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Abstract 
 
Tumor microenvironments contain multiple cell types interacting among one another via 
different signaling pathways. Furthermore, both cancer cells and different immune cells can 
display phenotypic plasticity in response to these communicating signals, thereby leading to 
complex spatiotemporal patterns that can impact therapeutic response. Here, we investigate the 
crosstalk between cancer cells and macrophages in a tumor microenvironment through in silico 
(computational) co-culture models. In particular, we investigate how macrophages of different 
polarization (M1 vs. M2) can interact with epithelial-mesenchymal plasticity of cancer cells, and 
conversely, how cancer cells exhibiting different phenotypes (epithelial vs. mesenchymal) can 
influence the polarization of macrophages. Based on interactions documented in the literature, 
an interaction network of cancer cells and macrophages is constructed. The steady states of the 
network are then analyzed. Various interactions were removed or added into the constructed-
network to test the functions of those interactions. Also, parameters in the mathematical models 
were varied to explore their effects on the steady states of the network. In general, the 
interactions between cancer cells and macrophages can give rise to multiple stable steady-
states for a given set of parameters and each steady state is stable against perturbations. 
Importantly, we show that the system can often reach one type of stable steady states where 
cancer cells go extinct. Our results may help inform efficient therapeutic strategies. 
 
Introduction 
 
Cancer has been largely considered as a cell-autonomous disease, but recent investigations 
have highlighted the crucial role of the tumor microenvironment in determining cancer 
progression (1). Cancer cells can communicate bi-directionally through various mechanical 
and/or chemical ways with their neighboring cancer cells (2,3), and/or with other components of 
the tumor microenvironment such as macrophages and fibroblasts, driving aggressive 
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malignancy (4–6). The interconnected feedback loops formed by these interactions can often 
generate many emergent outcomes for the tumor. Interestingly, many of the latest therapeutic 
innovations such as immunotherapy are aimed at targeting aspects of the tumor 
microenvironment instead of the cancer cells (7). 
 
Tumor-associated macrophages (TAMs) are one of the most abundant immune cell populations 
in the microenvironment (8,9). They have been shown to promote cancer progression in many 
ways, such as promoting angiogenesis, suppressing function of cytotoxic T lymphocytes, and 
assisting extravasation of cancer cells (8–12). Generally, the secretome and functions of TAMs 
have been shown to be close to that of the so-called alternatively activated macrophages (M2) 
(13). In the case of pathogen infections, macrophages that can engulf the pathogen and present 
processed antigens to adaptive immune cells, are generally characterized as the classically 
activated ones (M1) (14). M1 and M2 macrophages have different roles during wound healing: 
while M1 macrophages initiate inflammatory responses, M2 macrophages contribute to tissue 
restoration (13). In the context of cancer, M1 macrophages have been generally considered anti-
tumor (15–17), whereas M2 macrophages have been considered as pro-tumor (10).  
 
However, macrophage polarization is not as rigid as the differentiation of T lymphocytes (18); 
instead, M1, M2, and any intermediate state(s) of macrophage polarization are quite plastic 
(13,19,20). Thus, the idea that reverting TAMs in the cancer microenvironment to its cancer-
suppressing counterpart is tempting, the proof of principle of which has been demonstrated in 
mice models (21–25). 
 
Not only TAMs, but also cancer cells themselves can be extremely plastic, a canonical example 
of which is epithelial-mesenchymal plasticity, i.e. cancer cells can undergo varying degrees of 
Epithelial-Mesenchymal Transition (EMT) and its reverse Mesenchymal-Epithelial Transition 
(MET) (26,27). EMT/MET has been associated with metastasis (28), chemoresistance (29), 
tumor-initiation potential (30), resistance against cell death (31), and evading the immune 
system (32).  
 
