned DBN which can be positive (green) or negative (red). f — Original and
predicted relative abundance across four infant gut taxa for subject 48 at sampling rate of
1 day. Performance is evaluated by average mean absolute error (MAE) between original
and predicted abundance values (MAE = 0.011).
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Figure 2: Relationship between alignment parameters and gestational age at
birth. Figure shows the relationship between alignment parameters a and b and gesta-
tional age at birth for the aligned infant gut microbiome data set. Each blue dot rep-

resent an aligned infant sample ¢ where x-axis shows _Tb from transformation function
filt) = @ and y-axis shows the gestational age at birth of infant i. Pearson correlation

coefficient = 0.35.

26


https://doi.org/10.1101/430462
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/430462; this version posted September 29, 2018. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

Eryspolotrich_i+1
-

Epsionproteobactera_i+1
Flavobactoria_  Erysipeltnchi_t

Epsilonprotecbacteria_t Day of e sample
oblained_is1

N owyatesenys
~ “obtained_t -~
.. - i coaifhs 1
- nobacteria_ti+ * \
” e K™
. N -
R /-\ ; ot N\ guo b1
A
. Gloswidas . 7N
Contign ot s
) il
| B EERN |

Day_Poricd_u

Cw’-hcwlmv O

"“‘) MB *\? ‘‘‘‘‘‘‘‘‘

Aphaproteobacteria_1 pr——
Actinobactaria i+ ot

Staphyiococcus_u

Period of study_tis1
) 2 BaciL_tivt
3 v/ PR—

Infant gut Vaginal

Figure 3: Dynamic Bayesian network for two representative data sets. Figure
shows two consecutive time slices ti (orange) and ti + 1 (blue), where nodes are either
microbial taxa (circles) or clinical factors (diamonds). Nodes size is proportional to in-
degree whereas taxa nodes transparency indicates mean abundance. Additionally, dotted
lines denote intra edges (i.e., directed links between nodes in same time slice) whereas solid
lines denote inter edges (i.e., directed links between nodes in different time slices). Edge
color indicates positive (green) or negative (red) temporal influence and edge transparency
indicates strength of bootstrap support. Edge thickness indicates statistical influence of
regression coeflficient as described in Network visualization. a — Learned DBN for the
aligned infant gut microbiome data at a sampling rate of 3 days and maxParents = 3. b
— Learned DBN for the aligned vaginal microbiome data at a sampling rate of 3 days and
mazParents = 3.
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Figure 4: Comparison of average predictive accuracy between methods on the
filtered data sets. Figure shows the average MAE of our proposed DBN models against
a baseline method and previously published approaches as a function of sampling rates
where d denotes day(s). Additionally, each method is run on the unaligned and aligned
data sets. a — Performance results for infant gut microbiome data. b — Performance
results for vaginal microbiome data. ¢ — Performance results for oral cavity microbiome
data. d — Performance results for each data set for a sampling rate (sr) that most closely
resembles the originally measured time points.
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