Importantly, macrophages and cancer cells can interact with and influence the behavior of one 
another, as shown by many in vitro experiments. Specifically, some epithelial cancer cells are 
capable of polarizing monocytes into M1-like macrophages (33). Forming a negative feedback 
loop, these M1-like macrophages can decrease the confluency of the cancer cells that polarized 
them (33). Moreover, pre-polarized M1 macrophages can induce senescence and apoptosis in 
human cancer cell lines A549 (34) and MCF-7 (35). Intriguingly, factors released by apoptosis of 
cancer cells can convert M1 macrophages into M2-like macrophages (35), thus switching 
macrophage population from being tumor-suppressive to being tumor-promoting. On the other 
hand, mesenchymal cancer cells can polarize monocytes into M2-like macrophages (33,36,37), 
that can in turn assist EMT (37,38). Thus, the interaction network among macrophages and 
cancer cells is formidably complex, and the emergent dynamics of these interactions can be 
non-intuitive (39) yet are often crucial in deciding the success of therapeutic strategies targeting 
cancer and/or immune cells. For example, even if TAMs at some time can be converted 
exogenously to M1-like macrophages, if most cancer cells still tend to polarize monocytes to 
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TAMs, other coordinated perturbations may be needed at different time-points to restrict the 
aggressiveness of the disease. 
 
Here, we develop mathematical models to capture the abovementioned set of interactions 
among cancer cells in varying phenotypes (epithelial and mesenchymal) and macrophages of 
different polarizations (M1-like and M2-like). We characterize the multiple steady states of the 
network that can be obtained as a function of different initial conditions and key parameters, and 
thus analyze various potential compositions of cellular populations in the tumor 
microenvironment. This in silico co-culture system can not only help explain in vitro multiple 
experimental observations and clinical data, but also help acquire novel insights into designing 
effective therapeutic strategies aimed at cancer cells and/or macrophages. 
 
Results 
 
Crosstalk among cancer cells and macrophages can lead to two distinct categories of 
steady states 
 
We first considered the following interactions in setting up our mathematical model: a) 
proliferation of epithelial and mesenchymal cells (but not that of monocytes M0, or macrophages 
M1 and M2), b) EMT promoted by M2-like macrophages and MET promoted by M1-like 
macrophages, c) polarization of monocytes (M0) to M1-like cells aided by epithelial cells, and 
that to M2-like cells aided by mesenchymal cells, d) induction of senescence in epithelial cells by 
M1-like macrophages (Figure 1A). No inter-conversion among M1-like and M2-like macrophages 
or cell-death of macrophages is considered here in this model (hereafter referred to as ‘Model I’; 
see Methods). 
 
Furthermore, this model also considers that mesenchymal cells can secrete soluble factors, 
such as TGFβ, that can induce or maintain the mesenchymal state in autocrine or paracrine 
manners (40,41). Therefore, we hypothesized that mesenchymal cells can resist M1-promoted 
MET. However, this resistance might not fully suppress MET, as MET still happens in the 
presence of M1 macrophages (38). Therefore, in Eq. [1], we assume a Hill-like function to 
represent the resistance to M1-promoted MET and the resistance term saturates to a finite value 
as a function of mesenchymal population M. Similarly, epithelial cells adhere to each other via 
E-cadherin, sequestering β-catenin on the membrane, thus interfering with the induction of EMT 
(42). Thus, we hypothesized that the M2-promoted EMT can be inhibited by epithelial cells in a 
cooperative manner, because this inhibition of EMT requires direct physical cell-cell contact and 
hence involves multiple epithelial cells. Therefore in Eq. [1], we assume a Hill-like function to 
represent this resistance to M2-dependent EMT and the resistance term saturates to a finite 
value as a function of epithelial population E. Furthermore, the epithelial-cell-dependent term 
has a cooperativity parameter k to represent the effects of E-cadherin-β-catenin interaction 
between multiple epithelial cells. 
 
Note that in all of our calculations, we assumed that there is a carrying-capacity of cells (Nmax, 
including both cancer cells and macrophages) in the co-culture system in vitro. We vary the 
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initial number of different cells while keeping the total number of macrophages (M1+M2+M0) to 
be a constant (Mc). Therefore, the maximum number of cancer cells will be Nmax -Mc. 
 
In Model I, the final populations of E, M, M1 and M2 cells are simply determined by the following 
equations: 
 

  
 
The above equations give two categories of stable steady states: a) state I, dominated by 
epithelial cancer cells, and b) state II, dominated by mesenchymal cancer cells. The final steady 
state of the system depends on the number of M2 macrophages in that state; since there are 
only three equations for four unknowns, M2 can be used as a parameter specifying (possibly 
discrete set of) solutions. As soon as M2/Nmax crosses a threshold, the system switches from 
state I to state II (Figure 1B). This prediction is largely robust to parameter variation (Figure S1). 
 
Next, we explored what factors could change the qualitative behavior of the model, i.e., enable a 
smoother and continuous transition of epithelial and mesenchymal percentages as a function of 
the M2-macrophage population. We identified that reducing the cooperativity of epithelial cancer 
cells in their resistance of M2-promoted EMT can lead to a loss of the feature with two-types of 
steady states (Figure 1C, blue, cyan and light-green lines). Conversely, increasing the 
cooperativity of M2-promoted EMT or M1-promoted MET can expand the region of overlapping 
between state I and II of the system (Figure 1C, green lines). Another factor that can alter the 
behavior of the model is the initial number of monocytes in the system. At high enough number 
of monocytes, the absolute number of cancer cells will be small, thus the effect of the 
cooperativity between epithelial cancer cells will be reduced, and consequently, as discussed 
above, the overlap of the two types of steady states of the system will disappear (Figure 1D). 
Together, this increased propensity of multi-stability in the system upon including cooperative 
effects in the interactions among different species (or variables) is reminiscent of observations 
in models of biochemical networks (43). 
 
Note that using the M2/Nmax as the “control variable” is specific for Model I, because there is no 
interconversion between M1 and M2 macrophages. For a given set of parameters, the steady 
state level of M2 can vary continuously from 0 to Mc (Figure 1B-D), and in practice is determined 
by the initial conditions (initial number of E, M, M1, M2, and M0). For models in the following 
sections, M2/Nmax will be shown to be fixed to discrete allowed values (instead of continuously 
varying) for a given set of parameters. For example, if we add a very small conversion rate 
between M1 and M2, the steady state of the system will collapse to only one steady state (Figure 
S2): on the shorter time scale, the trajectory of the system (on the phase plane of E and M2) will 
first converge to one steady state in Model I (with the same M2/Nmax); on the longer time scale, 
as determined by the value of inter-conversion rate between M1 and M2, the system will slowly 
evolve to the steady state (blue dot in Figure S2), following along the now-approximate steady 
states in Model I. 
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Figure 1. Cancer-immune interplay can give rise to the co-existence of two types of steady states. A. 
Interaction network for Model I. Conversions between cells are indicated by solid lines. Cell proliferation is indicated 
by dashed lines. Inhibition (in black) and activation (in red) is indicated by dotted lines. B. Steady states of the 
epithelial population are plotted as a function of M2-like macrophage population. Stable steady states are plotted in 
solid blue lines and unstable steady states are plotted in dotted red line. The key parameters are as indicated. C. As 
the cooperativity of epithelial cancer cells in their resistance of M2-promoted EMT is reduced, i.e., k=4,3,2 (blue, cyan, 
and light-green line), the overlapped region between state I and II shrinks and then disappears. Increasing the 
cooperativity of M2-promoted EMT or M1-promoted MET, i.e., m and n increase from 1 to 2, can expand the 
overlapped region (between state I and II) of the system (dark-green lines). Stable steady states are plotted in solid 
lines and unstable steady states are plotted in dotted lines. D. As the total number of macrophages (Mc) increases, 
the overlapped region (between state I and II) of the system shrinks and then disappears. 
 
Cancer-cell enhanced interconversion between M1 and M2-like macrophages lead to bi-
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In the next iteration of our model (hereafter referred to as ‘Model II’), we included the possibility 
of interconversion between M1-like and M2-like macrophages, as reported in the literature 
(13,35,44,45) (Figure 2A, see Methods). We first assume constant interconversion between M1 
and M2 (with rates denoted as h0

21 and h0
12) and investigate the effects of varying the rate of 

conversion of mesenchymal cells to epithelial cells (hme). At small values of hme, the system has 
small number of epithelial cells, which is equivalent to state II in Model I; with increasing hme, a 
threshold is crossed, and the system can switch to states with larger number of epithelial cells, 
which is equivalent to state I in Model I (solid black lines, Figure 2B). Thus, we can observe bi-
stability of cancer cell population in this system. However, the populations of macrophages stay 
constant as a function of hme, since the M1/M2 ratio is simply determined by h0

21/h0
12 according 

to Eq. [2] when h12=h21=0). In this model, we focused on increased cooperativity of M2-assisted 
EMT and M1-assisted MET (i.e., m=n=2), because the interconversion between M1 and M2, in 
absence of such cooperativity (as considered in model I with m=n=1; Fig 1B), gives rise to a 
narrower bi-stable region (Figure S3). Note again that in our calculations, we assumed that 
there is a carrying-capacity of cells (Nmax, including both cancer cells and macrophages) in the 
co-culture system in vitro. Again the total number of macrophages is constant, since no cell 
death or cell division of macrophages is considered. 
 
We chose hme as a control parameter, because it can act as a bottleneck for the transition 
between the two types of stable steady states of the system. Lowering the transition threshold of 
hme can be helpful in a sense that the system can potentially stay at state I (high epithelial state, 
supposed to be less aggressive) only. Due to the inherent symmetry in the network, the effect of 
lowering the threshold of hme can be recapitulated via other perturbations, such as a smaller rate 
of M1-assisted MET (hem), lower M1 to M2 conversion rate (h12), or higher M2 to M1 conversion 
rate (h21) (Figure S4). 
 
We next consider the case where interconversion between M1-like and M2-like macrophages is 
enhanced by cancer cells, i.e., mesenchymal cells enhance the M1-to-M2 transition, while 
epithelial cells enhance M2-to-M1 transition. In this case, we observe the existence of a bi-stable 
region, and the range of the epithelial-cell-low solution (equivalent to state II) is wider than that 
for the previous case without any effects of epithelial (E) and mesenchymal (M) cancer cells on 
M1-M2 interconversion (Figure 2B and 2C, solid blue lines). The reason for the expanded 
epithelial-cell-low region is that the positive feedback loop between mesenchymal and M2 cells 
makes the mesenchymal- and M2-dominated state more stable. Therefore, a higher hme is 
required to compensate for the effects of low M1 population. For therapeutic purposes, state I is 
favored, for it is believed that epithelial cells are typically less aggressive than mesenchymal 
ones. Therefore, symmetrical mutual enhancement might not be helpful for the therapy because 
of the expanded epithelial-low (mesenchymal-high) region.  For the same reason, the lower 
threshold of hme to switch from state II to state I also shift to a higher value, which means that for 
a small hme, the system will only have one stable steady state, i.e., state II with high number of 
mesenchymal cells. 
 
In order to drive the system to be bi-stable at a smaller hme, we tested the case with 
asymmetrical interconversion rates between M1 and M2, i.e. higher conversion rate from M2 to 



M1 enhanced by epithelial cells (h21). In this case, the lower threshold of hme can indeed shift to 
a smaller value (Figure 2D), which makes it theoretically possible to switch the system from 
state II (low epithelial cells) to state I (high epithelial cells) at a fairly small hme value. 
 
In summary, our results for Model II suggest that one can switch the system from state II (low 
epithelial cells) to state I (high epithelial cells) is to increase both hme and the effective 
conversion from M2 to M1. 
 

 
Figure 2. Effects of interconversion between M1 and M2 cells, mediated by cancer cells.  A. Network of Model II. 
B and C. Steady states of the epithelial (B) or M1 (C) populations are plotted as a function of hme. Stable steady states 
are plotted in solid lines and unstable steady states are plotted in dotted lines. The key parameters in B and C are: 
h12=h21=0 (for black lines) or 1/72 h-1 (for blue lines), m=2, n=2, k=4, h021=h012=1/72 h-1. D. In this plot, the key 
parameters are: h21=1/72 h-1 (for blue lines) or 1/36 h-1 (for green lines), m=2, n=2, k=4, h021=h012=1/72 h-1, and 
h12=1/72 h-1. In B and D, the grey line is the maximum fraction of cancer cells (=0.7) as Mc is set as 0.3. 
 
Cell apoptosis-induced M1-to-M2 conversion leads to symmetry breaking in the cancer-
immune interaction network  
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Finally, we have incorporated one other set of experimentally documented interactions, i.e. M1 
macrophages can drive the apoptosis of epithelial cells, and factors released during cancer cell 
apoptosis can drive M1-to-M2 conversion (referred as Model III, Figure 3A, see Methods) (35). 
This interaction induces ‘symmetry breaking’ (46) in the system, as previously most of the 
interactions considered were of a ‘symmetric’ nature, i.e. M1 cells driving MET and M2 cells 
driving EMT, and epithelial cells driving M1 maturation while mesenchymal cells driving M2 
maturation. With this new interaction, the system is now biased against epithelial cells, because 
a) epithelial but not mesenchymal cells, are killed by M1-macrophages, and b) their dead 
counterparts may convert M1 to M2 cells that can, in turn, convert some epithelial cells to 
mesenchymal ones (EMT). 
 
Thus, in the parameter region investigated, there are 3 types of stable steady states, which are 
represented by solid blue, red and black lines, respectively. At small values of the control 
parameter hme (rate of M1 macrophage assisted MET), there is only one type of stable steady 
state: the system is biased towards the mesenchymal-dominated state (solid blue curves in 
Figures 3B-3E), whereas the cancer-extinction state (E=M=0, dashed black curves in Figures 
3B-3E) is unstable. As hme increases and goes across a critical value ha

me=0.0626 h-1), the 
extinction state (E=M=0) becomes stable as well as a new set of steady states emerges (red 
lines in Figures 3B-3E). Between hme=0.0663 h-1 and hme=0.0747 h-1, the steady states depicted 
as a solid red line (Figures 3B-3E) are stable; here both populations of epithelial and 
mesenchymal cancer cells are at a low level. This phenomenon can be understood in the 
following sense: at higher hme, proliferating mesenchymal cells are continuously being converted 
to epithelial cells, which will be killed by M1 macrophages. This effect brings down the overall 
fraction of cancer cells. Note that in this region, three types of stable steady states co-exist in 
the system for a given set of parameters. As hme increases and goes across hb

me=0.0747 h-1, 
the stable steady states in solid red lines disappears and the other two types of stable steady 
states co-existed (solid blue and black lines in Figures 3B-3E). As hme further increases and 
goes across hc

me=0.1532 h-1, there is only one stable steady state: cancer cells are necessarily 
eliminated from the system. We note in passing that the instability that drives the red solution 
unstable as hme is lowered past 0.0663 h-1 is a Hopf bifurcation to an unstable limit cycle. 
 
Furthermore, for the breast cancer cell line MDA-MB-231 used in Ref. (38), hme is estimated to 
be around 1/120 h-1 (~0.0083 h-1). In order to explore the conditions for the absolute extinction 
of cancer cells around the estimated hme, we varied different parameters (such as lM, hem and 
h21) to get the corresponding hc

me where the extinction state is the only stable steady state of 
the system. We found that lowering the growth rate of mesenchymal cells (lM) can reduce hc

me 
to the nominal experimental value 1/120 h-1 (Figure 3F) whereas lowering down hem or 
increasing h21 might not (Figure S5). Therefore, for therapeutic purposes, increasing hme and 
decreasing lM can be a promising combination to help to eliminate cancer cell populations. 
 



 
Figure 3 Steady state solutions for a model including the M1 to M2 conversion assisted by apoptotic epithelial 
cancer cells. A. Network of Model III. B-E. Steady states of the epithelial (B), mesenchymal (C and D) and M1 (E) 
populations are plotted as a function of hme. D is a zoomed-in version of C. Stable steady states are plotted in solid 
lines and unstable steady states are plotted in dotted lines. The model-specific parameters are: b=1/36 h-1, bc=1/1200 
h-1, h12=h21=1/72 h-1. When hme is higher than a critical value hame, the steady state E=M=0 becomes stable (D). 
When hme is higher than a critical value hcme, the steady state E=M=0 is the only stable steady state of the system. F. 
For a given lM, the critical value hcme is plotted. 
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EMT scores correlate with multiple genes upregulated in M2 macrophages 
 
As a proof of principle for the predictions of our model, we investigated multiple TCGA datasets, 
using our previously developed EMT scoring metric (47). This metric quantifies the extent of 
EMT in a particular sample, and correspondingly assigns a score between 0 (fully epithelial) and 
2 (fully mesenchymal). We calculated the correlation coefficients for EMT scores with various 
genes reported to be differently regulated in M1 or M2 macrophages relative to M0 macrophages. 
We observed that many genes upregulated in M2 and downregulated in M1 macrophages – 
ACTN1, FLRT2, MRC1, PTGS1, RHOJ, TMEM158 – correlated positively with the EMT scores 
(Table 1, first 6 rows) across multiple cancer types. The higher the EMT scores, the higher the 
levels of those genes, including the canonical M2 macrophage marker CD206 (MRC1). On the 
other hand, many genes upregulated in M1 macrophages but downregulated in M2 
macrophages – FIIR, STAT1, RSAD2, TUBA4A and XAF1 – showed either a negative or an 
overall weak positive correlation with EMT scores (Table 1, last 5 rows). The only exception 
observed in this trend was that for ARHGP24 which correlated positively with EMT scores 
across cancer types. Together, these correlation results in multiple TCGA datasets offer a 
promising initial validation of our model predictions that a state dominated by epithelial cells 
typically has higher number of M1 macrophages, while the other state dominated by 
mesenchymal cells typically has higher number of M2 macrophages. 
 

Gene FC 
(M1/M0) 

FC 
(M2/M0) 

Correlation 
(Colorectal) 

Correlation 
(Lung) 

Correlation 
(Pancreatic) 

Correlation 
(Breast) 

ACTN1 0.46 2.37 0.32 0.41 0.32 0.13 
FLRT2 0.47 7.29 0.33 0.36 0.33 0.40 

MRC1 (CD206) 0.02 2.82 0.21 0.31 0.21 0.28 
PTGS1 0.44 11.02 0.28 0.47 0.28 0.18 
RHOJ 0.21 2.96 0.36 0.30 0.36 0.35 

TMEM158 0.37 2.99 0.24 0.31 0.24 0.14 
ARHGAP24 2.38 0.36 0.29 0.24 0.29 0.37 

FIIR 3.43 0.41 -0.12 -0.44 -0.12 -0.19 
STAT1 2.27 0.27 -0.02 0.29 -0.02 0.04 
RSAD2 3.03 0.09 0.08 0.27 0.08 0.02 
TUBA4A 2.18 0.33 0.11 -0.12 0.11 -0.01 

XAF1 2.09 0.25 0.05 0.27 0.05 0.05 
 
Table 1: Correlation coefficients of expression levels of specific genes with EMT scores, across many TCGA 
datasets. FC is the fold-change of gene expression levels in M1 or M2 macrophages relative to M0, which is measured 
in Ref. (48) for murine bone marrow derived macrophages polarized in vitro. Those shown in red indicated 
upregulated in M2, those in blue indicate upregulated in M1. 
 
 
Discussion 
 
The tumor microenvironment involves multiple cell types that interact among each other in 
diverse ways, thus giving rise to a complex adaptive ecological system (49–51). For such a 
system, mathematical models can help reveal the mechanisms underlying the emergent 



behavior and eventually aid in designing effective therapeutic strategies to modulate those 
aspects of the microenvironment that fuel disease aggressiveness (52–58). 
 
Here, we focused on the interactions among macrophages of different polarizations (M1 and M2) 
and cancer cells with different phenotypes (epithelial and mesenchymal). Based on the literature, 
we focused on two types of models: with (Model II and III) or without (Model I) interconversion 
between M1 and M2 macrophages. All three models share a common feature: with a given set of 
parameters, multiple types of stable steady states can co-exist. More specifically, in Model I 
(without M1-M2 interconversion), with a given set of parameters, the system can converge to 
continuous range of states depending on the initial condition. However, these steady states 
belong to two categories: state I with a higher epithelial population and state II with a lower 
epithelial population. After the system reaches a steady state, perturbations applied only to 
cancer cell populations cannot drive the system out of the original steady state whereas 
perturbations on macrophage populations will drive the system out of the original steady state.  
However, the perturbation on macrophage populations might not drive the system out of the 
original category of steady states unless the perturbation is sufficiently strong. In Model II and III, 
with a given set of parameters, the system can again converge to two types of steady states 
depending on the initial condition: state I with a higher epithelial population and state II with a 
lower (or even zero for Model III) epithelial population. Now however, the states are discrete. 
After the system reaches a steady state, perturbations of any single cell population might not 
drive the system out of the original steady state. Therefore, in general, it is not easy to switch 
the cancer-macrophage system from a mesenchymal- and M2-dominated state to an epithelial- 
and M1-dominated state. 
 
Mathematical approaches similar to ours may be useful in explaining, and even predicting, the 
efficacy of different therapeutic intervention(s) and their combinations. For example, various 
efforts have been made to switch populations of macrophages from M2- into M1-like (25), such 
as depletion of TAMs, reprogramming of TAMs toward M1-Like macrophages, inhibition of 
circulating monocyte recruitment into tumor, etc. However, it is unclear that how effective these 
types of strategies would be. Our modeling studies suggest that when we consider the 
interactions in Model III, the efforts on manipulating the M1-M2 interconversion might not be 
effective to eliminate cancer cells; whereas in Model II increasing the M2-to-M1 conversion rate 
can help the system to switch to the epithelial cancer cell and M1 macrophage dominated state, 
which is believed to be less aggressive. Therefore, the effective therapeutic strategies strongly 
depend on the type of interactions present between cancer cells and macrophages. 
 
It is important to recognize that our model suffers from limitations. For instance: a) it does not 
consider spatial aspects of these interactions, for instance, mesenchymal cells may migrate and 
invade through the matrix, thus changing the interactions among the cells considered in our 
framework; b) it does not consider the effects of senescence on epithelial cell growth (59); and c) 
it considers EMT and macrophages polarization as a binary process, whereas emerging reports 
support the notion that in both cases there is likely to exist a spectrum of states/phenotypes 
(60,61). A more realistic model that can overcome the abovementioned assumptions and thus 



reflect the dynamics of tumor microenvironment more accurately can be used to help designing 
a more effective way to switch and stably maintain the system into a less aggressive state. 
 
Despite the abovementioned limitations, our model can contribute to identifying key parameters 
of the system. For example, it suggests that to design an effective therapy to maintain the 
system in a M1-dominated and cancer-free steady state, not only the conversion rate from 
mesenchymal to epithelial cells should be significant, but also the growth rate of mesenchymal 
cells should be low enough. In other words, MET-inducing and cell-growth-suppressing can 
together synergistically restrict disease aggressiveness. 
 
In summary, our results show that the interaction network between tumor cells and 
macrophages may lead to multi-stability in the network: one state dominated by epithelial and 
M1-like cells, the other dominated by mesenchymal and M2-like cells. We also identify that 
inducing MET and inhibiting cancer-cell growth might be much more efficient in ‘normalizing’ (1) 
the tumor microenvironment that can otherwise be engineered by cancer cells to support their 
growth (62) . 
 
Method 
 
Computational Models 
 
According to in vitro experiments in literature, we construct three mathematical models. In 
Model I, factors secreted by epithelial (mesenchymal) cancer cells will polarize monocytes into 
M1-like (M2-like) macrophages. M1-like macrophages will induce senescence of epithelial cancer 
cells and convert mesenchymal cancer cells to epithelial ones. On the other hand, M2-like 
macrophages will convert epithelial cancer cells to mesenchymal ones. In addition, a 
mesenchymal cancer cell can secrete soluble factors to help maintain the mesenchymal state of 
itself and its neighbors, whereas an epithelial cancer cell can maintain the epithelial state 
through being in contact with its neighboring epithelial cancer cells. There is assumed to be no 
cell growth or death for macrophages and there is a maximum ‘carrying capacity’ of cells in the 
system. The figure that illustrate this model is in Fig. 1A. The equations to describe this system 
is as follows:  
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The description and the value of each parameter are given in Table 2. 
 
In Model II, interconversions between M1 and M2 macrophages are included. Furthermore, the 
interconversions can be enhanced by corresponding cancer cells. The figure that illustrate this 
model is in Fig. 2A. The equation to describe this system is as follows: 
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In the third model, additional interactions were introduced as illustrated in Fig. 3A. M1-like 
macrophages can induce apoptosis of epithelial cancer cells and factors released by apoptotic 
cancer cells can convert M1-like macrophages into M2-like macrophages. In order to restore the 
symmetry of the system, we further consider the therapeutic interaction: M2-like macrophages 
can be re-polarized back to M1-like macrophage by Type 1 T helper cells, IL-12, IFN-gamma, 
etc. The equation to describe this system is as follows: 
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The description and the corresponding values of additional parameters are given in Table 2. 
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Parameters values Reference 
Nmax 1 This work 
lE 1/72 h-1 Estimated from (33) 

\lambda_M 1/72 h-1 (33) 
a 100 Estimated from (34) 
K1 0.1 Nmax This work (varied) 
hme 1/120 h-1 Estimated from (38) 
hem 1/72 h-1 Estimated from (38) 
K0

M 0.1 Nmax This work 
K0

E 0.1 Nmax This work 
k 4 This work 
b 0 or 1/36 h-1 Estimated from (35) 
K2 1 Nmax This work 
n 1 or 2 This work (varied) 
m 1 or 2 This work (varied) 
bc 1/1200 h-1 This work 
h1 1/24 h-1 Estimated from (35) 
KE 0.1 Nmax This work 
h2 1/24 h-1 Symmetric assumption 
KM 0.1 Nmax This work 
KC 1 This work 
h0

12 1/72 h-1 This work (varied) 
h0

21 1/72 h-1 Symmetric assumption (varied) 
h12 1/72 h-1 Estimated from (35) (varied) 
h21 1/72 h-1 Symmetric assumption (varied) 

 
Table 2 Parameters used in our models. 

 
Correlation analysis 
For a fixed dataset, linear regression was performed for each gene of interest against the 
predicted EMT score(47).  The linear correlation coefficient was recorded in each case.  We 
performed statistical analysis under the null hypothesis of zero correlation between gene 
expression fold-change and EMT score and recorded the corresponding p-values at significance 
level α=0.05. All datasets were obtained from the R2: Genomics Analysis and Visualization 
Platform (http://r2.amc.nl). 
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